
 1

 Systems and Network Analysis Center
Information Assurance Directorate

Separation Kernels on Commodity
Workstations

11 March 2010

SNAC DoD, 9800 Savage Rd. Ft. Meade, MD 20755-6704 410-854-6632 DSN: 244-6632 FAX: 410-854-6604
 www.nsa.gov/snac SNAC@radium.ncsc.mil

http://www.nsa.gov/snac�

 2

Separation Kernels on Commodity Workstations

1 Executive Summary ... 3
2 Introduction .. 4

2.1 SKPP Evaluation .. 4
2.2 Assurance Maintenance ... 5

3 Commodity Workstation Security ... 7
3.1 Workstation Security Argument .. 7

3.1.1 The Applications .. 7
3.1.2 The Operating System ... 7
3.1.3 The Hardware Platform .. 8

3.2 Evaluating the Workstation Security Argument .. 8
3.3 Too Many Cooks in the Kitchen ... 9
3.4 Known Platform Vulnerabilities... 9
3.5 Problems for SKPP Requirements ... 11

3.5.1 Trusted Initialization (ADV_INI) ... 11
3.5.2 Platform Assurance (APT) ... 12
3.5.3 Covert Channel Analysis (AVA_CCA) ... 13

4 One-Box One-Wire (OB1) .. 14
4.1 Evaluation of OB1 .. 14

5 Conclusions ... 16
5.1 SKPP Evaluation on Commodity Workstations .. 16
5.2 OB1 and Desktop Virtualization ... 17
5.3 Recommendations ... 18

6 Appendix A: Public Platform Attacks .. 19
6.1 BIOS Attacks .. 19
6.2 Device Firmware Attacks ... 20
6.3 Device Hardware .. 20
6.4 Platform Security Technology Attacks .. 21

7 Appendix B: Terminology ... 22

 3

1 Executive Summary
The “U. S. Government Protection Profile for Separation Kernels in Environments
Requiring High Robustness” (a.k.a., Separation Kernel Protection Profile or SKPP)
defines functional and assurance requirements for a specialized operating system
known as a separation kernel (SK). The goal of an SKPP evaluation is to verify that
there is a robust operating system layer that only provides information control. Unlike
many other operating systems that perform a large number of functions, the separation
kernel only performs mediation of information flow between partitions. The SKPP has
previously been applied to real-time, embedded operating systems, and while a
certification of the Green Hills Software INTEGRITY-178B separation kernel has been
completed, NSA evaluation efforts of these kinds of systems are ongoing. Unfortunately,
the use of an SKPP certified kernel as one part of a system does not immediately make
a system in totality highly robust.

The One-Box One-Wire (OB1) project is attempting to use a version of the INTEGRITY-
178B separation kernel to provide multi-level separation between virtual machines on
common workstations. It was hoped that by using an assurance maintenance process
(vs. re-certification from scratch), we could leverage the extensive certification
investment already made with INTEGRITY-178B for OB1. However, INTEGRITY-178B
was certified with a relatively simple hardware platform in its Target of Evaluation (TOE)
and unfortunately, the underlying commodity workstation (as part of a separation
platform) does not appear to be appropriate for SKPP certification due to its complexity.
This document outlines specific issues and estimates some of the resources that would
be required, by using OB1 as an example certification.

Although, the validation of assurance arguments on these systems is not feasible to the
degree required by the SKPP, NSA should re-visit the issue when simpler commodity
parts exist. Also, this does not mean that the mechanism(s) (security or otherwise) in
the commodity workstations today are somehow broken or should be abandoned.
Rather, the risk of complex interactions between subsystems within the commodity
platforms and the impact on assurance (including the lack of SKPP/high robustness
certification) for the system should be understood and may prove acceptable in many
situations. Because this finding limits the application of COTS platforms to SKPP and
high robustness certification, this document also recommends a frank assessment of
solutions that require high robustness to determine if a lower degree of robustness
would be sufficient. Also, this document recommends continuing or even increasing
support to commodity platform security technologies and the application of separation
kernels on commodity platforms, since these emerging technologies do have merit.
These efforts should help create a path toward higher levels of robustness in the future.

 4

2 Introduction
The SKPP provides requirements for a small kernel in environments requiring high
robustness, where a capable and motivated adversary is likely to devote significant
resources toward compromising the system. It is important to note, that an SKPP
evaluation only benefits the DoD or U. S. Government (USG) if it is successfully
leveraged in secure operational systems. Also, it is important to consider whether a
given evaluation is likely to succeed at providing a convincing security argument and at
being used operationally. Therefore, any SKPP evaluation that results in a false sense
of security or a secure but useless system is counter-productive.

This document will refer to high, medium, and low robustness. The SKPP specifically
discusses the term high robustness in section 2.8, using the model of threat agents and
asset value. It says that high robustness is appropriate when sophisticated threat
agents and high value assets make the likelihood of an attempted compromise high.

For comparison, Department of Defense Instruction 8500.2 (DODI 8500.2) defines
these terms as follows:

High robustness – Security services and mechanisms that provide the most
stringent protection and rigorous security countermeasures.
Medium robustness – Security services and mechanisms that provide for layering
of additional safeguards above good commercial practices.
Basic robustness

 – Security services and mechanisms that equate to best
commercial practices.

These terms, especially the term High Robustness, will be used in this document based
on the above definitions from the SKPP and DODI 8500.2 “Subject: Information
Assurance (IA) Implementation”. While the terms do not necessarily imply what specific
actions were performed, they do imply a level of confidence, even in the face of an
attacker willing to devote resources toward the compromise of the TOE. High
robustness would thus imply the most confidence that is realistic for a real system, even
when exposed to a motivated attacker that can devote considerable resources toward a
successful compromise.

2.1 SKPP Evaluation
In order to obtain certification against the SKPP criteria, a vendor must submit a product
to the National Information Assurance Partnership (NIAP). A Common Criteria Testing
Laboratory (CCTL) will be contracted to do some validation activities, and NIAP will
oversee the process. Because formal methods evidence is required, consultation with
IAD will be required for the development of the design and implementation of the formal
model. Eventually, the product must be sent to IAD for penetration testing. The SKPP
contains explicit requirements that specifically call for an “NSA evaluator” to perform
vulnerability analysis, penetration testing, and a review of covert channels. The
evaluation effort encompasses these specific activities as well as an unconstrained
search for vulnerabilities.

 5

A thorough explanation of the evaluation activities for the SKPP is beyond the scope of
this document. However, as discussed earlier, this evaluation includes significant
developer effort (including formal verification), CCTL evaluation, and NSA evaluation
and penetration testing. In order to provide convincing arguments to all the parties
involved and incorporate the requisite verification evidence, a product will almost
certainly implement only the minimum required features. This facilitates convincing
security arguments about even a very capable adversary, because there is very little to
attack and exploit.

2.2 Assurance Maintenance
SKPP certification is applied to a specific TOE, including the software, configuration,
and specific hardware platform. Because the certification is so specific, attempts to
maintain assurance on other platforms and configurations are expected. However,
changes to the source code that implements abstract (i.e., not platform-specific)
functions of the kernel are expected to be very rare. Thus, some evidence, such as
formal verification, may verify the abstract functions of the kernel irrespective of
hardware specifics. This leads to assumptions on the hardware and platform-specific
implementation. These assumptions are critical to security, because operations like
achieving secure initial state and granting access to memory through the memory
management unit depend heavily on this platform-specific code. Assurance
maintenance on a new platform is therefore expected to be largely an effort to validate
these assumptions.

The originally certified TOE is likely to further simplify evaluation by disabling significant
portions of the hardware functionality. This allows as much evaluation as possible to be
dedicated to the portion of the kernel that will not change for assurance maintenance
activities. As such, this optimizes NSA evaluation resources, because the largest and
most feature-rich portion of the originally-evaluated TOE will enjoy the additional
resources of the original evaluation and this effort will be reused on maintenance
activities. The expectation, then, is that maintenance activities will require minimal
resources.

For INTEGRITY-178B, the only separation kernel certified against the SKPP to date, an
Impact Analysis Report is required for assurance maintenance. This allows the NSA
evaluator to quickly understand the intended effects of changes for this assurance
maintenance activity. It is expected that this will permit the evaluator to quickly validate
or even test key aspects of the hardware and configuration. In addition, the report will
present an assurance argument for the hardware assumptions and external interfaces.

In the final analysis, however, the NSA evaluator will still be responsible for an
unconstrained search for vulnerabilities, even on assurance maintenance. If a new
platform is used, the evaluator will need to understand the implications of the new
platform, using the Impact Analysis Report and other information as needed. It stands to
reason that simple hardware platforms will be easier to understand, while complex
platforms may require great study.

 6

Regardless of the effort required, assurance maintenance requires that the security
arguments be strong enough to convince an evaluator that even a highly capable
adversary would not compromise this system in the intended environment. In some
cases, it may be the case that platform vulnerabilities prevent certification or similar
validation until the vulnerabilities are resolved.

 7

3 Commodity Workstation Security
This section outlines the trust relationships between layers of a common workstation
platform. It is important to understand these dependencies in order to properly assess
their impact on SKPP evaluation.

3.1 Workstation Security Argument
A common workstation consists of many layers. For simplicity, these will be considered
to be applications, operating system, and hardware platform. Each layer builds on the
properties of the lower layers. In a secure system, the properties of all the layers, taken
together, must guarantee that the security policy will hold. In the case of the SKPP, this
policy defines information flows between partitions (which are presumed to contain
applications).

3.1.1 The Applications
The applications are the highest layer of a commodity workstation, forming the portion
of the system that the user is expected to interact with directly in order to accomplish
mission goals. In the context of separating different partitions, the applications may
provide virtualization of guest operating systems, multi-level window management, data
processing, communication, or other useful services. In a secure environment, the
available applications are expected to be controlled and carefully configured.

Responsible for: Data processing, display, user input, useful features, etc.

Assurance Arguments: largely never change during use, uses specific interfaces
enforced by kernel, verification activities

Required Properties of Lower Layer: Operating System enforcing separation

3.1.2 The Operating System
The operating system (OS) considered here would be a separation kernel running on a
desktop platform. The separation kernel simply provides a software interface for
applications and mediates information flow between partitions. It will need to initialize
itself in order to create a secure initial state, and from that point all operations must
preserve the security properties.

Responsible for: Separating partitions and controlling information flow

Assurance Arguments: Original SKPP evaluation, assumptions validation

Required Properties of Lower Platform Layer: platform correctness, platform separation,
secure initial state (e.g. proper isolation of the components and their access that must
inherently share the same memory with other components)

 8

3.1.3 The Hardware Platform
The desktop platform hardware is the lowest layer of the workstation. It is used by the
operating system in order to interact with devices, initialize the system without specific
knowledge of each and every hardware manufacturer’s configuration, and sometimes to
perform trusted security functions. It also includes input and output devices, such as the
keyboard, mouse, and network interface. The platform is implemented with both
firmware and hardware, and it is usually developed and maintained by separate vendors
from the operating system and applications. The platform usually includes a Basic Input
Output System (BIOS), which standardizes interaction with hardware devices on the
platform, facilitating operating system interaction with these devices. The BIOS
initializes platform hardware before passing control over to an operating system, and it
therefore controls the initial configuration for the OS. Recently, platform manufacturers
have added platform security technology in order to mitigate some threats that apply to
the platform firmware and hardware. This section specifically addresses Intel®
technologies that have been published and are currently available in new systems,
some of these features have been considered for use in OB1. Competing
manufacturers such as AMD™ have similar capabilities.

Responsible for: Secure initial state (device initialization and configuration), operating as
expected (for example, enforcing the permissions configured by an operating system),
separating different devices

Required Properties: Manufacturers’ completeness/verification (BIOS, Original
Equipment Manufacturer (OEM), devices, integration), platform’s security itself

Security Technologies: BIOS, Intel® VT-x, VT-d, TXT, ME (AMT), TPM, etc.

3.2 Evaluating the Workstation Security Argument
From the above description of the various layers, it should be apparent that a thorough
evaluation of any layer is a significant undertaking. In fact, the goal of an SKPP
evaluation is to verify that there is a robust operating system layer that only provides
information flow control. Other security critical features will be required, and these will
appear in the application layer, requiring additional evaluation effort. However, the
expectation is that a single (albeit expensive) evaluation of a separation kernel will
result in a very robust component that can be reused with many groups of applications.

Unfortunately, the operating system layer relies critically upon the hardware, and the
complex hardware of commodity workstations is very imposing. Because hardware
mechanisms have the ability to bypass even a perfect operating system, these
complexities cannot be ignored at the highest levels of robustness. Therefore, the
already difficult and resource intensive task of high robustness operating system
evaluation on a commodity workstation is further complicated by a necessary and
complex hardware evaluation.

 9

3.3 Too Many Cooks in the Kitchen
Ultimately, the problem with commodity desktop platforms comes down to the fact that
too many developers and vendors are interdependent. Each organization involved in the
creation of a desktop workstation has an economic interest in adding features to
distinguish their version from the competition and often needs a particular, unique, and
potentially powerful access. This prevents a unified strategy for security from emerging.
As an example, a single workstation is likely to involve the following components and
manufacturers:

• CPU/microcode – Intel®, AMD™, VIA™, etc.
• Chipset hardware/firmware – Intel®, AMD™, VIA™, etc.
• Core BIOS – Phoenix®, American Megatrends®, Insyde®, Tiano Core, etc.
• Motherboard and BIOS Customization – Dell®, HP®, etc.
• BIOS modules/expansion ROMs – any PCI card vendors
• SuperIO Chip – Winbond®, ITE™, SMC®, etc.
• Hard Drive/Firmware – Seagate®, Western Digital®, etc.
• SPI Flash – Winbond®, Atmel®, etc.

As multiple parties (chip manufacturer, motherboard manufacturer, BIOS developer,
device manufacturer, etc.) attempt to add value, the product will be subject to
orthogonal feature creep. Put together, these extra features create complexity. In order
to facilitate interoperability, additional layers of interdependency are added, requiring
trust in multiple parties. It is understandably difficult, for example, for one organization to
understand, verify, and correct bugs that have been created by another organization,
especially since the standardized abstraction does not necessarily represent the real
hardware. This is especially difficult when one organization’s “bug” is considered to be a
“feature” by others.

Even if good security arguments could be made, they would only apply to a single
hardware version. This version will then have to deal with limitations such as reliance on
particular manufacturers, resistance to change, and obsolescence. It will probably no
longer be considered “commodity” equipment, and even if it is, that will only last until the
next version is released. Current platform security technology (such as Intel® TXT) is
attempting to address this, but an assurance argument about the platform security
technology itself is needed. It appears that such verification activity must occur on (and
apply to) a particular platform, thereby losing any “maintenance” advantage for
commodity platforms.

3.4 Known Platform Vulnerabilities
A summary (not exhaustive) of recent research into platform attacks is given in
Appendix A. The particular attacks described have been patched or are well-known and
normally mitigated through good security practices. These attacks exemplify a
fundamental issue: “too many cooks in the kitchen” and the complexity of orthogonal
feature creep leads to unverified security dependencies. For example, BIOS is used to

 10

abstract the hardware specific interfaces of commodity platforms. Without it, the
operating system would be hardware dependent. However, reliance on BIOS creates a
trusted interface for an operating system, and this trusted interface has been exploited
in publicly known attacks (see Appendix A) using the BIOS, SMM, and even TXT. A
similar argument can be made for other attacks described.

As one manufacturer adds features to a component, the security implications for other
components are difficult to understand. New features, which change the trust model,
may not be designed with the requirements of other components in mind. For example,
the designers of a device that writes directly into host memory might not have
envisioned the notion that an entity with access to the device’s control registers does
not also have access to all physical memory. This would likely make the secure
configuration of Intel® VT-d very difficult. Similarly, the addition of firmware update
features to one device may significantly change the trust model of the system,
depending on how the update is performed and what the device can do.

In order to evaluate the secure use of such a platform, the trust models of all these
various components must come together, forming a consistent security argument. Even
though some of the vendors involved may participate in the evaluation and certification
activities, it is unlikely that all parties who have contributed intellectual property (e.g.
firmware, source code, etc.) to the platform will release that information to NSA for
evaluation. This forces the evaluation to require hostile reverse engineering, assurance
arguments that are independent of this information, or an understanding and
acceptance of risk. Reverse engineering is almost certain to be prohibitively expensive
for evaluation, and assurance arguments that do not require this information will likely
result in hardware platform changes. The only tractable solution is to understand and
accept the risk of security flaws in the platform. Depending on the level of
understanding, this strategy is probably appropriate for basic or medium robustness
only.

Many recent hardware platforms, especially embedded devices, have begun to support
special interfaces that are available only to the manufacturer. These interfaces are often
undocumented and protected. This may be used to enforce a degree of content copy
protection or prevent alteration of the device functionality. For example, a digital rights
management system might use an undocumented and protected interface to load
firmware to a playback device. Unfortunately, undocumented and protected features
directly conflict with the goals of evaluation. If the hardware platform contained such a
device, how would evaluators assess the security impact of these undocumented
interfaces? This is especially difficult if the manufacturer is not participating in the
evaluation and does not wish to disclose the existence of these interfaces.

Some hardware platforms also support additional features that can be enabled or
disabled by the manufacturer. Often this is used as a cost-saving measure, allowing the
manufacturer to create one hardware design and offer a range of products with specific
features enabled or disabled in order to increase or decrease the price. This creates
additional difficulty for security evaluation. While a feature may be disabled in order to

 11

simplify a platform, this is fundamentally different from the feature not being present at
all in the platform. If features can be enabled or disabled by a manufacturer, this can
also be done by an attacker, and it may invalidate the security arguments of the system.

3.5 Problems for SKPP Requirements
 Evaluation of a separation kernel involves significant effort, even on ideal hardware.
The complexities of real hardware, especially commodity workstation hardware and
firmware, make successful evaluation even more difficult. While many aspects of the
SKPP may be affected by the issues presented in this document, the following specific
requirements appear to be the most likely to fail evaluation as a result of incomplete
evidence or the existence of vulnerabilities.

3.5.1 Trusted Initialization (ADV_INI)
Because it is the responsibility of BIOS to handle hardware-specific details, evaluators
will have difficulty precisely understanding its role in trusted initialization. With a
significant investment of time and effort, it might be possible to identify the effects of
specific actions performed by a particular implementation on a particular platform.
However, this will not easily scale to many platforms, and it will likely require more
evaluation resources than are available. Moreover, the only component developed by
the vendor attempting SKPP certification is the separation kernel. If a vendor did not
write the BIOS, it is not necessarily going to be available for evaluation. Similarly, the
necessary hardware datasheets and board specifications may not be available for
validation of BIOS actions. (Appendix G of the SKPP states that, for APT_PDF_EXP –
Platform Definition, “This PP mandates the highest level which requires that detailed
specifications for all components be available.”) In a commodity workstation, neither the
hardware nor the BIOS were developed to be simple with highly robust assurance
arguments and yet the SKPP vendor must rely on these components to make their
case.

Intel® TXT is intended to ensure that even if BIOS execution did not result in a secure
state, the system will be secure if the TXT launch succeeds. However, SKPP
certification would then be contingent on a certification of Intel® TXT, and the resources
required for this make it impractical in the context of an already significant SKPP
evaluation. There are many complex dependencies between the CPU, Authenticated
Code module, and BIOS/chipset. One such dependency was insecure and exploitable
in the ITL VT-d attack described in Appendix A. Furthermore, an evaluation of Intel®
TXT must occur on a particular motherboard, because the details of the verification
performed by TXT must be evaluated for correctness. This would limit the certification to
a particular commodity motherboard, but might make it possible.

Another solution might be to customize a BIOS implementation for evaluation on a
particular platform. This would be roughly equivalent to writing the Board Support
Package (BSP) on other assurance maintenance activities. Unfortunately, this requires
specific knowledge of the exact motherboard, the devices on it, and their configuration.
The purpose of BIOS is to abstract this, because there are so many vendors in the

 12

commodity workstation market. If this were done, only one specific and probably
customized motherboard would be compatible. This would make the solution no longer
a commodity workstation, but might make evaluation closer to the intended assurance
maintenance.

Both cases would still need to handle the issue of BIOS updates. Bug fixes and
additional features will require a mechanism to deploy new versions. This mechanism
must not allow adversaries to corrupt the integrity of the BIOS, and the integrity check
must be robust against a highly capable adversary. This update mechanism must be
compatible with the SKPP requirements for flaw remediation (ALC_FLR).

3.5.2 Platform Assurance (APT)
The SKPP contains specific requirements for Platform Definition (APT_PDF),
Specification (APT_PSP), Conformance Testing (APT_PCT), Security Testing
(APT_PST), and Vulnerability Assessment (APT_PVA). Fulfilling these requirements
requires a thorough description of all of the platform components that the TOE will rely
upon. This information will be used to construct documents and tests for both internal
and external resources that are part of the platform. Normally, this information would
come from hardware data sheets and other vendor-specific information.

Section 2.6 of the SKPP discusses platform considerations, including components and
interfaces. While it provides examples of more and less restrictive platform definitions, it
also cautions that less restriction complicates evaluation. Identification of all the
interfaces and devices on a commodity workstation will be one such complexity. The
platform definition must enumerate the devices on the platform and document their
configuration. This requires significant effort, either requiring the developer to fully
understand a commodity motherboard or create a simplified motherboard that is not
commodity. Without this sort of understanding, an enumeration of components and
interfaces does not appear to be possible.

Orthogonal feature creep (e.g. innovation) will be perpetual and rapid. Without an
ongoing effort, closely tied in with a particular model of chip and motherboard, it will
likely be not feasible to gain sufficient assurance evidence on a system before it
becomes obsolete.

Recent platform security features such as Intel® TXT claim to protect much of the
critical platform interfaces. However, if security arguments of the separation kernel rely
upon this, then Appendix G of the SKPP states that these hardware mechanisms
“cannot be considered part of the platform and must be evaluated in accordance with
the non-platform assurance requirements (e.g., ADV).” As stated above, this amounts to
an evaluation of the platform security features (such as Intel® TXT) along with the
SKPP evaluation of the kernel.

A potential solution might be for the USG to create demand for a greatly simplified
“secure version” of a commodity platform with evaluation closely tied in with
development of this particular model of chip and motherboard. Each time this model is

 13

upgraded to include additional features, evaluation would be updated as well. In order to
prevent this product from lagging too far behind the regular market, perhaps it could
always be based on the newest version on market but with limited features. Clearly, this
would require very close and ongoing relationships between NSA and OEMs. It would
also require a lot of dedicated resources (not a one-time cost), but this is likely to be
less costly than the evaluation of commodity parts in general.

3.5.3 Covert Channel Analysis (AVA_CCA)
In order to perform Covert Channel Analysis, the developer must consider the
interactions between devices on the platform. This is especially true for devices which
might become exported (allocated to potentially untrusted partitions) or external
(available to potentially untrusted subjects outside the kernel, such as other hardware
devices or systems) resources. Like the previous issues with Platform Assurance, a
detailed specification of the platform hardware is required. It will be hard to obtain this
information for a commodity platform, since it comes from a different vendor than the
one seeking certification of a separation kernel.

Once this documentation is obtained, performing a systematic analysis on it will be
extremely complex. Commodity platforms have numerous microcontrollers for a large
number of devices, busses, and peripheral interfaces. Simply determining which
devices are interconnected and the amount of information that can flow through these
connections will require iterating over a very long list of devices. Performing this
analysis on a commodity motherboard would certainly be enlightening, but it is likely to
require a lot of time and effort that might be better spent elsewhere. If a significant
number of high-bandwidth covert channels are found, the TOE may not be able to meet
its functional requirements for separation, and in that case, it will be difficult to fix the
problem. Even if it is not the case, this analysis would likely be invalid for any new
version of the platform, and the evaluated version would likely become obsolete quickly.

 14

4 One-Box One-Wire (OB1)
The One-Box One-Wire project (OB1) is a good example of a desktop workstation that
uses a separation kernel. One of the project’s goals is to use an SKPP certified version
of INTEGRITY-178B on a desktop workstation that will separate multiple classification
levels in virtual machines. This kernel will also use Intel® platform security technology
(including VT-x, VT-d, and TXT).

OB1 can be broken down into the following components:

1. Intel® Hardware Platform
2. Separation Software (kernel and user-level)
3. BlackChannel Network Card & Switch
4. System Management

OB1 benefits from an architecture that carefully selects the trusted properties of its
components to be those properties that are expected to have the most rigorous
verification. For example, the workstation assurance arguments boil down to the
separation kernel’s information flow control properties whenever possible, and the
network and configuration assurance arguments largely rest upon the protected portion
of the BlackChannel hardware. This is intended to maximize the utility of costly but
rigorous verification activities such as SKPP certification.

USCENTCOM, the intended customer for OB1, has requested NSA support for OB1
evaluation, especially with regard to SKPP evaluation and assurance maintenance. In
response, a number of activities have been performed, including the creation of this
report.

4.1 Evaluation of OB1
The architecture and verification activities planned for OB1 provide significant
assurance arguments, and only some specific features that distinguish OB1 are
mentioned here. First, OB1 plans to use a separation kernel to enforce separation
between guest virtual machines. The use of a simple separation kernel supports
verification activities (such as high-coverage testing or formal methods) of the desired
separation property. In addition, OB1 plans to provide virtualization support using
independent user-space processes for each virtual machine as much as possible. This
reduces the shared resources between virtual machines and makes privilege escalation
more difficult for an attacker. Another critical component of OB1 is the use of the
BlackChannel network card and switch, which provide hardware-based, encrypted
tunnels for each virtual network. These components are designed to prevent attackers
from retrieving key material, affecting the hardware operation, or confusing virtual
networks. Because OB1 developers have thought through security arguments at many
levels, NSA analysts believe the project has great potential.

A rough order of magnitude estimate for the evaluation work needed was created by
NSA analysts familiar with SKPP evaluation. The goal was to provide an estimate for a
reasonably thorough evaluation of OB1 (both for SKPP certification and in general)

 15

while accepting that full verification was not feasible. Given the known attacks and
current understanding of the OB1 components, a set of evaluation activities was
composed for each one. This includes activities like evaluation of SKPP requirements,
source code analysis for specific applications, design review, evaluation of the use of
Intel® TXT, vulnerability analysis of platform devices, and other items. A rough
estimate, in multiples of two-week iteration cycles, was given for each activity.

All together, the work is expected to require roughly 8.4 man-years, spread across
multiple organizations with relevant expertise. Even if some activities are dropped, the
work estimate will still remain high until many components are not thoroughly examined
at all, and even with all of the planned and estimated activities, it is not clear that a
security argument could be formed that justifies use in cases where a dedicated
adversary may attempt to compromise the system (i.e., High Robustness). Significant
coordination among different organizations will be required in order to meet the very
tight schedule for the OB1 project. There is some risk of delays due to setting up
environments for multiple organizations and communication of relevant information.

 16

5 Conclusions
Analyses of the desktop workstation platform, SKPP, and OB1 have resulted in a
number of general conclusions. These conclusions are described for SKPP evaluation
in general and OB1 in particular, and recommendations are provided to enhance future
work.

5.1 SKPP Evaluation on Commodity Workstations
The commodity workstation platform uses components from multiple vendors, and many
of these components are relied upon for trusted initialization. Attacks that take
advantage of vulnerabilities in these trust relationships have been publicly presented. In
response to many of the attacks against these platforms, manufacturers have begun
including platform security technology. While this technology is promising, the platform
complexity makes it very difficult to verify its correctness, and any attempt to do so
would verify only a particular platform, limiting the scope and scalability of the solution.

Because of the complexity and evaluation difficulty, SKPP evaluation on a commodity
workstation would be costly in time and effort, limited in applicability (only a single
motherboard could be verified), and unlikely to result in confidence that justifies
certification against the SKPP. Because the SKPP is specifically targeted to
environments requiring high robustness, the adversary is expected to have invested
significant resources into platform vulnerabilities and attacks. Without fundamental
changes to normal commodity platforms, it is unlikely that any reasonable evaluation
effort could provide enough assurance to justify certification of such a platform against
the SKPP.

A corollary to this conclusion is that the SKPP and high robustness have a limited
scope. In order to achieve sufficient simplicity to allow for proper assurance, only tightly
controlled systems are appropriate. Standard commodity equipment is likely to be
acceptable only in the form of simple components combined in simple ways. There will
be practical limits to what can and cannot be simplified, while still resulting in a useful
end product. However, because a large portion of commodity equipment that is familiar
to end users will not be sufficiently simple for SKPP evaluation, end-user solutions that
meet these requirements will probably be highly customized and difficult to scale.

Nonetheless, commodity workstations may present a completely acceptable risk profile
given available options. The fact that sufficient assurance to justify SKPP certification or
high robustness is not feasible on these platforms does not change operational needs
and available resources. It will be necessary to balance risk aversion with a realistic
assessment of current capabilities. In doing so, iterative improvement in the robustness
of DoD systems should be the goal. Therefore, the findings in this document do not
condemn OB1 or the use of separation kernels in commodity workstations. Instead, they
should drive improvements that make higher levels of robustness possible in the future.

 17

5.2 OB1 and Desktop Virtualization
The OB1 project is performing potentially useful work by applying separation kernel
technology to desktop virtualization. The Information Assurance Directorate’s (IAD’s)
effort to understand the architecture and assurance arguments for the system has
revealed that much thought has been placed into developing a system with strong
arguments for its security. While there is a great deal of work needed to improve OB1, it
appears to be a promising application of separation kernels.

Unfortunately, the desktop platform targeted by OB1 undermines SKPP certification,
due to the requirement for high robustness. A useful system, incorporating the platform
technologies that OB1 already plans to use, could probably be built if the target was in
environments requiring medium robustness. Reducing this requirement would also have
the benefit of making the solution easier to scale, and it does not necessarily imply
anything with regard to an accreditation decision to permit operation with specific
networks having different classification levels.

Therefore, attempting assurance maintenance against the SKPP on INTEGRITY-178B
using a desktop workstation platform is unlikely to be successful for OB1. In order to
continue with the current platform and architecture, OB1 should consider dropping the
SKPP certification and corresponding high robustness requirements. Otherwise, if
SKPP certification and high robustness are required, then a new architecture, based on
simpler components, should be developed.

This does not necessarily prevent OB1 from obtaining approval to operate in its
intended environments. Other systems have been approved for connection to networks
of different classification levels without SKPP certification. However, these issues
should be considered as part of a realistic assessment of the risk that OB1 is expected
to assume. Given available options, this may even be an improvement in the overall
assurance of the system, because nearly all commodity equipment will be subject to
these risks. Even if the project does not address the platform assurance issues to the
level required for the SKPP and high robustness, it is still possible for OB1 to make
significant improvements as compared with the average commodity workstation.
Depending on the customer’s environment and needs, this may be sufficient for
operational use.

The security argument of the proposed OB1 system is based on both commodity
platform security technology and a separation kernel. This potentially offers greater
assurance than current systems that provide separation using virtualization, even
though it does not meet the requirements for the SKPP. The use of a separation kernel
should reduce the complexity of the kernel component and facilitate robust verification
activities. A simple and robust kernel does not create simplicity and robustness in other
layers of the platform (i.e., applications and hardware), but it does represent an
improvement. Therefore, it is recommended that NSA attempt to support as many of the
planned and estimated evaluation activities as possible. The resulting evaluation should
help improve desktop workstation security in general and the OB1 product specifically,
advancing the missions of NSA and IAD.

 18

5.3 Recommendations
For high robustness environments, where a highly capable and motivated adversary is
expected to devote significant resources toward compromising the system, it is
recommended that complex platforms such as desktop workstations NOT be relied
upon. A highly capable adversary is expected to research platform vulnerabilities in
commodity workstations, and the platform security of this technology is subject to
significant complexity, which stands in the way of robust assurance arguments.
Improvements to platform security technology should continue, and as it matures, this
technology may be appropriate for many practical situations. However, without
significant simplification of the platform, it does not appear that the security arguments
of this technology can justify high robustness. Therefore, these systems are not
appropriate for certification against the SKPP.

Because platform security technology is developing and appears promising, it is
recommended that NSA and other USG organizations continue to follow this
technology, encourage its general use, and support its improvement. This technology
has the potential for generating high impact by raising the bar for computer security in
general. The significance of this suggests that investment in studying and improving this
technology may be applicable to current and proposed DoD systems more often than
SKPP and high robustness solutions, even though it would not be able to provide
sufficient platform assurance for SKPP certification. Organizations involved in the OB1
project should consider working with platform manufacturers to make simpler,
supportable platforms. If simpler commodity platforms can be easily used to create the
desktop environment targeted by OB1, it may be possible to support SKPP certification
and high robustness in the future. Such a platform would need to include both
evaluation and product support on a continuing basis in order to maintain assurance
with future, updated versions.

Lastly, when considering engagement of a product, the scalability of the successfully
evaluated solution must be considered. NSA may need to review the environments that
necessitate high robustness and assess the need for scalability. If the highest level of
confidence (and not some lower level) is truly required in many real DoD environments,
a strategy for scaling high robustness solutions to the level required by the DoD should
be developed. In any case, security solutions should ensure that future developments
proceed along a path toward supporting higher levels of robustness.

 19

6 Appendix A: Public Platform Attacks

6.1 BIOS Attacks
Persistent BIOS Infection (Core Security Technologies, CanSecWest 2009) – Security
researchers from Core Security Technologies have published a generic attack that
provides rootkit-like behavior by modifying the BIOS image. They identify the flashrom
tool, which supports rewriting many motherboard and flash chip combinations as part of
the CoreBOOT project. By patching a BIOS and fixing the checksums, they
demonstrated attacks targeting OpenBSD and Windows with persistence against OS
reinstallation.

Attacking the Intel BIOS (ITL, Black Hat USA, July 2009) – The security researchers
at Invisible Things Lab (ITL) have published a technique for rewriting the flash memory
used to boot the BIOS for an Intel® platform. This memory would normally be protected
from writes, but by exploiting an overflow in BIOS image parsing, they were able to
execute arbitrary code before the BIOS locked the ability to write to the flash memory.
This results in the ability to arbitrarily and persistently modify the BIOS code, executing
malicious code before booting an operating system boots.

SMM Rootkits: A New Breed of OS Independent Malware (University of Central
Florida, SecureComm 2008) – Security researchers presented a proof of concept
System Management Mode (SMM) rootkit. SMM is a special x86 processor mode,
which can transparently execute privileged code. After the rootkit was installed, they
demonstrated its ability to hide from the operating system, log keystrokes, and send
data out over the network. The work did not outline how to get the SMM rootkit installed
through exploitation of secure components (they installed the rootkit by manually
executing a malicious kernel driver), but other research has since demonstrated this
ability.

Attacking Intel Trusted Execution Technology (ITL, Black Hat DC, February 2009,
details presented at Black Hat USA, July 2009) – ITL identified a portion of SMM code
that used a pointer to memory that was accessible by the host. By exploiting this
dependency, they were able to trigger execution of arbitrary malicious code from within
SMM. They used this to successfully bypass Intel® Trusted Execution Technology
(TXT), which is intended to ensure the integrity of system initialization.

Attacking SMM Memory via Intel CPU Cache Poisoning (ITL, March 2009) – ITL
demonstrated that an attacker with kernel privilege can attack SMM code by
manipulating the processor’s machine-specific registers to make the protected SMRAM
cacheable with write-back. Then, by performing writes to these memory locations, the
attacker would fill the cache with modified values for SMRAM. Finally, after triggering
execution of a System Management Interrupt (SMI), the CPU will execute code from the
cache, because new values have not yet been written back. This will permit arbitrary
code execution from within SMM.

 20

6.2 Device Firmware Attacks
Implementing and Detecting a PCI Rootkit (NGSSoftware Insight Security Research,
Black Hat DC, November 2006) – The author described an attack using PCI expansion
ROM, causing malicious code to execute during system startup. This malicious code
implemented a rootkit, and was capable of remote updates through PXE boot. The
author suggested detection of such rootkits by observing the effects of the rootkit on the
operating system and/or comparing the expansion ROMs to known good versions. The
author also suggested the use of the Trusted Platform Module (TPM) and BIOS to
protect against such attacks.

Project Maux Mk.II “ I 0wn the NIC, now I want a shell!” (Arrigo Triulzi, PacSec 2008)
– The researcher first described previous work that installed a rootkit into the firmware
of a network interface card (NIC). The rootkit allowed covert sniffing of network traffic.
The new research presented was applying the same firmware modification techniques
to a new hardware device—the graphics card. Using the compromised NIC from the
previous work, commands are issued to the graphics card, resulting in a secure remote
terminal available to the adversary. This covert, malicious service was independent of
the OS or application software. Some defenses, including firmware verification and
secure boot, were suggested.

Introducing Ring -3 Rootkits (ITL, Black Hat USA, July 2009) – ITL described an
attack that caused malicious code to be executed from the Intel® Manageability Engine
(ME), which is responsible for Intel® Active Management Technology (AMT). In order to
obtain execution on the ME, they reverted to an older, vulnerable version of the Intel®
BIOS and used a remapping attack that they had previously presented, making a
portion of the ME memory accessible to the operating system. They described how the
ME could make a direct memory access (DMA) between itself and the host memory,
allowing attacks against the host operating system.

Reversing and exploiting an Apple firmware update (Georgia Institute of
Technology, Black Hat USA, July 2009) – The researcher presents and describes in a
paper how the firmware update mechanism of the Apple Aluminum Keyboard may be
used to implement a rootkit. Because low-cost components are used in such devices, it
is difficult to perform computations needed for strong verification such as a
cryptographic signature. Therefore, this sort of attack will be difficult to mitigate. The
rootkit developed shows the caps lock LED being flashed when a keyboard is plugged
in, but a malicious payload could send keystrokes to the operating system. This attack
would survive reinstallation of the operating system.

6.3 Device Hardware
0wned by an iPod (Laboratory for Dependable Distributed Systems, PacSec 2004) and
Firewire: all your memory are belong to us (LDDS, CanSecWest 2005) – These
presentations detail the vulnerability of the Firewire interface, when not filtered, to
malicious devices that attempt to read and write arbitrary memory locations. They
demonstrate that these attacks can be effective on real operating systems. As a
defense, they suggest implementation of Firewire filtering.

 21

Remote Code Execution through Intel CPU Bugs (Endeavor Security, Hack-In-The-
Box 2008) – The researcher presented examples of Intel® processor errata that can be
used for malicious attacks. He suggested that cache coherence bugs could be used to
cause everything from a crash to injecting attack code into an operating system kernel.
He also identified specific errata that have been identified in malware and can be used
to assist in local privilege escalation and obfuscate reverse engineering.

6.4 Platform Security Technology Attacks
Attacking Intel Trusted Execution Technology (ITL, Black Hat DC, February 2009,
details presented at Black Hat USA, July 2009) – As discussed above, ITL
demonstrated that SMM attacks are successfully able to bypass Intel® TXT. Note that
Intel® has plans to create an SMI Transfer Monitor (STM), which should create a
controlled, virtual environment similar to a virtual machine for SMM code. This should
limit the capability of SMM attacks in the future, but no STM is publicly available at the
time of writing.

Another Way to Circumvent Intel Trusted Execution Technology (ITL, December
2009) – ITL published a paper detailing how a dependency between Intel®’s
Authenticated Code Module (which performs trusted operations in order to implement a
secure TXT launch) and the platform configuration tables can lead to insecure
configuration after a successful TXT launch. By manipulating the system’s ACPI table, it
is possible to “trick” the authenticated code module (and subsequent operating system
code) into using incorrect configuration registers for one of the VT-d remapping units.
This results in VT-d not being configured, leading to vulnerability to traditional DMA
attacks from or through devices, even though TXT was explicitly intended to protect
against this attack.

 22

7 Appendix B: Terminology

Assumptions: Fundamental properties that are relied on to be true about a system.

Assurance argument/Security Argument: Evidence (e.g. claims) that a system meets
a security requirement/assumption. Loosely used and interchanged.

Assurance maintenance: A NIAP process that allows evaluated products to maintain
their Evaluation Assurance Level (EAL) rating when being updated in a well-defined,
controlled and usually limited way.

Commodity desktop workstations: Typical desktop platforms (x86 based) made by
the usual Original Equipment Manufacturers (OEM) (e.g. Dell, HP, Apple, etc).

CPU: Central Processing Unit (e.g. x86, PowerPC, etc).

Chipset: the supporting chips included on the motherboard that allow the CPU to be
useful. These are not the peripheral devices such as hard drives, NICs, etc.

Firmware: This is software that is usually loaded from flash memory and is often
associated with devices. It may run natively on the CPU, or natively on the device.

BIOS: Basic Input Output System. This is firmware that boots the platform and
establishes the initial configuration of the platform as warranted by the OEM. It
manages power, temperature, configuration and other features inherent to the platform.
It is not the operating system.

SMM: System Management Mode. This is a unique mode of x86 CPU that operates in a
separate context from the OS. It is firmware that is setup by the BIOS at boot and is
entered via system interrupts. It is used to handle things like legacy devices, power
management, platform fixes after shipment, and other features inherent to the platform.
It is not the operating system.

Intel® ME: Manageability Engine. The ME is a separate CPU and subsystem within the
platform chipset. This may be marketed also as vPro. The ME is an Intel® chipset-
specific technology built-in to many enterprise systems shipping today.

Intel® AMT: Active Management Technology. AMT is firmware running within the ME to
facilitate remote management of the platform.

Intel® VT-x: A set of instructions of the Intel® CPU that enable virtualization. Typically a
virtualized solution consists of a controlling entity (e.g. Virtual Machine Monitor a.k.a.
hypervisor) and any number of subordinate virtual machines all running on the same
CPU.

 23

Intel® VT-d: Virtual DMA protection. This allows the CPU to restrict DMA-capable
(direct memory access) devices to specific virtual address ranges. Typically used by the
controlling entity (e.g. OS, Hypervisor, etc.) to isolate/protect memory of the specified
container (Virtual Machine, process, OS, etc.).

TXT: Trusted eXecution Technology. This is specific set of Intel® x86 CPU instructions
that collectively allow a process to start/exit in a known (i.e. secure) state. Among many
things, it makes measurements of machine state (BIOS, devices, etc.) and stores them
in a Trusted Platform Module (TPM).

TPM: Trusted Platform Module. This is a separate chip on the motherboard that
appears as a PCI-device (to the OS it’s just another “card”) and is used for
cryptographic operations. It is enabled/disabled from the BIOS at boot. It is a standard
of the Trusted Computing Group consortium.

	1 Executive Summary
	2 Introduction
	2.1 SKPP Evaluation
	2.2 Assurance Maintenance

	3 Commodity Workstation Security
	3.1 Workstation Security Argument
	3.1.1 The Applications
	3.1.2 The Operating System
	3.1.3 The Hardware Platform

	3.2 Evaluating the Workstation Security Argument
	3.3 Too Many Cooks in the Kitchen
	3.4 Known Platform Vulnerabilities
	3.5 Problems for SKPP Requirements
	3.5.1 Trusted Initialization (ADV_INI)
	3.5.2 Platform Assurance (APT)
	3.5.3 Covert Channel Analysis (AVA_CCA)

	4 One-Box One-Wire (OB1)
	4.1 Evaluation of OB1

	5 Conclusions
	5.1 SKPP Evaluation on Commodity Workstations
	5.2 OB1 and Desktop Virtualization
	5.3 Recommendations

	6 Appendix A: Public Platform Attacks
	6.1 BIOS Attacks
	6.2 Device Firmware Attacks
	6.3 Device Hardware
	6.4 Platform Security Technology Attacks

	7 Appendix B: Terminology

