

Supporting Document
Mandatory Technical Document

Full Drive Encryption: Authorization
Acquisition

February 2019

Version 2.0 + Errata 20190201

CCDB-2019-xxx

Foreword
This is a supporting document, intended to complement the Common Criteria version 3 and the
associated Common Evaluation Methodology for Information Technology Security Evaluation.

Supporting documents may be “Guidance Documents”, that highlight specific approaches and
application of the standard to areas where no mutual recognition of its application is required, and as
such, are not of normative nature, or “Mandatory Technical Documents”, whose application is
mandatory for evaluations whose scope is covered by that of the supporting document. The usage of
the latter class is not only mandatory, but certificates issued as a result of their application are recognized
under the CCRA.

This supporting document has been developed by Full Drive Encryption iTC and is designed to be used
to support the evaluations of TOEs against the cPPs identified in section 1.1.

Technical Editor:

FDE iTC

Document history:

V0.7, September 2014 (Initial Release for Public review)

V0.11, October 2014 (Adjudicated comments from Public Review, submitted to CCDB)

V1.0 January 2015 (Incorporated changes due to comments received from CCDB review)

V1.5 September 2015 (Updated to reflect latest revision of cPP)

V2.0 August 2016 (Updated to reflect comments received)

V2.0 + Errata 20190201 February 2019 (Updated to reflect CC Part 3 evaluation findings and FDE
Interpretation Team [FIT] rulings)

General Purpose:

The FDE technology type is special due to its physical scope and its limited external interfaces. This
leads to some difficulties in evaluating the correctness of the implementation of the TOE’s provided
security functions. In the case of the Authorization Acquisition (AA), it may be difficult to trigger the
interface to demonstrate the TSF is properly conditioning a password, or combining multiple submasks.
Therefore methods have to be described on how to overcome this challenge (as well as others) in a
comparable, transparent and repeatable manner in this document.

Furthermore the main functionality of the AA is to gather user input and provide the Encryption Engine
with a value that can be used to make the data encryption key available for encryption/decryption
functions. In order to ensure comparable, transparent and repeatable evaluation of the implemented
mechanisms, methods have to be described that may consist of agreed evaluation approaches, e.g. how
to prove that the claimed functionality is really done by the TOE.

Field of special use:

Full Drive Encryption devices, specifically the set of security functional requirements associated with
the Authorization Acquisition component.

Acknowledgements:

This Supporting Document was developed by the Full Drive Encryption international Technical
Community with representatives from industry, Government agencies, Common Criteria Test
Laboratories, and members of academia.

Contents

1 INTRODUCTION 5

1.1 Technology Area and Scope of Supporting Document 5

1.2 Structure of the Document 5

1.3 Terminology 6
1.3.1 Glossary 6
1.3.2 Acronyms 8

2 EVALUATION ACTIVITIES FOR SFRS 10

2.1 Cryptographic Support (FCS) 11
2.1.1 Authorization Factor Acquisition (FCS_AFA_EXT) 11
2.1.2 Cryptographic Key Management (FCS_CKM) 12
2.1.3 Cryptographic Key Management (FCS_CKM_EXT) 15
2.1.4 Key Chaining (FCS_KYC_EXT) 16
2.1.5 Cryptographic Operation (Salt, Nonce, and Initialization Vector Generation) (FCS_SNI_EXT) 17

2.2 Security Management (FMT) 18
2.2.1 Management of Functions in TSF (FMT_MOF) 18
2.2.2 Specification of Management Functions (FMT_SMF) 18
2.2.3 Security Management Roles (FMT_SMR) 20

2.3 Protection of the TSF (FPT) 21
2.3.1 Key and Key Material Protection (FPT_KYP_EXT) 21
2.3.2 Power Management (FPT_PWR_EXT) 21
2.3.3 Trusted Update (FPT_TUD_EXT) 22

3 EVALUATION ACTIVITIES FOR OPTIONAL REQUIREMENTS 24

3.1 Protection of the TSF (FPT) 24
3.1.1 TSF Testing (FPT_TST_EXT) 24

4 EVALUATION ACTIVITIES FOR SELECTION-BASED REQUIREMENTS 25

4.1 Cryptographic Support (FCS) 25
4.1.1 Cryptographic Key Management (FCS_CKM) 25
4.1.2 Cryptographic Operation (FCS_COP) 27
4.1.3 Cryptographic Key Derivation (FCS_KDF_EXT) 37
4.1.4 Cryptographic Password Construct and Conditioning (FCS_PCC_EXT) 38
4.1.5 Random Bit Generation (FCS_RBG_EXT) 39
4.1.6 Submask Combining (FCS_SMC_EXT) 40
4.1.7 Validation of Cryptographic Elements (FCS_VAL_EXT) 40

5 EVALUATION ACTIVITIES FOR SARS 42

5.1 ASE: Security Target Evaluation 42
5.1.1 Conformance Claims (ASE_CCL.1) 42

5.2 Development (ADV) 43

5.2.1 Basic Functional Specification (ADV_FSP.1) 43

5.3 Guidance Documents (AGD) 45
5.3.1 Operational User Guidance (AGD_OPE.1) 45
5.3.2 Preparative Procedures (AGD_PRE.1) 46

5.4 Life-cycle Support (ALC) 47
5.4.1 Labelling of the TOE (ALC_CMC.1) 47
5.4.2 TOE CM coverage (ALC_CMS.1) 47

5.5 Tests (ATE) 47
5.5.1 Independent Testing – Conformance (ATE_IND.1) 47

5.6 Vulnerability Assessment (AVA) 48
5.6.1 Vulnerability Survey (AVA_VAN.1) 48

6 REQUIRED SUPPLEMENTARY INFORMATION 52

7 REFERENCES 53

A. VULNERABILITY ANALYSIS 55

A.1 Sources of Vulnerability Information 55

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based 55

A.1.2 Type 2 Hypotheses—iTC-Sourced 56

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated 57

A.1.4 Type 4 Hypotheses—Tool-Generated 57

A.2 Process for Evaluator Vulnerability Analysis 57

A.3 Reporting 58

B. FDE EQUIVALENCY CONSIDERATIONS 61

1 Introduction

1.1 Technology Area and Scope of Supporting Document

1 The purpose of the first set of Collaborative Protection Profiles (cPPs) for Full Drive
Encryption (FDE): Authorization Acquisition (AA) and Encryption Engine (EE) is to
provide requirements for Data-at-Rest protection for a lost device. These cPPs allow
FDE solutions based in software and/or hardware to meet the requirements. The form
factor for a storage device may vary, but could include: system hard drives/solid state
drives in servers, workstations, laptops, mobile devices, tablets, and external media. A
hardware solution could be a Self-Encrypting Drive or other hardware-based solutions;
the interface (USB, SATA, etc.) used to connect the storage device to the host machine
is outside the scope.

2 Full Drive Encryption encrypts all data (with certain exceptions) on the storage device
and permits access to the data only after successful authorization to the FDE solution.
The exceptions include the necessity to leave a portion of the storage device (the size
may vary based on implementation) unencrypted for such things as the Master Boot
Record (MBR) or other AA/EE pre-authentication software. These FDE cPPs interpret
the term “full drive encryption” to allow FDE solutions to leave a portion of the storage
device unencrypted so long as it contains no plaintext user or plaintext authorization
data.

3 The FDE cPP - Authorization Acquisition describes the requirements for the
Authorization Acquisition piece and details the security requirements and evaluation
activities necessary to interact with a user and result in the availability of a data
encryption key (DEK).

4 This Supporting Document is mandatory for evaluations of TOEs that claim
conformance to the following cPP:

5 a) Collaborative Protection Profile for Full Drive Encryption – Authorization
Acquisition, Version 2.0 + Errata 20190201, February 2019.

6 Although Evaluation Activities are defined mainly for the evaluators to follow, in
general they will also help Developers to prepare for evaluation by identifying specific
requirements for their TOE. The specific requirements in Evaluation Activities may in
some cases clarify the meaning of SFRs, and may identify particular requirements for
the content of Security Targets (especially the TOE Summary Specification), user
guidance documentation, and possibly supplementary information (e.g. for entropy
analysis or cryptographic key management architecture).

1.2 Structure of the Document
7 Evaluation Activities can be defined for both Security Functional Requirements and

Security Assurance Requirements. These are defined in separate sections of this
Supporting Document.

8 If any Evaluation Activity cannot be successfully completed in an evaluation then the
overall verdict for the evaluation is a ‘fail’. In rare cases there may be acceptable
reasons why an Evaluation Activity may be modified or deemed not applicable for a
particular TOE, but this must be agreed with the Certification Body for the evaluation.

9 In general, if all Evaluation Activities (for both SFRs and SARs) are successfully
completed in an evaluation then it would be expected that the overall verdict for the
evaluation is a ‘pass’. To reach a ‘fail’ verdict when the Evaluation Activities have
been successfully completed would require a specific justification from the evaluator
as to why the Evaluation Activities were not sufficient for that TOE.

10 Similarly, at the more granular level of Assurance Components, if the Evaluation
Activities for an Assurance Component and all of its related SFR Evaluation Activities
are successfully completed in an evaluation then it would be expected that the verdict
for the Assurance Component is a ‘pass’. To reach a ‘fail’ verdict for the Assurance
Component when these Evaluation Activities have been successfully completed would
require a specific justification from the evaluator as to why the Evaluation Activities
were not sufficient for that TOE.

1.3 Terminology

1.3.1 Glossary

11 For definitions of standard CC terminology, see [CC] part 1.

12 Supplementary information information that is not necessarily included in the
Security Target or operational guidance, and that may not necessarily be public.
Examples of such information could be entropy analysis, or description of a
cryptographic key management architecture used in (or in support of) the TOE. The
requirement for any such supplementary information will be identified in the relevant
cPP (see description in section 4).

Term Meaning

Authorization Factor A value that a user knows, has, or is (e.g.
password, token, etc.) submitted to the TOE to
establish that the user is in the community
authorized to use the hard disk and that is used in
the derivation or decryption of the BEV and
eventual decryption of the DEK. Note that these
values may or may not be used to establish the
particular identity of the user.

Assurance Grounds for confidence that a TOE meets the
SFRs [CC1].

Border Encryption Value A value passed from the AA to the EE intended to
link the key chains of the two components.

Key Sanitization A method of sanitizing encrypted data by securely
overwriting the key that was encrypting the data.

Data Encryption Key (DEK) A key used to encrypt data-at-rest.

Term Meaning

Full Drive Encryption Refers to partitions of logical blocks of user
accessible data as managed by the host system that
indexes and partitions and an operating system
that maps authorization to read or write data to
blocks in these partitions. For the sake of this
Security Program Definition (SPD) and cPP, FDE
performs encryption and authorization on one
partition, so defined and supported by the OS and
file system jointly, under consideration. FDE
products encrypt all data (with certain exceptions)
on the partition of the storage device and permits
access to the data only after successful
authorization to the FDE solution. The exceptions
include the necessity to leave a portion of the
storage device (the size may vary based on
implementation) unencrypted for such things as
the Master Boot Record (MBR) or other AA/EE
pre-authentication software. These FDE cPPs
interpret the term “full drive encryption” to allow
FDE solutions to leave a portion of the storage
device unencrypted so long as it contains no
protected data.

Intermediate Key A key used in a point between the initial user
authorization and the DEK.

Host Platform The local hardware and software the TOE is
running on, this does not include any peripheral
devices (e.g. USB devices) that may be connected
to the local hardware and software.

Key Chaining The method of using multiple layers of encryption
keys to protect data. A top layer key encrypts a
lower layer key which encrypts the data; this
method can have any number of layers.

Key Encryption Key (KEK) A key used to encrypt other keys, such as DEKs or
storage that contains keys.

Key Material Key material is commonly known as critical
security parameter (CSP) data, and also includes
authorization data, nonces, and metadata.

Key Release Key (KRK) A key used to release another key from storage, it
is not used for the direct derivation or decryption
of another key.

Operating System (OS) Software which runs at the highest privilege level
and can directly control hardware resources.

Non-Volatile Memory A type of computer memory that will retain
information without power.

Powered-Off State The device has been shut down.

Term Meaning

Protected Data This refers to all data on the storage device with
the exception of a small portion required for the
TOE to function correctly. It is all space on the
disk a user could write data to and includes the
operating system, applications, and user data.
Protected data does not include the Master Boot
Record or Pre-authentication area of the drive –
areas of the drive that are necessarily unencrypted.

Submask A submask is a bit string that can be generated and
stored in a number of ways.

Target of Evaluation A set of software, firmware and/or hardware
possibly accompanied by guidance. [CC1]

1.3.2 Acronyms

Acronym Meaning
AA Authorization Acquisition
AES Advanced Encryption Standard
BEV Border Encryption Value
BIOS Basic Input Output System
CBC Cipher Block Chaining
CC Common Criteria
CCM Counter with CBC-Message Authentication Code
CEM Common Evaluation Methodology
CPP Collaborative Protection Profile
DEK Data Encryption Key
DRBG Deterministic Random Bit Generator
DSS Digital Signature Standard
ECC Elliptic Curve Cryptography
ECDSA Elliptic Curve Digital Signature Algorithm
EE Encryption Engine
EEPRO
M

Electrically Erasable Programmable Read-Only Memory

FIPS Federal Information Processing Standards
FDE Full Drive Encryption
FFC Finite Field Cryptography
GCM Galois Counter Mode
HMAC Keyed-Hash Message Authentication Code
IEEE Institute of Electrical and Electronics Engineers
IT Information Technology
ITSEF IT Security Evaluation Facility
ISO/IEC International Organization for Standardization / International

Electrotechnical Commission
IV Initialization Vector
KEK Key Encryption Key
KMD Key Management Description
KRK Key Release Key
MBR Master Boot Record
NIST National Institute of Standards and Technology

OS Operating System
RBG Random Bit Generator
RNG Random Number Generator
RSA Rivest Shamir Adleman Algorithm
SAR Security Assurance Requirement
SED Self Encrypting Drive
SHA Secure Hash Algorithm
SFR Security Functional Requirement
SPD Security Problem Definition
SPI Serial Peripheral Interface
ST Security Target
TOE Target of Evaluation
TPM Trusted Platform Module
TSF TOE Security Functionality
TSS TOE Summary Specification
USB Universal Serial Bus
XOR Exclusive or
XTS XEX (XOR Encrypt XOR) Tweakable Block Cipher with Ciphertext

Stealing

2 Evaluation Activities for SFRs

13 The EAs presented in this section capture the actions the evaluator performs to address
technology specific aspects covering specific SARs (e.g.., ASE_TSS.1, ADV_FSP.1,
AGD_OPE.1, and ATE_IND.1) – this is in addition to the CEM work units that are
performed in Section 5 (Evaluation Activities for SARs).

14 Regarding design descriptions (designated by the subsections labelled TSS, as well as
any required supplementary material that may be treated as proprietary), the evaluator
must ensure there is specific information that satisfies the EA. For findings regarding
the TSS section, the evaluator’s verdicts will be associated with the CEM work unit
ASE_TSS.1-1. Evaluator verdicts associated with the supplementary evidence will also
be associated with ASE_TSS.1-1, since the requirement to provide such evidence is
specified in ASE in the cPP.

15 For ensuring the guidance documentation provides sufficient information for the
administrators/users as it pertains to SFRs, the evaluator’s verdicts will be associated
with CEM work units ADV_FSP.1-7, AGD_OPE.1-4, and AGD_OPE.1-5.

16 Finally, the subsection labelled Tests is where the iTC has determined that testing of
the product in the context of the associated SFR is necessary. While the evaluator is
expected to develop tests, there may be instances where it is more practical for the
developer to construct tests, or where the developer may have existing tests. Therefore,
it is acceptable for the evaluator to witness developer-generated tests in lieu of
executing the tests. In this case, the evaluator must ensure the developer’s tests are
executing both in the manner declared by the developer and as mandated by the EA.
The CEM work units that are associated with the EAs specified in this section are:
ATE_IND.1-3, ATE_IND.1-4, ATE_IND.1-5, ATE_IND.1-6, and ATE_IND.1-7.

2.1 Cryptographic Support (FCS)

2.1.1 Authorization Factor Acquisition (FCS_AFA_EXT)

2.1.1.1 FCS_AFA_EXT.1 Authorization Factor Acquisition

2.1.1.1.1 TSS

17 The evaluator shall first examine the TSS to ensure that the authorization factors
specified in the ST are described. For password-based factors the examination of the
TSS section is performed as part of FCS_PCC_EXT.1 Evaluation Activities.
Additionally in this case, the evaluator shall verify that the operational guidance
discusses the characteristics of external authorization factors (e.g., how the
authorization factor must be generated; format(s) or standards that the authorization
factor must meet) that are able to be used by the TOE.

18 If other authorization factors are specified, then for each factor, the TSS specifies how
the factors are input into the TOE.

2.1.1.1.2 Operational Guidance

19 The evaluator shall verify that the AGD guidance includes instructions for all of the
authorization factors. The AGD will discuss the characteristics of external
authorization factors (e.g., how the authorization factor is generated; format(s) or
standards that the authorization factor must meet, configuration of the TPM device
used) that are able to be used by the TOE.

2.1.1.1.3 KMD

20 The evaluator shall examine the Key Management Description to confirm that the
initial authorization factors (submasks) directly contribute to the unwrapping of the
BEV.

21 The evaluator shall verify the KMD describes how a submask is produced from the
authorization factor (including any associated standards to which this process might
conform), and verification is performed to ensure the length of the submask meets the
required size (as specified in this requirement).

2.1.1.1.4 Test

22 The password authorization factor is tested in FCS_PCC_EXT.1.

23 The evaluator shall also perform the following tests:

24 Test 1 (conditional): If there is more than one authorization factor, ensure that failure
to supply a required authorization factor does not result in access to the decrypted
plaintext data.

2.1.1.2 FCS_AFA_EXT.2 Timing of Authorization Factor Acquisition

2.1.1.2.1 TSS

25 The evaluator shall examine the TSS for a description of authorization factors and
which of the factors are used to gain access to user data after the TOE entered a
Compliant power saving state. The TSS is inspected to ensure it describes that each
authorization factor satisfies the requirements of FCS_AFA_EXT.1.1.

2.1.1.2.2 Operational Guidance

26 The evaluator shall examine the guidance documentation for a description of
authorization factors used to access plaintext data when resuming from a Compliant
power saving state.

2.1.1.2.3 KMD

27 There are no KMD evaluation activities for this SFR.

2.1.1.2.4 Test

28 The evaluator shall perform the following test:
• Enter the TOE into a Compliant power saving state
• Force the TOE to resume from a Compliant power saving state
• Release an invalid authorization factor and verify that access to decrypted

plaintext data is denied
• Release a valid authorization factor and verify that access to decrypted

plaintext data is granted.

2.1.2 Cryptographic Key Management (FCS_CKM)

2.1.2.1 FCS_CKM.4(a) Cryptographic Key Destruction (Power Management)

2.1.2.1.1 TSS

29 The evaluator shall verify the TSS provides a high level description of how keys stored
in volatile memory are destroyed. The valuator to verify that TSS outlines:
 - if and when the TSF or the Operational Environment is used to destroy keys from
volatile memory;
 - if and how memory locations for (temporary) keys are tracked;
 - details of the interface used for key erasure when relying on the OE for memory
clearing.

2.1.2.1.2 Operational Guidance

30 The evaluator shall check the guidance documentation if the TOE depends on the
Operational Environment for memory clearing and how that is achieved.

2.1.2.1.3 KMD

31 The evaluator shall check to ensure the KMD lists each type of key, its origin, possible
memory locations in volatile memory.

2.1.2.1.4 Test

32 There are no test evaluation activities for this SFR.

2.1.2.2 FCS_CKM.4(d) Cryptographic Key Destruction (Software TOE, 3rd
Party Storage)

2.1.2.2.1 TSS + KMD (Key Management Description may be used if necessary
details describe proprietary information)

33 The evaluator examines the TSS to ensure it describes how the keys are managed in
volatile memory. This description includes details of how each identified key is
introduced into volatile memory (e.g. by derivation from user input, or by unwrapping
a wrapped key stored in non-volatile memory) and how they are overwritten.

34 The evaluator shall check to ensure the TSS lists each type of key that is stored in in
non-volatile memory, and identifies how the TOE interacts with the underlying
platform to manage keys (e.g., store, retrieve, destroy). The description includes details
on the method of how the TOE interacts with the platform, including an identification
and description of the interfaces it uses to manage keys (e.g., file system APIs, platform
key store APIs).

35 The evaluator examines the interface description for each different media type to ensure
that the interface supports the selection(s) and description in the TSS.

36 The evaluator shall check that the TSS identifies any configurations or circumstances
that may not strictly conform to the key destruction requirement. If the ST makes use
of the open assignment and fills in the type of pattern that is used, the evaluator
examines the TSS to ensure it describes how that pattern is obtained and used. The
evaluator shall verify that the pattern does not contain any CSPs.

2.1.2.2.2 Operational Guidance

37 There are a variety of concerns that may prevent or delay key destruction in some cases.
The evaluator shall check that the guidance documentation identifies configurations or
circumstances that may not strictly conform to the key destruction requirement, and
that this description is consistent with the relevant parts of the TSS and any other
relevant Required Supplementary Information. The evaluator shall check that the
guidance documentation provides guidance on situations where key destruction may
be delayed at the physical layer.

38 For example, when the TOE does not have full access to the physical memory, it is
possible that the storage may be implementing wear-leveling and garbage collection.
This may create additional copies of the key that are logically inaccessible but persist
physically. In this case, it is assumed the drive supports the TRIM command and
implements garbage collection to destroy these persistent copies when not actively
engaged in other tasks.

39 Drive vendors implement garbage collection in a variety of different ways, as such
there is a variable amount of time until data is truly removed from these solutions.
There is a risk that data may persist for a longer amount of time if it is contained in a
block with other data not ready for erasure. It is assumed the operating system and file
system of the OE support TRIM, instructing the non-volatile memory to erase copies
via garbage collection upon their deletion.

40 It is assumed that if a RAID array is being used, only set-ups that support TRIM are
utilized. It is assumed if the drive is connected via PCI-Express, the operating system
supports TRIM over that channel. It is assumed the drive is healthy and contains

minimal corrupted data and will be end of life before a significant amount of damage
to drive health occurs, it is assumed there is a risk small amounts of potentially
recoverable data may remain in damaged areas of the drive.

41 Finally, it is assumed the keys are not stored using a method that would be inaccessible
to TRIM, such as being contained in a file less than 982 bytes which would be
completely contained in the master file table.

2.1.2.2.3 Test

42 Test 1: Applied to each key held as plaintext in volatile memory and subject to
destruction by overwrite by the TOE (whether or not the plaintext value is subsequently
encrypted for storage in volatile or non-volatile memory). In the case where the only
selection made for the destruction method key was removal of power, then this test is
unnecessary. The evaluator shall:

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key
from Step #1.

3. Cause the TOE to clear the key.

4. Cause the TOE to stop the execution but not exit.

5. Cause the TOE to dump the entire memory of the TOE into a binary file.

6. Search the content of the binary file created in Step #5 for instances of the
known key value from Step #1.

7. Break the key value from Step #1 into 3 similar sized pieces and perform a
search using each piece.

43 Steps 1-6 ensure that the complete key does not exist anywhere in volatile memory. If
a copy is found, then the test fails.

44 Step 7 ensures that partial key fragments do not remain in memory. If a fragment is
found, there is a miniscule chance that it is not within the context of a key (e.g., some
random bits that happen to match). If this is the case the test should be repeated with a
different key in Step #1. If a fragment is found the test fails.

45 The following tests apply only to selection a), since the TOE in this instance has more
visibility into what is happening within the underlying platform (e.g., a logical view of
the media). In selection b), the TOE has no visibility into the inner workings and
completely relies on the underlying platform, so there is no reason to test the TOE
beyond test 1.

46 For selection a), the following tests are used to determine the TOE is able to request
the platform to overwrite the key with a TOE supplied pattern.

47 Test 2: Applied to each key held in non-volatile memory and subject to destruction by
overwrite by the TOE. The evaluator shall use a tool that provides a logical view of the
media (e.g., MBR file system):

1. Record the value of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key
from Step #1.

3. Cause the TOE to clear the key.

4. Search the logical view that the key was stored in for instances of the known
key value from Step #1. If a copy is found, then the test fails.

5. Break the key value from Step #1 into 3 similar sized pieces and perform a
search using each piece. If a fragment is found then the test is repeated (as
described for Use Case 1 test 1 above), and if a fragment is found in the
repeated test then the test fails.

48 Test 3: Applied to each key held as non-volatile memory and subject to destruction by
overwrite by the TOE. The evaluator shall use a tool that provides a logical view of the
media:

1. Record the logical storage location of the key in the TOE subject to clearing.

2. Cause the TOE to perform a normal cryptographic processing with the key
from Step #1.

3. Cause the TOE to clear the key.

4. Read the logical storage location in Step #1 of non-volatile memory to ensure
the appropriate pattern is utilized.

49 The test succeeds if correct pattern is used to overwrite the key in the memory location.
If the pattern is not found the test fails.

2.1.3 Cryptographic Key Management (FCS_CKM_EXT)

2.1.3.1 FCS_CKM_EXT.4(a) Cryptographic Key and Key Material Destruction
(Destruction Timing)

2.1.3.1.1 TSS

50 The evaluator shall verify the TSS provides a high level description of what it means
for keys and key material to be no longer needed and when then should be expected to
be destroyed.

2.1.3.1.2 Operational Guidance

51 There are no AGD evaluation activities for this SFR.

2.1.3.1.3 KMD

52 The evaluator shall verify the KMD includes a description of the areas where keys and
key material reside and when the keys and key material are no longer needed.

53 The evaluator shall verify the KMD includes a key lifecycle, that includes a description
where key material reside, how the key material is used, how it is determined that keys
and key material are no longer needed, and how the material is destroyed once it is not
needed and that the documentation in the KMD follows FCS_CKM.4(a) for the
destruction.

2.1.3.1.4 Test

54 There are no test evaluation activities for this SFR.

2.1.3.2 FCS_CKM_EXT.4(b) Cryptographic Key and Key Material Destruction
(Power Management)

2.1.3.2.1 TSS

55 The evaluator shall verify the TSS provides a description of what keys and key material
are destroyed when entering any Compliant power saving state.

2.1.3.2.2 Operational Guidance

56 The evaluator shall validate that guidance documentation contains clear warnings and
information on conditions in which the TOE may end up in a non-Compliant power
saving state indistinguishable from a Compliant power saving state. In that case it must
contain mitigation instructions on what to do in such scenarios.

2.1.3.2.3 KMD

57 The evaluator shall verify the KMD includes a description of the areas where keys and
key material reside.

58 The evaluator shall verify the KMD includes a key lifecycle that includes a description
where key material resides, how the key material is used, and how the material is
destroyed once it is not needed and that the documentation in the KMD follows
FCS_CKM.4(d) for the destruction.

2.1.3.2.4 Test

59 There are no test evaluation activities for this SFR.

2.1.4 Key Chaining (FCS_KYC_EXT)

2.1.4.1 FCS_KYC_EXT.1 Key Chaining (Initiator)

2.1.4.1.1 TSS

60 The evaluator shall verify the TSS contains a high-level description of the BEV sizes
– that it supports BEV outputs of no fewer 128 bits for products that support only AES-
128, and no fewer than 256 bits for products that support AES-256.

2.1.4.1.2 Operational Guidance

61 There are no AGD evaluation activities for this SFR.

2.1.4.1.3 KMD

62 The evaluator shall examine the KMD describes a high level description of the key
hierarchy for all authorizations methods selected in FCS_AFA_EXT.1 that are used to
protect the BEV. The evaluator shall examine the KMD to ensure it describes the key
chain in detail. The description of the key chain shall be reviewed to ensure it maintains

a chain of keys using key wrap or key derivation methods that meet FCS_COP.1(d)
and FCS_KDF_EXT.1.

63 The evaluator shall examine the KMD to ensure that it describes how the key chain
process functions, such that it does not expose any material that might compromise any
key in the chain. (e.g. using a key directly as a compare value against a TPM) This
description must include a diagram illustrating the key hierarchy implemented and
detail where all keys and keying material is stored or what it is derived from. The
evaluator shall examine the key hierarchy to ensure that at no point the chain could be
broken without a cryptographic exhaust or the initial authorization value and the
effective strength of the BEV is maintained throughout the key chain.

64 The evaluator shall verify the KMD includes a description of the strength of keys
throughout the key chain.

2.1.4.1.4 Test

65 There are no test evaluation activities for this SFR.

2.1.5 Cryptographic Operation (Salt, Nonce, and Initialization Vector
Generation) (FCS_SNI_EXT)

2.1.5.1 FCS_SNI_EXT.1 Cryptographic Operation (Salt, Nonce, and
Initialization Vector Generation)

2.1.5.1.1 TSS

66 The evaluator shall ensure the TSS describes how salts are generated. The evaluator
shall confirm that the salt is generating using an RBG described in FCS_RBG_EXT.1
or by the Operational Environment. If external function is used for this purpose, the
TSS should include the specific API that is called with inputs.

67 The evaluator shall ensure the TSS describes how nonces are created uniquely and how
IVs and tweaks are handled (based on the AES mode). The evaluator shall confirm that
the nonces are unique and the IVs and tweaks meet the stated requirements.

2.1.5.1.2 Operational Guidance

68 There are no AGD evaluation activities for this SFR.

2.1.5.1.3 KMD

69 There are no KMD evaluation activities for this SFR.

2.1.5.1.4 Test

70 There are no test evaluation activities for this SFR.

2.2 Security Management (FMT)

2.2.1 Management of Functions in TSF (FMT_MOF)

2.2.1.1 FMT_MOF.1 Management of Functions Behavior

2.2.1.1.1 TSS

71 If support for Compliant power saving state(s) are claimed in the ST, the evaluator shall
ensure the TSS describes how these are managed and shall ensure that TSS describes
how only privileged users (administrators) are allowed to manage the states.

2.2.1.1.2 Operational Guidance

72 The evaluator to check if guidance documentation describes which authorization
factors are required to change Compliant power saving state behavior and properties.

2.2.1.1.3 KMD

73 There are no KMD evaluation activities for this SFR.

2.2.1.1.4 Test

74 The evaluator shall perform the following tests:

75 Test 1: The evaluator presents a privileged authorization credential to the TSF and
validates that changes to Compliant power saving state behavior and properties are
allowed.

76 Test 2: The evaluator presents a non-privileged authorization credential to the TSF and
validates that changes to Compliant power saving state behavior are not allowed.

2.2.2 Specification of Management Functions (FMT_SMF)

2.2.2.1 FMT_SMF.1 Specification of Management Functions

2.2.2.1.1 TSS

77 If item a) is selected in FMT_SMF.1.1: The evaluator shall ensure the TSS describes
how the TOE sends the request to the EE to change the DEK.

78 If item b) is selected in FMT_SMF.1.1: The evaluator shall ensure the TSS describes
how the TOE sends the request to the EE to cryptographically erase the DEK.

79 If item c) is selected in FMT_SMF.1.1: The evaluator shall ensure the TSS describes
the methods by which users may change the set of all authorization factor values
supported.

80 If item d) is selected in FMT_SMF.1.1: The evaluator shall ensure the TSS describes
the process to initiate TOE firmware/software updates.

81 If item e) is selected in FMT_SMF.1.1: If power saving states can be managed, the
evaluator shall ensure that the TSS describes how this is performed, including how the
TOE supports disabling certain power saving states if more than one are supported. If

additional management functions are claimed in the ST, the evaluator shall ensure the
TSS describes the additional functions.

2.2.2.1.2 Operational Guidance

82 If item a) and/or b) is selected in FMT_SMF.1.1: The evaluator shall examine the
operational guidance to ensure that it describes how the functions for A and B can be
initiated by the user.

83 If item c) is selected in FMT_SMF.1.1: The evaluator shall examine the operational
guidance to ensure that it describes how selected authorization factor values are
changed.

84 If item d) is selected in FMT_SMF.1.1: The evaluator shall examine the operational
guidance to ensure that it describes how to initiate TOE firmware/software updates.

85 If item e) is selected in FMT_SMF.1.1: Default Authorization Factors: It may be the
case that the TOE arrives with default authorization factors in place. If it does, then the
selection in section E must be made so that there is a mechanism to change these
authorization factors. The operational guidance shall describe the method by which the
user changes these factors when they are taking ownership of the device. The TSS shall
describe the default authorization factors that exist.

86 Disable Key Recovery: The guidance for disabling this capability shall be described in
the AGD documentation.

87 Power Saving: The guidance shall describe the power saving states that are supported
by the TSF, how these states are applied, how to configure when these states are applied
(if applicable), and how to enable/disable the use of specific power saving states (if
applicable).

2.2.2.1.3 KMD

88 There are no KMD evaluation activities for this SFR.

2.2.2.1.4 Test

89 If item a) and/or b) is selected in FMT_SMF.1.1: The evaluator shall verify that the
TOE has the functionality to forward a command to the EE to change and
cryptographically erase the DEK. The actual testing of the cryptographic erase will take
place in the EE.

90 If item c) is selected in FMT_SMF.1.1: The evaluator shall initialize the TOE such that
it requires the user to input an authorization factor in order to access encrypted data.

91 Test 1: The evaluator shall first provision user authorization factors, and then verify
all authorization values supported allow the user access to the encrypted data. Then
the evaluator shall exercise the management functions to change a user’s
authorization factor values to a new one. Then he or she will verify that the TOE
denies access to the user’s encrypted data when he or she uses the old or original
authorization factor values to gain access.

92 If item d) is selected in FMT_SMF.1.1: The evaluator shall verify that the TOE has the
functionality to initiate TOE firmware/software updates.

93 If item e) is selected in FMT_SMF.1.1: If additional management functions are
claimed, the evaluator shall verify that the additional features function as described.

94 Test 2 (conditional): If the TOE provides default authorization factors, the
evaluator shall change these factors in the course of taking ownership of the device
as described in the operational guidance. The evaluator shall then confirm that the
(old) authorization factors are no longer valid for data access.

95 Test 3 (conditional): If the TOE provides key recovery capability whose effects are
visible at the TOE interface, then the evaluator shall devise a test that ensures that
the key recovery capability has been or can be disabled following the guidance
provided by the vendor.

96 Test 4 (conditional): If the TOE provides the ability to configure the power saving
states that are entered by certain events, the evaluator shall devise a test that causes
the TOE to enter a specific power saving state, configure the TSF so that this
activity causes a different state to be entered, repeat the activity, and observe the
new state is entered as configured.

97 Test 5 (conditional): If the TOE provides the ability to disable the use of one or
more power saving states, the evaluator shall devise a test that enables all supported
power saving states and demonstrates that the TOE can enter into each of these
states. The evaluator shall then disable the supported power saving states one by
one, repeating the same set of actions that were performed at the start of the test,
and observe each time that when a power saving state is configured to no longer be
used, none of the behavior causes the disabled state to be entered.

2.2.3 Security Management Roles (FMT_SMR)

2.2.3.1 FMT_SMR.1 Security Roles

2.2.3.1.1 TSS

98 There are no TSS evaluation activities for this SFR. Evaluation of this SFR is
performed as part of evaluating FMT_MOF.1 and FMT_SMF.1.

2.2.3.1.2 Operational Guidance

99 There are no guidance evaluation activities for this SFR. Evaluation of this SFR is
performed as part of evaluating FMT_MOF.1 and FMT_SMF.1.

2.2.3.1.3 KMD

100 There are no KMD evaluation activities for this SFR.

2.2.3.1.4 Test

101 There are no test evaluation activities for this SFR. Evaluation of this SFR is performed
as part of evaluating FMT_MOF.1 and FMT_SMF.1.

2.3 Protection of the TSF (FPT)

2.3.1 Key and Key Material Protection (FPT_KYP_EXT)

2.3.1.1 FPT_KYP_EXT.1 Protection of Key and Key Material

2.3.1.1.1 TSS

102 The evaluator shall examine the TSS to verify that it describes the method by which
intermediate keys are generated using submask combining.

2.3.1.1.2 Operational Guidance

103 There are no AGD evaluation activities for this SFR.

2.3.1.1.3 KMD

104 The evaluator shall examine the KMD for a description of the methods used to protect
keys stored in non-volatile memory.

105 The evaluator shall verify the KMD to ensure it describes the storage location of all
keys and the protection of all keys stored in non-volatile memory. The description of
the key chain shall be reviewed to ensure the selected method is followed for the storage
of wrapped or encrypted keys in non-volatile memory and plaintext keys in non-volatile
memory meet one of the criteria for storage.

2.3.1.1.4 Test

106 There are no test evaluation activities for this SFR.

2.3.2 Power Management (FPT_PWR_EXT)

2.3.2.1 FPT_PWR_EXT.1 Power Saving States

2.3.2.1.1 TSS

107 The evaluator shall validate the TSS contains a list of Compliant power saving states.

2.3.2.1.2 Operational Guidance

108 The evaluator shall ensure that guidance documentation contains a list of Compliant
power saving states. If additional power saving states are supported, then the evaluator
shall validate that the guidance documentation states how non-Compliant power states
are disabled.

2.3.2.1.3 KMD

109 There are no KMD evaluation activities for this SFR.

2.3.2.1.4 Test

110 The evaluator shall confirm that for each listed compliant state all key/key materials
are removed from volatile memory by using the test defined in FCS_CKM.4(d).

2.3.2.2 FPT_PWR_EXT.2 Timing of Power Saving States

2.3.2.2.1 TSS

111 The evaluator shall validate that the TSS contains a list of conditions under which the
TOE enters a Compliant power saving state.

2.3.2.2.2 Operational Guidance

112 The evaluator shall check that the guidance contains a list of conditions under which
the TOE enters a Compliant power saving state. Additionally, the evaluator shall verify
that the guidance documentation states whether unexpected power-loss events may
result in entry to a non-Compliant power saving state and, if that is the case, validate
that the documentation contains information on mitigation measures.

2.3.2.2.3 KMD

113 There are no KMD evaluation activities for this SFR.

2.3.2.2.4 Test

114 The evaluator shall trigger each condition in the list of identified conditions and ensure
the TOE ends up in a compliant power saving state by running the test identified in
FCS_CKM.4(d).

2.3.3 Trusted Update (FPT_TUD_EXT)

2.3.3.1 FPT_TUD_EXT.1 Trusted Update

2.3.3.1.1 TSS

115 The evaluator shall examine the TSS to ensure that it describes information stating that
an authorized source signs TOE updates and will have an associated digital signature.
The evaluator shall examine the TSS contains a definition of an authorized source along
with a description of how the TOE uses public keys for the update verification
mechanism in the Operational Environment. The evaluator ensures the TSS contains
details on the protection and maintenance of the TOE update credentials.

116 If the Operational Environment performs the signature verification, then the evaluator
shall examine the TSS to ensure it describes, for each platform identified in the ST, the
interface(s) used by the TOE to invoke this cryptographic functionality.

2.3.3.1.2 Operational Guidance

117 The evaluator ensures that the operational guidance describes how the TOE obtains
vendor updates to the TOE; the processing associated with verifying the digital
signature of the updates (as defined in FCS_COP.1(a)); and the actions that take place
for successful and unsuccessful cases.

2.3.3.1.3 KMD

118 There are no KMD evaluation activities for this SFR.

2.3.3.1.4 Test

119 The evaluators shall perform the following tests (if the TOE supports multiple
signatures, each using a different hash algorithm, then the evaluator performs tests for
different combinations of authentic and unauthentic digital signatures and hashes, as
well as for digital signature alone):

120 Test 1: The evaluator performs the version verification activity to determine the current
version of the TOE. After the update tests described in the following tests, the evaluator
performs this activity again to verify that the version correctly corresponds to that of
the update.

121 Test 2: The evaluator obtains a legitimate update using procedures described in the
operational guidance and verifies that an update successfully installs on the TOE. The
evaluator shall perform a subset of other evaluation activity tests to demonstrate that
the update functions as expected.

3 Evaluation Activities for Optional
Requirements

3.1 Protection of the TSF (FPT)

3.1.1 TSF Testing (FPT_TST_EXT)

3.1.1.1 FPT_TST_EXT.1 TSF Testing

3.1.1.1.1 TSS

122 The evaluator shall verify that the TSS describes the known-answer self-tests for
cryptographic functions.

123 The evaluator shall verify that the TSS describes, for some set of non-cryptographic
functions affecting the correct operation of the TOE and the method by which the TOE
tests those functions. The evaluator shall verify that the TSS includes each of these
functions, the method by which the TOE verifies the correct operation of the function.
The evaluator shall verify that the TSF data are appropriate for TSF Testing. For
example, more than blocks are tested for AES in CBC mode, output of AES in GCM
mode is tested without truncation, or 512-bit key is used for testing HMAC-SHA-512.

124 If FCS_RBG_EXT.1 is implemented by the TOE and according to NIST SP 800-90,
the evaluator shall verify that the TSS describes health tests that are consistent with
section 11.3 of NIST SP 800-90.

125 If any FCS_COP functions are implemented by the TOE, the TSS shall describe the
known-answer self-tests for those functions.

126 The evaluator shall verify that the TSS describes, for some set of non-cryptographic
functions affecting the correct operation of the TSF, the method by which those
functions are tested. The TSS will describe, for each of these functions, the method by
which correct operation of the function/component is verified. The evaluator shall
determine that all of the identified functions/components are adequately tested on start-
up.

3.1.1.1.2 Operational Guidance

127 There are no AGD evaluation activities for this SFR.

3.1.1.1.3 KMD

128 There are no KMD evaluation activities for this SFR.

3.1.1.1.4 Test

129 There are no test evaluation activities for this SFR.

4 Evaluation Activities for Selection-Based
Requirements

4.1 Cryptographic Support (FCS)

4.1.1 Cryptographic Key Management (FCS_CKM)

4.1.1.1 FCS_CKM.1(a) Cryptographic Key Generation (Asymmetric Keys)

4.1.1.1.1 TSS

130 The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE.
If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify
that it identifies the usage for each scheme.

4.1.1.1.2 Operational Guidance

131 The evaluator shall verify that the AGD guidance instructs the administrator how to
configure the TOE to use the selected key generation scheme(s) and key size(s) for all
uses specified by the AGD documentation and defined in this cPP.

4.1.1.1.3 KMD

132 If the TOE uses an asymmetric key as part of the key chain, the KMD should detail
how the asymmetric key is used as part of the key chain.

4.1.1.1.4 Test

133 The following tests require the developer to provide access to a test platform that
provides the evaluator with tools that are typically not found on factory products.

134 Key Generation for FIPS PUB 186-4 RSA Schemes
135 The evaluator shall verify the implementation of RSA Key Generation by the TOE

using the Key Generation test. This test verifies the ability of the TSF to correctly
produce values for the key components including the public verification exponent e,
the private prime factors p and q, the public modulus n and the calculation of the private
signature exponent d.

136 Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These
include:

137 1. Random Primes:
• Provable primes
• Probable primes

138 2. Primes with Conditions:
• Primes p1, p2, q1,q2, p and q shall all be provable primes
• Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be

probable primes
• Primes p1, p2, q1,q2, p and q shall all be probable primes

139 To test the key generation method for the Random Provable primes method and for all
the Primes with Conditions methods, the evaluator must seed the TSF key generation

routine with sufficient data to deterministically generate the RSA key pair. This
includes the random seed(s), the public exponent of the RSA key, and the desired key
length. For each key length supported, the evaluator shall have the TSF generate 25
key pairs. The evaluator shall verify the correctness of the TSF’s implementation by
comparing values generated by the TSF with those generated from a known good
implementation.

140 Key Generation for Elliptic Curve Cryptography (ECC)
141 FIPS 186-4 ECC Key Generation Test
142 For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall

require the implementation under test (IUT) to generate 10 private/public key pairs.
The private key shall be generated using an approved random bit generator (RBG). To
determine correctness, the evaluator shall submit the generated key pairs to the public
key verification (PKV) function of a known good implementation.

143 FIPS 186-4 Public Key Verification (PKV) Test
For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall
generate 10 private/public key pairs using the key generation function of a known good
implementation and modify five of the public key values so that they are incorrect,
leaving five values unchanged (i.e., correct). The evaluator shall obtain in response a
set of 10 PASS/FAIL values.

144 Key Generation for Finite-Field Cryptography (FFC)
145 The evaluator shall verify the implementation of the Parameters Generation and the

Key Generation for FFC by the TOE using the Parameter Generation and Key
Generation test. This test verifies the ability of the TSF to correctly produce values for
the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group
generator g, and the calculation of the private key x and public key y.

146 The Parameter generation specifies 2 ways (or methods) to generate the cryptographic
prime q and the field prime p:

147 Cryptographic and Field Primes:
• Primes q and p shall both be provable primes
• Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g:

148 Cryptographic Group Generator:
• Generator g constructed through a verifiable process
• Generator g constructed through an unverifiable process.

149 The Key generation specifies 2 ways to generate the private key x:
150 Private Key:

• len(q) bit output of RBG where 1 <=x <= q-1
• len(q) + 64 bit output of RBG, followed by a mod q-1 operation and +1

operation where 1<= x<=q-1.

151 The security strength of the RBG must be at least that of the security offered by the
FFC parameter set.

152 To test the cryptographic and field prime generation method for the provable primes
method and/or the group generator g for a verifiable process, the evaluator must seed
the TSF parameter generation routine with sufficient data to deterministically generate
the parameter set.

153 For each key length supported, the evaluator shall have the TSF generate 25 parameter
sets and key pairs. The evaluator shall verify the correctness of the TSF’s
implementation by comparing values generated by the TSF with those generated from
a known good implementation. Verification must also confirm

• g != 0,1
• q divides p-1
• g^q mod p = 1
• g^x mod p = y

 for each FFC parameter set and key pair.

4.1.1.2 FCS_CKM.1(b) Cryptographic Key Generation (Symmetric Keys)

4.1.1.2.1 TSS

154 The evaluator shall review the TSS to determine that a symmetric key is supported by
the product, that the TSS includes a description of the protection provided by the
product for this key. The evaluator shall ensure that the TSS identifies the key sizes
supported by the TOE.

4.1.1.2.2 Operational Guidance

155 The evaluator shall verify that the AGD guidance instructs the administrator how to
configure the TOE to use the selected key size(s) for all uses specified by the AGD
documentation and defined in this cPP.

4.1.1.2.3 KMD

156 If the TOE uses a symmetric key as part of the key chain, the KMD should detail how
the symmetric key is used as part of the key chain.

4.1.1.2.4 Test

157 There are no test evaluation activities for this SFR.

4.1.2 Cryptographic Operation (FCS_COP)

4.1.2.1 FCS_COP.1(a) Cryptographic Operation (Signature Verification)

158 This requirement is used to verify digital signatures attached to updates from the TOE
manufacturer before installing those updates on the TOE. Because this component is to
be used in the update function, additional Evaluation Activities to those listed below
are covered in other evaluation activities sections in this document. The following
activities deal only with the implementation for the digital signature algorithm; the
evaluator performs the testing appropriate for the algorithm(s) selected in the
component.

159 Hash functions and/or random number generation required by these algorithms must
be specified in the ST; therefore the Evaluation Activities associated with those
functions are contained in the associated Cryptographic Hashing and Random Bit
Generation sections. Additionally, the only function required by the TOE is the
verification of digital signatures. If the TOE generates digital signatures to support the
implementation of any functionality required by this cPP, then the applicable
evaluation and validation scheme must be consulted to determine the required
evaluation activities.

4.1.2.1.1 TSS

160 The evaluator shall check the TSS to ensure that it describes the overall flow of the
signature verification. This should at least include identification of the format and
general location (e.g., "firmware on the hard drive device" rather than “memory
location 0x00007A4B") of the data to be used in verifying the digital signature; how
the data received from the operational environment are brought on to the device; and
any processing that is performed that is not part of the digital signature algorithm (for
instance, checking of certificate revocation lists).

4.1.2.1.2 Operational Guidance

161 There are no AGD evaluation activities for this SFR.

4.1.2.1.3 KMD

162 There are no KMD evaluation activities for this SFR.

4.1.2.1.4 Test

163 Each section below contains the tests the evaluators must perform for each type of
digital signature scheme. Based on the assignments and selections in the requirement,
the evaluators choose the specific activities that correspond to those selections.

164 It should be noted that for the schemes given below, there are no key generation/domain
parameter generation testing requirements. This is because it is not anticipated that this
functionality would be needed in the end device, since the functionality is limited to
checking digital signatures in delivered updates. This means that the domain
parameters should have already been generated and encapsulated in the hard drive
firmware or on-board non-volatile storage. If key generation/domain parameter
generation is required, the evaluation and validation scheme must be consulted to
ensure the correct specification of the required evaluation activities and any additional
components.

165 The following tests are conditional based upon the selections made within the SFR.

166 The following tests may require the developer to provide access to a test platform that
provides the evaluator with tools that are typically not found on factory products.

167 ECDSA Algorithm Tests

168 ECDSA FIPS 186-4 Signature Verification Test
 For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair,

the evaluator shall generate a set of 10 1024-bit message, public key and signature
tuples and modify one of the values (message, public key or signature) in five of the 10
tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

169 RSA Signature Algorithm Tests

170 Signature Verification Test
171 The evaluator shall perform the Signature Verification test to verify the ability of the

TOE to recognize another party’s authentic and unauthentic signatures. The evaluator
shall inject errors into the test vectors produced during the Signature Verification Test
by introducing errors in some of the public keys e, messages, IR format, and/or
signatures. The TOE attempts to verify the signatures and returns success or failure.

172 The evaluator shall use these test vectors to emulate the signature verification test using
the corresponding parameters and verify that the TOE detects these errors.

4.1.2.2 FCS_COP.1(b) Cryptographic Operation (Hash Algorithm)

4.1.2.2.1 TSS

173 The evaluator shall check that the association of the hash function with other TSF
cryptographic functions (for example, the digital signature verification function) is
documented in the TSS.

4.1.2.2.2 Operational Guidance

174 The evaluator checks the operational guidance documents to determine that any system
configuration necessary to enable required hash size functionality is provided.

4.1.2.2.3 KMD

175 There are no KMD evaluation activities for this SFR.

4.1.2.2.4 Test

176 The TSF hashing functions can be implemented in one of two modes. The first mode
is the byte-oriented mode. In this mode the TSF only hashes messages that are an
integral number of bytes in length; i.e., the length (in bits) of the message to be hashed
is divisible by 8. The second mode is the bit-oriented mode. In this mode the TSF
hashes messages of arbitrary length. As there are different tests for each mode, an
indication is given in the following sections for the bit-oriented vs. the byte-oriented
test mode.

177 The evaluator shall perform all of the following tests for each hash algorithm
implemented by the TSF and used to satisfy the requirements of this cPP.

178 Short Messages Test Bit-oriented Mode
179 The evaluators devise an input set consisting of m+1 messages, where m is the block

length of the hash algorithm. The length of the messages range sequentially from 0 to
m bits. The message text shall be pseudorandomly generated. The evaluators compute
the message digest for each of the messages and ensure that the correct result is
produced when the messages are provided to the TSF.

180 Short Messages Test Byte-oriented Mode
181 The evaluators devise an input set consisting of m/8+1 messages, where m is the block

length of the hash algorithm. The length of the messages range sequentially from 0 to
m/8 bytes, with each message being an integral number of bytes. The message text shall
be pseudorandomly generated. The evaluators compute the message digest for each of
the messages and ensure that the correct result is produced when the messages are
provided to the TSF.

182 Selected Long Messages Test Bit-oriented Mode
183 The evaluators devise an input set consisting of m messages, where m is the block

length of the hash algorithm. For SHA-256, the length of the i-th message is 512 +
99*i, where 1 ≤ i ≤ m. For SHA-384 and SHA-512, the length of the i-th message is
1024 + 99*i, where 1 ≤ i ≤ m. The message text shall be pseudorandomly generated.
The evaluators compute the message digest for each of the messages and ensure that
the correct result is produced when the messages are provided to the TSF.

184 Selected Long Messages Test Byte-oriented Mode
185 The evaluators devise an input set consisting of m/8 messages, where m is the block

length of the hash algorithm. For SHA-256, the length of the i-th message is 512 +
8*99*i, where 1 ≤ i ≤ m/8. For SHA-384 and SHA-512, the length of the i-th message
is 1024 + 8*99*i, where 1 ≤ i ≤ m/8. The message text shall be pseudorandomly
generated. The evaluators compute the message digest for each of the messages and
ensure that the correct result is produced when the messages are provided to the TSF.

186 Pseudorandomly Generated Messages Test
187 This test is for byte-oriented implementations only. The evaluators randomly generate

a seed that is n bits long, where n is the length of the message digest produced by the
hash function to be tested. The evaluators then formulate a set of 100 messages and
associated digests by following the algorithm provided in Figure 1 of the NIST Secure
Hash Algorithm Validation System (SHAVS)
(https://csrc.nist.gov/CSRC/media/Projects/Cryptographic-Algorithm-Validation-
Program/documents/shs/SHAVS.pdf). The evaluators then ensure that the correct
result is produced when the messages are provided to the TSF.

4.1.2.3 FCS_COP.1(c) Cryptographic Operation (Keyed Hash Algorithm)

4.1.2.3.1 TSS

188 If HMAC was selected:

189 The evaluator shall examine the TSS to ensure that it specifies the following values
used by the HMAC function: key length, hash function used, block size, and output
MAC length used.

190 If CMAC was selected:

191 The evaluator shall examine the TSS to ensure that it specifies the following
values used by the CMAC function: key length, block cipher used, block size
(of the cipher), and output MAC length used.

4.1.2.3.2 Operational Guidance

192 There are no AGD evaluation activities for this SFR.

4.1.2.3.3 KMD

193 There are no KMD evaluation activities for this SFR.

4.1.2.3.4 Test

194 If HMAC was selected:

195 For each of the supported parameter sets, the evaluator shall compose 15 sets of test
data. Each set shall consist of a key and message data. The evaluator shall have the TSF
generate HMAC tags for these sets of test data. The resulting MAC tags shall be
compared to the result of generating HMAC tags with the same key using a known
good implementation.

196 If CMAC was selected:

197 For each of the supported parameter sets, the evaluator shall compose at least
15 sets of test data. Each set shall consist of a key and message data. The test
data shall include messages of different lengths, some with partial blocks as the
last block and some with full blocks as the last block. The test data keys shall
include cases for which subkey K1 is generated both with and without using the
irreducible polynomial R_b, as well as cases for which subkey K2 is generated
from K1 both with and without using the irreducible polynomial R_b. (The
subkey generation and polynomial R_b are as defined in SP800-38E.) The
evaluator shall have the TSF generate CMAC tags for these sets of test data.
The resulting MAC tags shall be compared to the result of generating CMAC
tags with the same key using a known good implementation.

4.1.2.4 FCS_COP.1(d) Cryptographic Operation (Key Wrapping)

4.1.2.4.1 TSS

198 The evaluator shall verify the TSS includes a description of the key wrap function(s)
and shall verify the key wrap uses an approved key wrap algorithm according to the
appropriate specification.

4.1.2.4.2 Operational Guidance

199 There are no AGD evaluation activities for this SFR.

4.1.2.4.3 KMD

200 The evaluator shall review the KMD to ensure that all keys are wrapped using the
approved method and a description of when the key wrapping occurs.

4.1.2.4.4 Test

201 There are no test evaluation activities for this SFR.

4.1.2.5 FCS_COP.1(e) Cryptographic Operation (Key Transport)

4.1.2.5.1 TSS

202 The evaluator shall verify the TSS provides a high level description of the RSA scheme
and the cryptographic key size that is being used, and that the asymmetric algorithm
being used for key transport is RSA. If more than one scheme/key size are allowed,
then the evaluator shall make sure and test all combinations of scheme and key size.
There may be more than one key size to specify – an RSA modulus size (and/or
encryption exponent size), an AES key size, hash sizes, MAC key/MAC tag size.

203 If the KTS-OAEP scheme was selected, the evaluator shall verify that the TSS
identifies the hash function, the mask generating function, the random bit generator,
the encryption primitive and decryption primitive.

204 If the KTS-KEM-KWS scheme was selected, the evaluator shall verify that the TSS
identifies the key derivation method, the AES-based key wrapping method, the secret
value encapsulation technique, and the random number generator.

4.1.2.5.2 Operational Guidance

205 There are no AGD evaluation activities for this SFR.

4.1.2.5.3 KMD

206 There are no KMD evaluation activities for this SFR.

4.1.2.5.4 Test

207 For each supported key transport schema, the evaluator shall initiate at least 25 sessions
that require key transport with an independently developed remote instance of a key
transport entity, using known RSA key-pairs. The evaluator shall observe traffic passed
from the sender-side and to the receiver-side of the TOE, and shall perform the
following tests, specific to which key transport scheme was employed.

208 If the KTS-OAEP scheme was selected, the evaluator shall perform the following tests:

1. The evaluator shall inspect each cipher text, C, produced by the RSA-OAEP
encryption operation of the TOE and make sure it is the correct length, either 256
or 384 bytes depending on RSA key size. The evaluator shall also feed into the
TOE’s RSA-OEAP decryption operation some cipher texts that are the wrong
length and verify that the erroneous input is detected and that the decryption
operation exits with an error code.

2. The evaluator shall convert each cipher text, C, produced by the RSA-OAEP
encryption operation of the TOE to the correct cipher text integer, c, and use the
decryption primitive to compute em = RSADP((n,d),c) and convert em to the
encoded message EM. The evaluator shall then check that the first byte of EM is
0x00. The evaluator shall also feed into the TOE’s RSA-OEAP decryption
operation some cipher texts where the first byte of EM was set to a value other
than 0x00, and verify that the erroneous input is detected and that the decryption
operation exits with an error code.

3. The evaluator shall decrypt each cipher text, C, produced by the RSA-OAEP
encryption operation of the TOE using RSADP, and perform the OAEP decoding
operation (described in NIST SP 800-56B section 7.2.2.4) to recover HA’ || X. For
each HA’, the evaluator shall take the corresponding A and the specified hash
algorithm and verify that HA' = Hash(A). The evaluator shall also force the TOE
to perform some RSA-OAEP decryptions where the A value is passed incorrectly,
and the evaluator shall verify that an error is detected.

4. The evaluator shall check the format of the ‘X’ string recovered in OAEP.Test.3
to ensure that the format is of the form PS || 01 || K, where PS consists of zero or
more consecutive 0x00 bytes and K is the transported keying material. The
evaluator shall also feed into the TOE’s RSA-OEAP decryption operation some
cipher texts for which the resulting ‘X’ strings do not have the correct format (i.e.,
the leftmost non-zero byte is not 0x01). These incorrectly formatted ‘X’ variables
shall be detected by the RSA-OEAP decrypt function.

5. The evaluator shall trigger all detectable decryption errors and validate that the
returned error codes are the same and that no information is given back to the
sender on which type of error occurred. The evaluator shall also validate that no
intermediate results from the TOE’s receiver-side operations are revealed to the
sender.

209 If the KTS-KEM-KWS scheme was selected, the evaluator shall perform the following
tests:

1. The evaluator shall inspect each cipher text, C, produced by RSA-KEM-KWS
encryption operation of the TOE and make sure the length (in bytes) of the cipher
text, cLen, is greater than nLen (the length, in bytes, of the modulus of the RSA
public key) and that cLen - nLen is consistent with the byte lengths supported by
the key wrapping algorithm. The evaluator shall feed into the RSA-KEM-KWS
decryption operation a cipher text of unsupported length and verify that an error
is detected and that the decryption process stops.

2. The evaluator shall separate the cipher text, C, produced by the sender-side of the
TOE into its C0 and C1 components and use the RSA decryption primitive to
recover the secret value, Z, from C0. The evaluator shall check that the unsigned
integer represented by Z is greater than 1 and less than n-1, where n is the modulus
of the RSA public key. The evaluator shall construct examples where the cipher
text is created with a secret value Z = 1 and make sure the RSA-KEM-KWS
decryption process detects the error. Similarly, the evaluator shall construct
examples where the cipher text is created with a secret value Z = n – 1 and make
sure the RSA-KEM-KWS decryption process detects the error.

3. The evaluator shall attempt to successfully recover the secret value Z, derive the
key wrapping key, KWK, and unwrap the KWA-cipher text following the RSA-
KEM-KWS decryption process given in NISP SP 800-56B section 7.2.3.4. If the
key-wrapping algorithm is AES-CCM, the evaluator shall verify that the value of
any (unwrapped) associated data, A, that was passed with the wrapped keying
material is correct The evaluator shall feed into the TOE’s RSA-KEM-KWS
decryption operation examples of incorrect cipher text and verify that a decryption
error is detected. If the key-wrapping algorithm is AES-CCM, the evaluator shall
attempt at least one decryption where the wrong value of A is given to the RSA-
KEM-KWS decryption operation and verify that a decryption error is detected.
Similarly, if the key-wrapping algorithm is AES-CCM, the evaluator shall attempt
at least one decryption where the wrong nonce is given to the RSA-KEM-KWS
decryption operation and verify that a decryption error is detected.

4. The evaluator shall trigger all detectable decryption errors and validate that the
resulting error codes are the same and that no information is given back to the
sender on which type of error occurred. The evaluator shall also validate that no
intermediate results from the TOE’s receiver-side operations (in particular, no Z
values) are revealed to the sender.

4.1.2.6 FCS_COP.1(f) Cryptographic Operation (AES Data
Encryption/Decryption)

4.1.2.6.1 TSS

210 The evaluator shall verify the TSS includes a description of the key size used for
encryption and the mode used for encryption.

4.1.2.6.2 Operational Guidance

211 If multiple encryption modes are supported, the evaluator examines the guidance
documentation to determine that the method of choosing a specific mode/key size by
the end user is described.

4.1.2.6.3 KMD

212 There are no KMD evaluation activities for this SFR.

4.1.2.6.4 Test

213 The following tests are conditional based upon the selections made in the SFR.

214 AES-CBC Tests

215 For the AES-CBC tests described below, the plaintext, ciphertext, and IV values shall
consist of 128-bit blocks. To determine correctness, the evaluator shall compare the
resulting values to those obtained by submitting the same inputs to a known-good
implementation.

216 These tests are intended to be equivalent to those described in NIST’s AES Algorithm
Validation Suite (AESAVS)
(http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf). Known answer
values tailored to exercise the AES-CBC implementation can be obtained using NIST’s
CAVS Algorithm Validation Tool or from NIST’s ACPV service for automated
algorithm tests (acvp.nist.gov), when available. It is not recommended that evaluators
use values obtained from static sources such as the example NIST’s AES Known
Answer Test Values from the AESAVS document, or use values not generated
expressly to exercise the AES-CBC implementation.

217 AES-CBC Known Answer Tests

218 KAT-1 (GFSBox):

219 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five
different plaintext values for each selected key size and obtain the ciphertext value that
results from AES-CBC encryption of the given plaintext using a key value of all zeros
and an IV of all zeros.

220 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five
different ciphertext values for each selected key size and obtain the plaintext value that
results from AES-CBC decryption of the given ciphertext using a key value of all zeros
and an IV of all zeros.

221 KAT-2 (KeySBox):

222 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of five
different key values for each selected key size and obtain the ciphertext value that
results from AES-CBC encryption of an all-zeros plaintext using the given key value
and an IV of all zeros.

223 To test the decrypt functionality of AES-CBC, the evaluator shall supply a set of five
different key values for each selected key size and obtain the plaintext that results from
AES-CBC decryption of an all-zeros ciphertext using the given key and an IV of all
zeros.

224 KAT-3 (Variable Key):

225 To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of keys
for each selected key size (as described below) and obtain the ciphertext value that

http://csrc.nist.gov/groups/STM/cavp/documents/aes/AESAVS.pdf
http://acvp.nist.gov/

results from AES encryption of an all-zeros plaintext using each key and an IV of all
zeros.

226 Key i in each set shall have the leftmost i bits set to ones and the remaining bits to
zeros, for values of i from 1 to the key size. The keys and corresponding ciphertext are
listed in AESAVS, Appendix E.

227 To test the decrypt functionality of AES-CBC, the evaluator shall use the same keys as
above to decrypt the ciphertext results from above. Each decryption should result in an
all-zeros plaintext.

228 KAT-4 (Variable Text):

229 To test the encrypt functionality of AES-CBC, for each selected key size, the evaluator
shall supply a set of 128-bit plaintext values (as described below) and obtain the
ciphertext values that result from AES-CBC encryption of each plaintext value using a
key of each size and IV consisting of all zeros.

230 Plaintext value i shall have the leftmost i bits set to ones and the remaining bits set to
zeros, for values of i from 1 to 128. The plaintext values are listed in AESAVS,
Appendix D.

231 To test the decrypt functionality of AES-CBC, for each selected key size, use the
plaintext values from above as ciphertext input, and AES-CBC decrypt each ciphertext
value using key of each size consisting of all zeros and an IV of all zeros.

232 AES-CBC Multi-Block Message Test
233 The evaluator shall test the encrypt functionality by encrypting nine i-block messages

for each selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key,
an IV, and a plaintext message of length i blocks, and encrypt the message using AES-
CBC. The resulting ciphertext values shall be compared to the results of encrypting the
plaintext messages using a known good implementation.

234 The evaluator shall test the decrypt functionality by decrypting nine i-block messages
for each selected key size, for 2 ≤ i ≤ 10. For each test, the evaluator shall supply a key,
an IV, and a ciphertext message of length i blocks, and decrypt the message using AES-
CBC. The resulting plaintext values shall be compared to the results of decrypting the
ciphertext messages using a known good implementation.

235 AES-CBC Monte Carlo Tests
236 The evaluator shall test the encrypt functionality for each selected key size using 100

3-tuples of pseudo-random values for plaintext, IVs, and keys.

237 The evaluator shall supply a single 3-tuple of pseudo-random values for each selected
key size. This 3-tuple of plaintext, IV, and key is provided as input to the below
algorithm to generate the remaining 99 3-tuples, and to run each 3-tuple through 1000
iterations of AES-CBC encryption.

238 # Input: PT, IV, Key
Key[0] = Key
IV[0] = IV
PT[0] = PT

for i = 1 to 100 {

Output Key[i], IV[i], PT[0]

for j = 1 to 1000 {
if j == 1 {

CT[1] = AES-CBC-Encrypt(Key[i], IV[i], PT[1])
PT[2] = IV[i]

 } else {
CT[j] = AES-CBC-Encrypt(Key[i], PT[j])
PT[j+1] = CT[j-1]

 }
 }

Output CT[1000]

If KeySize == 128 { Key[i+1] = Key[i] xor CT[1000] }
If KeySize == 256 { Key[i+1] = Key[i] xor ((CT[999] << 128) | CT[1000]) }

IV[i+1] = CT[1000]
PT[0] = CT[999]

 }

239 The ciphertext computed in the 1000th iteration (CT[1000]) is the result for each of the

100 3-tuples for each selected key size. This result shall be compared to the result of
running 1000 iterations with the same values using a known good implementation.

240 The evaluator shall test the decrypt functionality using the same test as above,
exchanging CT and PT, and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

241 AES-GCM Test
242 The evaluator shall test the authenticated encrypt functionality of AES-GCM for each

combination of the following input parameter lengths:

128 bit and 256 bit keys

Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer
multiple of 128 bits, if supported. The other plaintext length shall not be an integer
multiple of 128 bits, if supported.

Three AAD lengths. One AAD length shall be 0, if supported. One AAD length
shall be a non-zero integer multiple of 128 bits, if supported. One AAD length shall
not be an integer multiple of 128 bits, if supported.

Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths
tested.

243 The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD,
and IV tuples for each combination of parameter lengths above and obtain the
ciphertext value and tag that results from AES-GCM authenticated encrypt. Each
supported tag length shall be tested at least once per set of 10. The IV value may be
supplied by the evaluator or the implementation being tested, as long as it is known.

244 The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag,
AAD, and IV 5-tuples for each combination of parameter lengths above and obtain a
Pass/Fail result on authentication and the decrypted plaintext if Pass. The set shall
include five tuples that Pass and five that Fail.

245 The results from each test may either be obtained by the evaluator directly or by
supplying the inputs to the implementer and receiving the results in response. To

determine correctness, the evaluator shall compare the resulting values to those
obtained by submitting the same inputs to a known good implementation.

246 XTS-AES Test
247 The evaluator shall test the encrypt functionality of XTS-AES for each combination of

the following input parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a
non-zero integer multiple of 128 bits, if supported. One of the data unit lengths
shall be an integer multiple of 128 bits, if supported. The third data unit length shall
be either the longest supported data unit length or 216 bits, whichever is smaller.

248 using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain
the ciphertext that results from XTS-AES encrypt.

249 The evaluator may supply a data unit sequence number instead of the tweak value if
the implementation supports it. The data unit sequence number is a base-10 number
ranging between 0 and 255 that implementations convert to a tweak value internally.

250 The evaluator shall test the decrypt functionality of XTS-AES using the same test as
for encrypt, replacing plaintext values with ciphertext values and XTS-AES encrypt
with XTS-AES decrypt.

4.1.2.7 FCS_COP.1(g) Cryptographic Operation (Key Encryption)

4.1.2.7.1 TSS

251 The evaluator shall verify the TSS includes a description of the key size used for
encryption and the mode used for the key encryption.

4.1.2.7.2 Operational Guidance

252 If multiple key encryption modes are supported, the evaluator examines the guidance
documentation to determine that the method of choosing a specific mode/key size by
the end user is described.

4.1.2.7.3 KMD

253 The evaluator shall examine the vendor’s KMD to verify that it includes a description
of how key encryption will be used as part of the key chain.

4.1.2.7.4 Test

254 The AES test should be followed in FCS_COP.1(f) Cryptographic Operation (AES
Data Encryption/Decryption.

4.1.3 Cryptographic Key Derivation (FCS_KDF_EXT)

4.1.3.1 FCS_KDF_EXT.1 Cryptographic Key Derivation

4.1.3.1.1 TSS

255 The evaluator shall verify the TSS includes a description of the key derivation function
and shall verify the key derivation uses an approved derivation mode and key expansion
algorithm according to SP 800-108 and SP 800-132.

4.1.3.1.2 Operational Guidance

256 There are no AGD evaluation activities for this SFR.

4.1.3.1.3 KMD

257 The evaluator shall examine the vendor’s KMD to ensure that all keys used are derived
using an approved method and a description of how and when the keys are derived.

4.1.3.1.4 Test

258 There are no test evaluation activities for this SFR.

4.1.4 Cryptographic Password Construct and Conditioning
(FCS_PCC_EXT)

4.1.4.1 FCS_PCC_EXT.1 Cryptographic Password Construct and Conditioning

4.1.4.1.1 TSS

259 The evaluator shall ensure the TSS describes the manner in which the TOE enforces
the construction of passwords, including the length, and requirements on characters
(number and type). The evaluator also verifies that the TSS provides a description of
how the password is conditioned and the evaluator ensures it satisfies the requirement.

4.1.4.1.2 Operational Guidance

260 There are no AGD evaluation activities for this SFR.

4.1.4.1.3 KMD

261 The evaluator shall examine the KMD to ensure that the formation of the BEV and
intermediary keys is described and that the key sizes match that selected by the ST
author.

262 The evaluator shall check that the KMD describes the method by which the
password/passphrase is first encoded and then fed to the SHA algorithm. The settings
for the algorithm (padding, blocking, etc.) shall be described, and the evaluator shall
verify that these are supported by the selections in this component as well as the
selections concerning the hash function itself. The evaluator shall verify that the KMD
contains a description of how the output of the hash function is used to form the
submask that will be input into the function and is the same length as the BEV as
specified above.

4.1.4.1.4 Test

263 The evaluator shall also perform the following tests:

• Test 1: Ensure that the TOE supports passwords/passphrases of a minimum
length of 64 characters.

• Test 2: If the TOE supports a password/passphrase length up to a maximum
number of characters, n (which would be greater than 64), then ensure that the
TOE will not accept more than n characters.

• Test 3: Ensure that the TOE supports passwords consisting of all characters
assigned and supported by the ST author.

4.1.5 Random Bit Generation (FCS_RBG_EXT)

4.1.5.1 FCS_RBG_EXT.1 Random Bit Generation

4.1.5.1.1 TSS

264 For any RBG services provided by a third party, the evaluator shall ensure the TSS
includes a statement about the expected amount of entropy received from such a source,
and a full description of the processing of the output of the third-party source. The
evaluator shall verify that this statement is consistent with the selection made in
FCS_RBG_EXT.1.2 for the seeding of the DRBG. If the ST specifies more than one
DRBG, the evaluator shall examine the TSS to verify that it identifies the usage of each
DRBG mechanism.

4.1.5.1.2 Operational Guidance

265 The evaluator shall verify that the AGD guidance instructs the administrator how to
configure the TOE to use the selected DRBG mechanism(s), if necessary, and provides
information regarding how to instantiate/call the DRBG for RBG services needed in
this cPP.

4.1.5.1.3 KMD

266 There are no KMD evaluation activities for this SFR.

4.1.5.1.4 Test

267 The evaluator shall perform 15 trials for the RNG implementation. If the RNG is
configurable by the TOE, the evaluator shall perform 15 trials for each configuration.
The evaluator shall verify that the instructions in the operational guidance for
configuration of the RNG are valid.

268 If the RNG has prediction resistance enabled, each trial consists of (1) instantiate
DRBG, (2) generate the first block of random bits (3) generate a second block of
random bits (4) uninstantiate. The evaluator verifies that the second block of random
bits is the expected value. The evaluator shall generate eight input values for each trial.
The first is a count (0 – 14). The next three are entropy input, nonce, and personalization
string for the instantiate operation. The next two are additional input and entropy input
for the first call to generate. The final two are additional input and entropy input for the
second call to generate. These values are randomly generated. “Generate one block of
random bits” means to generate random bits with number of returned bits equal to the
Output Block Length (as defined in NIST SP800-90A).

269 If the RNG does not have prediction resistance, each trial consists of (1) instantiate
DRBG, (2) generate the first block of random bits (3) reseed, (4) generate a second
block of random bits (5) uninstantiate. The evaluator verifies that the second block of
random bits is the expected value. The evaluator shall generate eight input values for

each trial. The first is a count (0 – 14). The next three are entropy input, nonce, and
personalization string for the instantiate operation. The fifth value is additional input to
the first call to generate. The sixth and seventh are additional input and entropy input
to the call to reseed. The final value is additional input to the second generate call.

270 The following paragraphs contain more information on some of the input values to be
generated/selected by the evaluator.

271 Entropy input: the length of the entropy input value must equal the seed length.

272 Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use
a nonce), the nonce bit length is one-half the seed length.

273 Personalization string: The length of the personalization string must be <= seed length.
If the implementation only supports one personalization string length, then the same
length can be used for both values. If more than one string length is support, the
evaluator shall use personalization strings of two different lengths. If the
implementation does not use a personalization string, no value needs to be supplied.

274 Additional input: the additional input bit lengths have the same defaults and restrictions
as the personalization string lengths.

4.1.6 Submask Combining (FCS_SMC_EXT)

4.1.6.1 FCS_SMC_EXT.1 Submask Combining

4.1.6.1.1 TSS

275 If the submasks produced from the authorization factors are XORed together to form
the BEV or intermediate key, the TSS section shall identify how this is performed (e.g.,
if there are ordering requirements, checks performed, etc.). The evaluator shall also
confirm that the TSS describes how the length of the output produced is at least the
same as that of the BEV.

4.1.6.1.2 Operational Guidance

276 There are no AGD evaluation activities for this SFR.

4.1.6.1.3 KMD

277 The evaluator shall review the KMD to ensure that an approved combination is used
and does not result in the weakening or exposure of key material.

4.1.6.1.4 Test

278 The evaluator shall perform the following test:

279 Test 1 (conditional): If there is more than one authorization factor, ensure that failure
to supply a required authorization factor does not result in access to the encrypted data.

4.1.7 Validation of Cryptographic Elements (FCS_VAL_EXT)

4.1.7.1 FCS_VAL_EXT.1 Validation

4.1.7.1.1 TSS

280 The evaluator shall examine the TSS to determine which authorization factors support
validation.

281 The evaluator shall examine the TSS to review a high-level description if multiple
submasks are used within the TOE, how the submasks are validated (e.g., each submask
validated before combining, once combined validation takes place).

4.1.7.1.2 Operational Guidance

282 (conditional) If the validation functionality is configurable, the evaluator shall examine
the operational guidance to ensure it describes how to configure the TOE to ensure the
limits regarding validation attempts can be established.

283 (conditional) If the validation functionality is specified by the ST author, the evaluator
shall examine the operational guidance to ensure that it states the values that the TOE
uses for limits regarding validation attempts.

4.1.7.1.3 KMD

284 The evaluator shall examine the KMD to verify that it described the method the TOE
employs to limit the number of consecutively failed authorization attempts.

285 The evaluator shall examine the vendor’s KMD to ensure it describes how validation
is performed. The description of the validation process in the KMD provides detailed
information how the TOE validates the submasks. The KMD describes how the process
works, such that it does not expose any material that might compromise the submask(s).

4.1.7.1.4 Test

286 The evaluator shall perform the following tests:

287 Test 1: The evaluator shall determine the limit on the average rate of the number of
consecutive failed authorization attempts. The evaluator will test the TOE by entering
that number of incorrect authorization factors in consecutive attempts to access the
protected data. If the limit mechanism includes any “lockout” period, the time period
tested should include at least one such period. Then the evaluator will verify that the
TOE behaves as described in the TSS.

288 Test 2: For each validated authorization factor, ensure that when the user provides an
incorrect authorization factor, the TOE prevents the BEV from being forwarded outside
the TOE (e.g., to the EE).

5 Evaluation Activities for SARs

289 The sections below specify Evaluation Activities for the Security Assurance
Requirements included in the related cPPs (see section 1.1 above). The Evaluation
Activities are an interpretation of the more general CEM assurance requirements as
they apply to the specific technology area of the TOE.

290 Note that in order to meet the claimed SARs, all CEM work units must be performed
by the evaluators. The Evaluation Activities discussed in sections 2, 3, and 4 as well as
the refinements and Evaluation Activities in this section all serve to clarify and
supplement the SARs; they do not exempt the SARs from evaluation.

5.1 ASE: Security Target Evaluation
291 An evaluation activity is defined here for evaluation of Exact Conformance claims

against a cPP in a Security Target. Other aspects of ASE remain as defined in the CEM.

5.1.1 Conformance Claims (ASE_CCL.1)

292 The table below indicates the actions to be taken for particular ASE_CCL.1 elements
in order to determine exact conformance with a cPP.

Table 1: ASE_CCL.1 Exact Conformance Actions

ASE_CCL.1 element Evaluator Action

ASE_CCL.1.8C The evaluator shall check that the statements of
security problem definition in the PP and ST are
identical.

ASE_CCL.1.9C The evaluator shall check that the statements of
security objectives in the PP and ST are
identical.

ASE_CCL.1.10C The evaluator shall check that the statements of
security requirements in the ST include all the
mandatory SFRs in the cPP, and all of the
selection-based SFRs that are entailed by
selections made in other SFRs (including any
SFR iterations added in the ST). The evaluator
shall check that if any other SFRs are present in
the ST (apart from iterations of SFRs in the cPP)
then these are taken only from the list of optional
SFRs specified in the cPP (the cPP will not
necessarily include optional SFRs, but may do
so). If optional SFRs from the cPP are included
in the ST then the evaluator shall check that any
selection-based SFRs entailed by the optional
SFRs adopted are also included in the ST.

5.2 Development (ADV)

5.2.1 Basic Functional Specification (ADV_FSP.1)

293 The EAs for this assurance component focus on understanding the interfaces (e.g.,
application programing interfaces, command line interfaces, graphical user interfaces,
network interfaces) described in the AGD documentation, and possibly identified in
the TOE Summary Specification (TSS) in response to the SFRs. Specific evaluator
actions to be performed against this documentation are identified (where relevant) for
each SFR in Section 2 (Evaluation Activities for SFRs), and in EAs for AGD, ATE and
AVA SARs in other parts of Section 5.

294 The EAs presented in this section address the CEM work units ADV_FSP.1-1,
ADV_FSP.1-2, ADV_FSP.1-3, and ADV_FSP.1-5.

295 The EAs are reworded for clarity and interpret the CEM work units such that they will
result in more objective and repeatable actions by the evaluator. The EAs in this SD
are intended to ensure the evaluators are consistently performing equivalent actions.

296 The documents to be examined for this assurance component in an evaluation are
therefore the Security Target, AGD documentation, and any required supplementary
information required by the cPP: no additional “functional specification”
documentation is necessary to satisfy the EAs. The interfaces that need to be evaluated
are also identified by reference to the EAs listed for each SFR, and are expected to be
identified in the context of the Security Target, AGD documentation, and any required
supplementary information defined in the cPP rather than as a separate list specifically
for the purposes of CC evaluation. The direct identification of documentation
requirements and their assessment as part of the EAs for each SFR also means that the
tracing required in ADV_FSP.1.2D (work units ADV_FSP.1-4, ADV_FSP.1-6 and
ADV_FSP.1-7 is treated as implicit and no separate mapping information is required
for this element.

Table 2: Mapping of ADV_FSP.1 CEM Work Units to Evaluation Activities

CEM ADV_FSP.1 Work Units Evaluation Activities

ADV_FSP.1-1 The evaluator shall
examine the functional specification
to determine that it states the
purpose of each SFR-supporting and
SFR-enforcing TSFI.

Evaluation Activity: The evaluator shall
examine the interface documentation to
ensure it describes the purpose and method
of use for each TSFI that is identified as
being security relevant.

ADV_FSP.1-2 The evaluator shall
examine the functional specification
to determine that the method of use
for each SFR-supporting and SFR-
enforcing TSFI is given.

Evaluation Activity: The evaluator shall
examine the interface documentation to
ensure it describes the purpose and method
of use for each TSFI that is identified as
being security relevant.

ADV_FSP.1-3 The evaluator shall
examine the presentation of the
TSFI to determine that it identifies
all parameters associated with each
SFR-enforcing and SFR supporting
TSFI.

Evaluation Activity: The evaluator shall
check the interface documentation to
ensure it identifies and describes the
parameters for each TSFI that is identified
as being security relevant.

ADV_FSP.1-4 The evaluator shall
examine the rationale provided by
the developer for the implicit
categorisation of interfaces as SFR-
non-interfering to determine that it
is accurate.

Paragraph 561 from the CEM: “In the case
where the developer has provided adequate
documentation to perform the analysis
called for by the rest of the work units for
this component without explicitly
identifying SFR-enforcing and SFR-
supporting interfaces, this work unit should
be considered satisfied.”
Since the rest of the ADV_FSP.1 work
units will have been satisfied upon
completion of the EAs, it follows that this
work unit is satisfied as well.

ADV_FSP.1-5 The evaluator shall
check that the tracing links the SFRs
to the corresponding TSFIs.

Evaluation Activity: The evaluator shall
examine the interface documentation to
develop a mapping of the interfaces to
SFRs.

ADV_FSP.1-6 The evaluator shall
examine the functional specification
to determine that it is a complete
instantiation of the SFRs.

EAs that are associated with the SFRs in
Section 2, and, if applicable, Sections 3 and
4, are performed to ensure that all the SFRs
where the security functionality is
externally visible (i.e., at the TSFI) are
covered. Therefore, the intent of this work
unit is covered.

ADV_FSP.1-7 The evaluator shall
examine the functional specification
to determine that it is an accurate
instantiation of the SFRs.

EAs that are associated with the SFRs in
Section 2, and, if applicable, Sections 3 and
4, are performed to ensure that all the SFRs
where the security functionality is
externally visible (i.e., at the TSFI) are
addressed, and that the description of the
interfaces is accurate with respect to the
specification captured in the SFRs.
Therefore, the intent of this work unit is
covered.

5.2.1.1 Evaluation Activity

297 The evaluator shall examine the interface documentation to ensure it describes the
purpose and method of use for each TSFI that is identified as being security relevant.

298 In this context, TSFI are deemed security relevant if they are used by the administrator
to configure the TOE, or to perform other administrative functions (e.g., audit review
or performing updates). Additionally, those interfaces that are identified in the ST, or
guidance documentation, as adhering to the security policies (as presented in the SFRs),
are also considered security relevant. The intent, is that these interfaces will be
adequately tested, and having an understanding of how these interfaces are used in the
TOE is necessary to ensure proper test coverage is applied.

299 The set of TSFI that are provided as evaluation evidence are contained in the
Administrative Guidance and User Guidance.

5.2.1.2 Evaluation Activity

300 The evaluator shall check the interface documentation to ensure it identifies and
describes the parameters for each TSFI that is identified as being security relevant.

5.2.1.3 Evaluation Activity

301 The evaluator shall examine the interface documentation to develop a mapping of the
interfaces to SFRs.

302 The evaluator uses the provided documentation and first identifies, and then examines
a representative set of interfaces to perform the EAs presented in Section 2 (Evaluation
Activities for SFRs), including the EAs associated with testing of the interfaces.

303 It should be noted that there may be some SFRs that do not have an interface that is
explicitly “mapped” to invoke the desired functionality. For example, generating a
random bit string, destroying a cryptographic key that is no longer needed, or the TSF
failing to a secure state, are capabilities that may be specified in SFRs, but are not
invoked by an interface.

304 However, if the evaluator is unable to perform some other required EA because there
is insufficient design and interface information, then the evaluator is entitled to
conclude that an adequate functional specification has not been provided, and hence
that the verdict for the ADV_FSP.1 assurance component is a ‘fail’.

5.3 Guidance Documents (AGD)
305 It is not necessary for a TOE to provide separate documentation to meet the individual

requirements of AGD_OPE and AGD_PRE. Although the Evaluation Activities in this
section are described under the traditionally separate AGD families, the mapping
between real TOE documents and AGD_OPE and AGD_PRE requirements may be
many-to-many, as long as all requirements are met in documentation that is delivered
to administrators and users (as appropriate) as part of the TOE.

5.3.1 Operational User Guidance (AGD_OPE.1)

306 Specific requirements and checks on the user guidance documentation are identified
(where relevant) in the individual Evaluation Activities for each SFR, and for some
other SARs (e.g. ALC_CMC.1).

307 Evaluation Activity:

308 The evaluator shall check the requirements below are met by the operational guidance.

309 Operational guidance documentation shall be distributed to administrators and users
(as appropriate) as part of the TOE, so that there is a reasonable guarantee that
administrators and users are aware of the existence and role of the documentation in
establishing and maintaining the evaluated configuration.

310 Operational guidance must be provided for every Operational Environment that the
TOE supports as claimed in the Security Target and must adequately address all
platforms claimed for the TOE in the Security Target. This may be contained all in one
document.

311 The contents of the operational guidance will be verified by the Evaluation Activities
defined below and as appropriate for each individual SFR in sections 2, 3, and 4 above.

312 In addition to SFR-related Evaluation Activities, the following information is also
required.

• The operational guidance shall contain instructions for configuring any
cryptographic engine associated with the evaluated configuration of the TOE.
It shall provide a warning to the administrator that use of other cryptographic
engines was not evaluated nor tested during the CC evaluation of the TOE.

• The TOE will likely contain security functionality that does not fall under the
scope of evaluation under this cPP. The operational guidance shall make it
clear to an administrator which security functionality is covered by the
Evaluation Activities.

5.3.2 Preparative Procedures (AGD_PRE.1)

313 As for the operational guidance, specific requirements and checks on the preparative
procedures are identified (where relevant) in the individual Evaluation Activities for
each SFR.

314 Evaluation Activity:

315 The evaluator shall check the requirements below are met by the preparative
procedures.

316 The contents of the preparative procedures will be verified by the Evaluation Activities
defined below and as appropriate for each individual SFR in section 2 above.

317 Preparative procedures shall be distributed to administrators and users (as appropriate)
as part of the TOE, so that there is a reasonable guarantee that administrators and users
are aware of the existence and role of the documentation in establishing and
maintaining the evaluated configuration.

318 The contents of the preparative procedures will be verified by the Evaluation Activities
defined below and as appropriate for each individual SFR in section 2 above.

319 In addition to SFR-related Evaluation Activities, the following information is also
required.

320 Preparative procedures must include a description of how the administrator verifies that
the operational environment can fulfil its role to support the security functionality
(including the requirements of the Security Objectives for the Operational Environment
specified in the Security Target). The documentation should be in an informal style and
should be written with sufficient detail and explanation that they can be understood and
used by the target audience (which will typically include IT staff who have general IT
experience but not necessarily experience with the TOE itself).

321 Preparative procedures must be provided for every Operational Environment that the
TOE supports as claimed in the Security Target and must adequately address all
platforms claimed for the TOE in the Security Target. This may be contained all in one
document.

322 The preparative procedures must include

• instructions to successfully install the TSF in each Operational Environment;
and

• instructions to manage the security of the TSF as a product and as a component
of the larger operational environment; and

• instructions to provide a protected administrative capability.

5.4 Life-cycle Support (ALC)

5.4.1 Labelling of the TOE (ALC_CMC.1)

323 When evaluating that the TOE has been provided and is labelled with a unique
reference, the evaluator performs the work units as presented in the CEM.

5.4.2 TOE CM coverage (ALC_CMS.1)

324 When evaluating the developer’s coverage of the TOE in their CM system, the
evaluator performs the work units as presented in the CEM.

5.5 Tests (ATE)

5.5.1 Independent Testing – Conformance (ATE_IND.1)

325 Testing is performed to confirm the functionality described in the TSS as well as the
operational guidance documentation. The focus of the testing is to confirm that the
requirements specified in the SFRs are being met.

326 The evaluator should consult Appendix B FDE Equivalency Considerations
when determining the appropriate strategy for testing multiple variations or models of
the TOE that may be under evaluation.

327 The SFR-related Evaluation Activities in the SD identify the specific testing activities
necessary to verify compliance with the SFRs. The tests identified in these other
Evaluation Activities constitute a sufficient set of tests for the purposes of meeting
ATE_IND.1.2E. It is important to note that while the Evaluation Activities identify the
testing that is necessary to be performed, the evaluator is responsible for ensuring that
the interfaces are adequately tested for the security functionality specified for each
SFR.

328 Evaluation Activity:

329 The evaluator shall examine the TOE to determine that the test configuration is
consistent with the configuration under evaluation as specified in the ST.

330 Evaluation Activity:

331 The evaluator shall examine the TOE to determine that it has been installed properly
and is in a known state.

332 Evaluation Activity:

333 The evaluator shall prepare a test plan that covers all of the testing actions for
ATE_IND.1 in the CEM and in the SFR-related Evaluation Activities. While it is not

necessary to have one test case per test listed in an Evaluation Activity, the evaluator
must show in the test plan that each applicable testing requirement in the SFR-related
Evaluation Activities is covered.

334 The test plan identifies the platforms to be tested, and for any platforms not included
in the test plan but included in the ST, the test plan provides a justification for not
testing the platforms. This justification must address the differences between the tested
platforms and the untested platforms, and make an argument that the differences do not
affect the testing to be performed. It is not sufficient to merely assert that the differences
have no affect; rationale must be provided. If all platforms claimed in the ST are tested,
then no rationale is necessary.

335 The test plan describes the composition and configuration of each platform to be tested,
and any setup actions that are necessary beyond what is contained in the AGD
documentation. It should be noted that the evaluator is expected to follow the AGD
documentation for installation and setup of each platform either as part of a test or as a
standard pre-test condition. This may include special test drivers or tools. For each
driver or tool, an argument (not just an assertion) should be provided that the driver or
tool will not adversely affect the performance of the functionality by the TOE and its
platform. This also includes the configuration of any cryptographic engine to be used
(e.g. for cryptographic protocols being evaluated).

336 The test plan identifies high-level test objectives as well as the test procedures to be
followed to achieve those objectives, and the expected results.

337 The test report (which could just be an updated version of the test plan) details the
activities that took place when the test procedures were executed, and includes the
actual results of the tests. This shall be a cumulative account, so if there was a test run
that resulted in a failure, so that a fix was then installed and then a successful re-run of
the test was carried out, then the report would show a “fail” result followed by a “pass”
result (and the supporting details), and not just the “pass” result1.

5.6 Vulnerability Assessment (AVA)

5.6.1 Vulnerability Survey (AVA_VAN.1)

338 While vulnerability analysis is inherently a subjective activity, a minimum level of
analysis can be defined and some measure of objectivity and repeatability (or at least
comparability) can be imposed on the vulnerability analysis process. In order to achieve
such objectivity and repeatability it is important that the evaluator follows a set of well-
defined activities, and documents their findings so others can follow their arguments
and come to the same conclusions as the evaluator. While this does not guarantee that
different evaluation facilities will identify exactly the same type of vulnerabilities or
come to exactly the same conclusions, the approach defines the minimum level of
analysis and the scope of that analysis, and provides Certification Bodies a measure of
assurance that the minimum level of analysis is being performed by the evaluation
facilities.

1 It is not necessary to capture failures that were due to errors on the part of the tester or test environment. The
intention here is to make absolutely clear when a planned test resulted in a change being required to the originally
specified test configuration in the test plan, to the evaluated configuration identified in the ST and operational
guidance, or to the TOE itself.

In order to meet these goals some refinement of the AVA_VAN.1 CEM work units is
needed. The following table indicates, for each work unit in AVA_VAN.1, whether the
CEM work unit is to be performed as written, or if it has been clarified by an Evaluation
Activity. If clarification has been provided, a reference to this clarification is provided
in the table.

Table 3: Mapping of AVA_VAN.1 CEM Work Units to Evaluation Activities

CEM AVA_VAN.1 Work Units Evaluation Activities

AVA_VAN.1-1 The evaluator shall
examine the TOE to determine that
the test configuration is consistent
with the configuration under
evaluation as specified in the ST.

The evaluator shall perform the CEM
activity as specified.
If the iTC specifies any tools to be used in
performing this analysis in section A.3.4,
the following text is also included in this
cell: “The calibration of test resources
specified in paragraph 1418 of the CEM
applies to the tools listed in Appendix A,
Section A.1.4.”

AVA_VAN.1-2 The evaluator shall
examine the TOE to determine that
it has been installed properly and is
in a known state

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-3 The evaluator shall
examine sources of information
publicly available to identify
potential vulnerabilities in the TOE.

Replace CEM work unit with activities
outlined in Appendix A, Section A.1.

AVA_VAN.1-4 The evaluator shall
record in the ETR the identified
potential vulnerabilities that are
candidates for testing and applicable
to the TOE in its operational
environment.

Replace the CEM work unit with the
analysis activities on the list of potential
vulnerabilities in Appendix A, section A.1,
and documentation as specified in
Appendix A, Section A.3.

AVA_VAN.1-5 The evaluator shall
devise penetration tests, based on
the independent search for potential
vulnerabilities.

Replace the CEM work unit with the
activities specified in Appendix A, section
A.2.

AVA_VAN.1-6 The evaluator shall
produce penetration test
documentation for the tests based on
the list of potential vulnerabilities in
sufficient detail to enable the tests to
be repeatable. The test
documentation shall include:

a) identification of the potential
vulnerability the TOE is being
tested for;
b) instructions to connect and setup
all required test equipment as

The CEM work unit is captured in
Appendix A, Section A.3; there are no
substantive differences.

required to conduct the penetration
test;
c) instructions to establish all
penetration test prerequisite initial
conditions;
d) instructions to stimulate the TSF;
e) instructions for observing the
behaviour of the TSF;
f) descriptions of all expected
results and the necessary analysis to
be performed on the observed
behaviour for comparison against
expected results;
g) instructions to conclude the test
and establish the necessary post-test
state for the TOE.

AVA_VAN.1-7 The evaluator shall
conduct penetration testing.

The evaluator shall perform the CEM
activity as specified. See Appendix A,
Section A.3 for guidance related to attack
potential for confirmed flaws.

AVA_VAN.1-8 The evaluator shall
record the actual results of the
penetration tests.

The evaluator shall perform the CEM
activity as specified.

AVA_VAN.1-9 The evaluator shall
report in the ETR the evaluator
penetration testing effort, outlining
the testing approach, configuration,
depth and results.

Replace the CEM work unit with the
reporting called for in Appendix A, Section
A.3.

AVA_VAN.1-10 The evaluator
shall examine the results of all
penetration testing to determine that
the TOE, in its operational
environment, is resistant to an
attacker possessing a Basic attack
potential.

This work unit is not applicable for Type 1
and Type 2 flaws (as defined in Appendix
A, Section A.1), as inclusion in this
Supporting Document by the iTC makes
any confirmed vulnerabilities stemming
from these flaws subject to an attacker
possessing a Basic attack potential. This
work unit is replaced for Type 3 and Type 4
flaws by the activities defined in Appendix
A, Section A.3.

AVA_VAN.1-11 The evaluator
shall report in the ETR all
exploitable vulnerabilities and
residual vulnerabilities, detailing for
each:

a) its source (e.g. CEM activity
being undertaken when it was
conceived, known to the evaluator,
read in a publication);
b) the SFR(s) not met;

Replace the CEM work unit with the
reporting called for in Appendix A, Section
A.3.

c) a description;
d) whether it is exploitable in its
operational environment or not (i.e.
exploitable or residual).
e) the amount of time, level of
expertise, level of knowledge of the
TOE, level of opportunity and the
equipment required to perform the
identified vulnerabilities, and the
corresponding values using the
tables 3 and 4 of Annex B.4.

339 Because of the level of detail required for the evaluation activities, the bulk of the
instructions are contained in Appendix A, while an “outline” of the assurance activity
is provided below.

5.6.1.1 Evaluation Activity (Documentation):

340 The developer shall provide documentation identifying the list of software and
hardware components that compose the TOE. Hardware components apply to all
systems claimed in the ST, and should identify at a minimum the processors used by
the TOE. Software components include any libraries used by the TOE, such as
cryptographic libraries. This additional documentation is merely a list of the name and
version number of the components, and will be used by the evaluators in formulating
hypotheses during their analysis.

341 The evaluator shall examine the documentation outlined below provided by the vendor
to confirm that it contains all required information. This documentation is in addition
to the documentation already required to be supplied in response to the EAs listed
previously.

342 In addition to the activities specified by the CEM in accordance with Table 2 above,
the evaluator shall perform the following activities.

5.6.1.2 Evaluation Activity

343 The evaluator formulates hypotheses in accordance with process defined in Appendix
A.1. The evaluator documents the flaw hypotheses generated for the TOE in the report
in accordance with the guidelines in Appendix A.3. The evaluator shall perform
vulnerability analysis in accordance with Appendix A.2. The results of the analysis
shall be documented in the report according to Appendix A.3.

6 Required Supplementary Information

344 This Supporting Document refers in various places to the possibility that
‘supplementary information’ may need to be supplied as part of the deliverables for an
evaluation. This term is intended to describe information that is not necessarily
included in the Security Target or operational guidance, and that may not necessarily
be public. Examples of such information could be entropy analysis, or description of a
cryptographic key management architecture used in (or in support of) the TOE. The
requirement for any such supplementary information will be identified in the relevant
cPP.

345 The FDE cPP for the Authorization Acquisition requires an entropy analysis, and key
management description. The EAs the evaluator is to perform with those documents
are captured under the appropriate SFRs in Section 2.

7 References

[CC1] Common Criteria for Information Technology Security
Evaluation, Part 1: Introduction and General Model
CCMB-2017-04-001, Version 3.1 Revision 5, April 2017

[CC2] Common Criteria for Information Technology Security
Evaluation,
Part 2: Security Functional Components,
CCMB-2017-04-002, Version 3.1 Revision 5, April 2017

[CC3] Common Criteria for Information Technology Security
Evaluation,
Part 3: Security Assurance Components,
CCMB-2017-09-004, Version 3.1 Revision 5, April 2017

[CEM] Common Methodology for Information Technology Security
Evaluation, CCMB-2017-04-004, Version 3.1 Revision 5,
April 2017

[FDE–AA] collaborative Protection Profile for Full Disk Encryption –
Authorization Acquisition, Version 2.0 + Errata 20190201, 1
February 2019

Appendixes

A. Vulnerability Analysis
A.1 Sources of Vulnerability Information

346 CEM Work Unit AVA_VAN.1-3 has been supplemented in this Supporting Document
to provide a better-defined set of flaws to investigate and procedures to follow based
on this particular technology. Terminology used is based on the flaw hypothesis
methodology, where the evaluation team hypothesizes flaws and then either proves or
disproves those flaws (a flaw is equivalent to a “potential vulnerability” as used in the
CEM). Flaws are categorized into four “types” depending on how they are formulated:

1. A list of flaw hypotheses applicable to the technology described by the cPP
derived from public sources as documented in Section A.1.1—this fixed set has
been agreed to by the iTC. Additionally, this will be supplemented with entries
for a set of public sources (as indicated below) that are directly applicable to the
TOE or its identified components (as defined by the process in Section A.1.1
below); this is to ensure that the evaluators include in their assessment applicable
entries that have been discovered since the cPP was published;

2. A list of flaw hypotheses contained in this document that are derived from lessons
learned specific to that technology and other iTC input (that might be derived
from other open sources and vulnerability databases, for example) as documented
in Section A.1.2;

3. A list of flaw hypotheses derived from information available to the evaluators;
this includes the baseline evidence provided by the vendor described in this
Supporting Document (documentation associated with EAs, documentation
described in Section 5.6.1), as well as other information (public and/or based on
evaluator experience) as documented in Section A.1.3; and

4. A list of flaw hypotheses that are generated through the use of iTC-defined tools
(e.g., nmap, protocol testers) and their application is specified in section A.1.4.

A.1.1 Type 1 Hypotheses—Public-Vulnerability-based

347 The following list of public sources of vulnerability information was selected by the
iTC:

a. Search Common Vulnerabilities and Exposures: http://cve.mitre.org/cve/
b. Search the National Vulnerability Database: https://nvd.nist.gov/
c. Search US-CERT http://www.kb.cert.org/vuls/html/search

348 The list of sources above was searched with the following search terms:

o General (for all)

 Product name

 underlying components (e.g., OS, software libraries (crypto libraries),
chipsets)

 drive encryption, disk encryption

 key destruction/sanitization

o AA:

 Underlying components (e.g., smart card libraries)

http://cve.mitre.org/cve/

 Opal management software, SED management software

 Password caching

o For Software FDE (AA or EE):

 Key caching

349 In order to successfully complete this activity, the evaluator will use the developer
provided list of all of 3rd party library information that is used as part of their product,
along with the version and any other identifying information (this is required in the cPP
as part of the ASE_TSS.1.1C requirement). This applies to hardware (including
chipsets, etc.) that a vendor utilizes as part of their TOE. This TOE-unique information
will be used in the search terms the evaluator uses in addition to those listed above.

350 The evaluator will also consider the requirements that are chosen and the appropriate
guidance that is tied to each requirement. For example, with FCS_AFA_EXT.1, if the
Smartcard selection is chosen, then the evaluator will use the appropriate search terms
for smart cards.

351 In order to supplement this list, the evaluators shall also perform a search on the sources
listed above to determine a list of potential flaw hypotheses that are more recent that
the publication date of the cPP, and those that are specific to the TOE and its
components as specified by the additional documentation mentioned above. Any
duplicates – either in a specific entry, or in the flaw hypothesis that is generated from
an entry from the same or a different source – can be noted and removed from
consideration by the evaluation team.

352 As part of type 1 flaw hypothesis generation for the specific components of the TOE,
the evaluator shall also search the component manufacturer’s websites to determine if
flaw hypotheses can be generated on this basis (for instance, if security patches have
been released for the version of the component being evaluated, the subject of those
patches may form the basis for a flaw hypothesis).

A.1.2 Type 2 Hypotheses—iTC-Sourced

353 The following list of flaw hypothesis generated by the iTC for this technology must be
considered by the evaluation team as flaw hypotheses in performing the vulnerability
assessment:

354 General:

355 AA:

• In order to validate the AA is properly encrypting keying material (e.g., BEV,
KEK, authorization submasks) in the readable part of the disk (e.g., shadow MBR),
the evaluator should examine the disk using a tool to view the drive (e.g. WinHex)
to look for material that exposes a key value.

• When an authentication or recovery credential is changed, it is critical that the AA
does not leave old keys/key chains/key material around. This process should also
be monitored using a tool to view the drive.

356 AA (for ISV’s)

• It is possible that preboot authentication appears to function normally and it’s
possible that the SED could neglect to lock the global range, which results in the
preboot being locked, but the rest of the drive is unencrypted. This could be tested
using a tool (e.g. WinHex) by writing a known pattern, locking the drive and
looking for the pattern.

357 If the evaluators discover a Type 3 or Type 4 flaw that they believe should be
considered as a Type 2 flaw in future versions of this cPP, they should work with their
Certification Body to determine the appropriate means of submitting the flaw for
consideration by the iTC.

A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated

358 The iTC has leveraged the expertise of the developers and the evaluation labs to
diligently develop the appropriate search terms and vulnerability databases. They have
also thoughtfully considered the iTC-sourced hypotheses the evaluators should use
based upon the applicable use case and the threats to be mitigated by the SFRs.
Therefore, it is the intent of the iTC, for the evaluation to focus all effort on the Type
1 and Type 2 Hypotheses and has decided that Type 3 Hypotheses are not necessary.

359 However, if the evaluators discover a Type 3 potential flaw that they believe should be
considered, they should work with their Certification Body to determine the feasibility
of pursuing the hypothesis. The Certification Body may determine whether the
potential flaw hypotheses is worth submitting to the iTC for consideration as Type 2
hypotheses in future drafts of the cPP/SD.

A.1.4 Type 4 Hypotheses—Tool-Generated

360 The iTC has called out several tools that should be used during the Type 2 hypotheses
process. Therefore, the use of any tools is covered within the Type 2 construct and the
iTC does not see any additional tools that are necessary. The use case for Version 2 of
the cPP is rather straightforward – the device is found in a powered down state and has
not been subjected to revisit/evil maid attacks. Since that is the use case, the iTC has
also assumed there is a trusted channel between the AA and EE. Since the use case is
so narrow, and is not a typical model for penetration or fuzzing testing, the normal
types of testing do not apply. Therefore, the relevant types of tools are referenced in
Type 2.

A.2 Process for Evaluator Vulnerability Analysis

361 As flaw hypotheses are generated from the activities described above, the evaluation
team will disposition them; that is, attempt to prove, disprove, or determine the non-
applicability of the hypotheses. This process is as follows.

362 The evaluator will refine each flaw hypothesis for the TOE and attempt to disprove it
using the information provided by the developer or through penetration testing. During
this process, the evaluator is free to interact directly with the developer to determine if
the flaw exists, including requests to the developer for additional evidence (e.g.,
detailed design information, consultation with engineering staff); however, the CB
should be included in these discussions. Should the developer object to the information
being requested as being not compatible with the overall level of the evaluation
activity/cPP and cannot provide evidence otherwise that the flaw is disproved, the
evaluator prepares an appropriate set of materials as follows:

• the source documents used in formulating the hypothesis, and why it represents
a potential compromise against a specific TOE function;

• an argument why the flaw hypothesis could not be proven or disproved by the
evidence provided so far; and

• the type of information required to investigate the flaw hypothesis further.

363 The Certification Body (CB) will then either approve or disapprove the request for
additional information. If approved, the developer provides the requested evidence to
disprove the flaw hypothesis (or, of course, acknowledge the flaw).

364 For each hypothesis, the evaluator will note whether the flaw hypothesis has been
successfully disproved, successfully proven to have identified a flaw, or requires
further investigation. It is important to have the results documented as outlined in
Section A.3 below.

365 If the evaluator finds a flaw, the evaluator must report these flaws to the developer. All
reported flaws must be addressed as follows:

366 If the developer confirms that the flaw exists and that it is exploitable at Basic Attack
Potential, then a change is made by the developer, and the resulting resolution is agreed
by the evaluator and noted as part of the evaluation report.

367 If the developer, the evaluator, and the CB agree that the flaw is exploitable only above
Basic Attack Potential and does not require resolution for any other reason, then no
change is made and the flaw is noted as a residual vulnerability in the CB-internal report
(ETR).

368 If the developer and evaluator agree that the flaw is exploitable only above Basic Attack
Potential, but it is deemed critical to fix because of technology-specific or cPP-specific
aspects such as typical use cases or operational environments, then a change is made
by the developer, and the resulting resolution is agreed by the evaluator and noted as
part of the evaluation report.

369 Disagreements between evaluator and vendor regarding questions of the existence of a
flaw, its attack potential, or whether it should be deemed critical to fix are resolved by
the CB.

370 Any testing performed by the evaluator shall be documented in the test report as
outlined in Section A.3 below.

371 As indicated in Section A.3, Reporting, the public statement with respect to
vulnerability analysis that is performed on TOEs conformant to the cPP is constrained
to coverage of flaws associated with Types 1 and 2 (defined in Section A.1) flaw
hypotheses only. The fact that the iTC generates these candidate hypotheses indicates
these must be addressed.

A.3 Reporting

372 The evaluators shall produce two reports on the testing effort; one that is public-facing
(that is, included in the non-proprietary evaluation report, which is a subset of the
Evaluation Technical Report (ETR)), and the complete ETR that is delivered to the
overseeing CB.

373 The public-facing report contains:

374 * The flaw identifiers returned when the procedures for searching public sources were
followed according to instructions in the Supporting Document per Section A.1.1;

375 * A statement that the evaluators have examined the Type 1 flaw hypotheses specified
in this Supporting Document in section A.1.1 (i.e. the flaws listed in the previous bullet)
and the Type 2 flaw hypotheses specified in this Supporting Document by the iTC in
Section A.1.2.

376 No other information is provided in the public-facing report.

377 The internal CB report contains, in addition to the information in the public-facing
report:

• a list of all of the flaw hypotheses generated (cf. AVA_VAN.1-4);

• the evaluator penetration testing effort, outlining the testing approach,
configuration, depth and results (cf. AVA_VAN.1-9);

• all documentation used to generate the flaw hypotheses (in identifying the
documentation used in coming up with the flaw hypotheses, the evaluation team
must characterize the documentation so that a reader can determine whether it is
strictly required by this Supporting Document, and the nature of the
documentation (design information, developer engineering notebooks, etc.));

• the evaluator shall report all exploitable vulnerabilities and residual
vulnerabilities, detailing for each:

a) its source (e.g. CEM activity being undertaken when it was conceived,
known to the evaluator, read in a publication);

b) the SFR(s) not met;

c) a description;

d) whether it is exploitable in its operational environment or not (i.e.
exploitable or residual).

e) the amount of time, level of expertise, level of knowledge of the TOE, level
of opportunity and the equipment required to perform the identified
vulnerabilities (cf. AVA_VAN.1-11);

f) how each flaw hypothesis was resolved (this includes whether the original
flaw hypothesis was confirmed or disproved, and any analysis relating to
whether a residual vulnerability is exploitable by an attacker with Basic
Attack Potential) (cf. AVA_VAN1-10); and

g) in the case that actual testing was performed in the investigation (either as
part of flaw hypothesis generation using tools specified by the iTC in
Section A.1.4, or in proving/disproving a particular flaw) the steps
followed in setting up the TOE (and any required test equipment);
executing the test; post-test procedures; and the actual results (to a level of
detail that allow repetition of the test, including the following:

 identification of the potential vulnerability the TOE is being tested
for;

 instructions to connect and setup all required test equipment as
required to conduct the penetration test;

 instructions to establish all penetration test prerequisite initial
conditions;

 instructions to stimulate the TSF;
 instructions for observing the behaviour of the TSF;
 descriptions of all expected results and the necessary analysis to be

performed on the observed behaviour for comparison against
expected results;

 instructions to conclude the test and establish the necessary post-test
state for the TOE. (cf. AVA_VAN.1-6, AVA_VAN.1-8).

B. FDE Equivalency Considerations
378 Introduction

379 This appendix provides a foundation for evaluators to determine whether a vendor’s
request for equivalency of products for different OSs/platforms wishing to claim
conformance to the FDE collaborative Protection Profiles.

380 For the purpose of this evaluation, equivalency can be broken into two categories:

• Variations in models: Separate TOE models/variations may include
differences that could necessitate separate testing across each model. If there
are no variations in any of the categories listed below, the models may be
considered equivalent.

• Variations in OS/platform the product is tested (e.g., the testing
environment): The method a TOE provides functionality (or the functionality
itself) may vary depending upon the OS on which it is installed. If there are no
difference in the TOE provided functionality or in the manner in which the
TOE provides the functionality, the models may be considered equivalent.

381 Determination of equivalency for each of the above specified categories can result in
several different testing outcomes.

382 If a set of TOE are determined to be equivalent, testing may be performed on a single
variation of the TOE. However, if the TOE variations have security relevant functional
differences, each of the TOE models that exhibits either functional or structural
differences must be separately tested. Generally speaking, only the difference between
each variation of TOE must be separately tested. Other equivalent functionality, may
be tested on a representative model and not across multiple platforms.

383 If it is determined that a TOE operates the same regardless of the platform/OS it is
installed within, testing may be performed on a single OS/platform combination for all
equivalent configurations. However, if the TOE is determined to provide environment
specific functionality, testing must take place in each environment for which a
difference in functionality exists. Similar to the above scenario, only the functionality
affected by environment differences must be retested.

384 If a vendor disagrees with the evaluator’s assessment of equivalency, the validator
arbitrates between the two parties whether equivalency exists.

385 Evaluator guidance for determining equivalence

386 The following table provides a description of how an evaluator should consider each
of the factors that affect equivalency between TOE model variations and across
operating environments. Additionally, the table also identifies scenarios that will result
in additional separate testing across models/platforms.

Factor Same/Not
Same

Evaluator Guidance

Platform/Hardware
Dependencies

Independent If there are no identified platform/hardware dependencies,
the evaluator shall consider testing on multiple hardware
platforms to be equivalent.

Dependencies If there are specified differences between
platforms/hardware, the evaluator must identify if the
differences affect the cPP specified security functionality
or if they apply to non-PP specified functionality. If
functionality specified in the cPP is dependent upon
platform/hardware provided services, the TOE must be
tested on each of the different platform to be considered
validated on that particular hardware combination. In
these cases, the evaluator has the option of only re-testing
the functionality dependent upon the platform/hardware
provided functionality. If the differences only affect non-
PP specified functionality, the variations may still be
considered equivalent. For each difference the evaluator
must provide an explanation of why the difference does
or does not affect cPP specified functionality.

Software/OS
Dependencies

Independent If there are no identified software/OS dependencies, the
evaluator shall consider testing on multiple OSs to be
equivalent.

Dependencies If there are specified differences between OSs, the
evaluator must identify if the differences affect the cPP
specified security functionality or if they apply to non-PP
specified functionality. If functionality specified in the cPP
is dependent upon OS provided services, the TOE must be
tested on each of the different OSs. In these cases, the
evaluator has the option of only re-testing the functionality
dependent upon the OS provided functionality. If the
differences only affect non-PP specified functionality, the
model variations may still be considered equivalent. For
each difference the evaluator must provide an explanation
of why the difference does or does not affect cPP specified
functionality.

Differences in TOE
Software Binaries

Identical If the model binaries are identical, the model variations
shall be considered equivalent.

Different If there are differences between model software binaries, a
determination must be made if the differences affect cPP-
specified security functionality. If cPP-specified
functionality is affected, the models are not considered
equivalent and must be tested separately. The evaluator has
the option of only retesting the functionality that was
affected by the software differences. If the differences only
affect non-PP specified functionality, the models may still
be considered equivalent. For each difference the evaluator
must provide an explanation of why the difference does or
does not affect cPP specified functionality.

Factor Same/Not
Same

Evaluator Guidance

Different in
Libraries Used to
Provide TOE
Functionality

Same If there are no differences between the libraries used in
various TOE models, the model variations shall be
considered equivalent.

Different If the separate libraries are used between model variations,
a determination if the functionality provided by the library
affects cPP-specified functionality must be made. If cPP-
specified functionality is affected, the models are not
considered equivalent and must be tested separately. The
evaluator has the option of only retesting the functionality
that was affected by the differences in the included
libraries. If the different libraries only affect non-PP
specified functionality, the models may still be considered
equivalent. For each different library, the evaluator must
provide an explanation of why the different libraries do or
do not affect cPP specified functionality.

TOE Management
Interface
Differences

Consistent If there are no differences in the management interfaces
between various TOE models, the models variations shall
be considered equivalent.

Differences If the TOE provides separate interfaces based on either the
OS it is installed on or the model variation, a determination
must be made if cPP-specified functionality can be
configured by the different interfaces. If the interface
differences affect cPP-specified functionality, the
variations/OS installations are not considered equivalent
and must be separately tested. The evaluator has the option
of only retesting the functionality that can be configured by
the different interfaces (and the configuration of said
functionality). If the different management interfaces only
affect non-PP specified functionality, the models may still
be considered equivalent. For each management interface
difference, the evaluator must provide an explanation of
why the different management interfaces do or do not affect
cPP specified functionality.

TOE Functional
Differences

Identical If the functionality provided by different TOE model
variation is identical, the models variations shall be
considered equivalent.

Different If the functionality provided by different TOE model
variations differ, a determination must be made if the
functional differences affect cPP-specified functionality. If
cPP-specific functionality differs between models, the
models are not considered equivalent and must be tested
separately. In these cases, the evaluator has the option of
only retesting the functionality that differs model-to-
model. If the functional differences only affect non-cPP
specified functionality, the model variations may still be
considered equivalent. For each difference the evaluator
must provide an explanation of why the difference does or
does not affect cPP specified functionality.

387 Strategy

388 When performing the equivalency analysis, the evaluator should consider each factor
independently. Each analysis of an individual factor will result in one of two outcomes,

• For the particular factor, all variations of the TOE on all supported platforms
are equivalent. In this case, testing may be performed on a single model in a
single test environment and cover all supported models and environments.

• For the particular factor, a subset of the TOE has been identified to require
separate testing to ensure that it operates identically to all other equivalent
TOE. The analysis would identify the specific combinations of models/testing
environments that needed to be tested.

389 Complete CC testing of the TOE would encompass the totality of each individual
analysis performed for each of the identified factors.

390 Test presentation/Truth in advertising

391 In addition to determining what to test, the evaluation results and resulting validation
report, must identify the actual module and testing environment combinations that have
been tested. The analysis used to determine the testing subset may be considered
proprietary and will only optionally be publically included.

	1 Introduction
	1.1 Technology Area and Scope of Supporting Document
	1.2 Structure of the Document
	1.3 Terminology
	1.3.1 Glossary
	1.3.2 Acronyms

	2 Evaluation Activities for SFRs
	2.1 Cryptographic Support (FCS)
	2.1.1 Authorization Factor Acquisition (FCS_AFA_EXT)
	2.1.1.1 FCS_AFA_EXT.1 Authorization Factor Acquisition
	2.1.1.1.1 TSS
	2.1.1.1.2 Operational Guidance
	2.1.1.1.3 KMD
	2.1.1.1.4 Test

	2.1.1.2 FCS_AFA_EXT.2 Timing of Authorization Factor Acquisition
	2.1.1.2.1 TSS
	2.1.1.2.2 Operational Guidance
	2.1.1.2.3 KMD
	2.1.1.2.4 Test

	2.1.2 Cryptographic Key Management (FCS_CKM)
	2.1.2.1 FCS_CKM.4(a) Cryptographic Key Destruction (Power Management)
	2.1.2.1.1 TSS
	2.1.2.1.2 Operational Guidance
	2.1.2.1.3 KMD
	2.1.2.1.4 Test

	2.1.2.2 FCS_CKM.4(d) Cryptographic Key Destruction (Software TOE, 3rd Party Storage)
	2.1.2.2.1 TSS + KMD (Key Management Description may be used if necessary details describe proprietary information)
	2.1.2.2.2 Operational Guidance
	2.1.2.2.3 Test

	2.1.3 Cryptographic Key Management (FCS_CKM_EXT)
	2.1.3.1 FCS_CKM_EXT.4(a) Cryptographic Key and Key Material Destruction (Destruction Timing)
	2.1.3.1.1 TSS
	2.1.3.1.2 Operational Guidance
	2.1.3.1.3 KMD
	2.1.3.1.4 Test

	2.1.3.2 FCS_CKM_EXT.4(b) Cryptographic Key and Key Material Destruction (Power Management)
	2.1.3.2.1 TSS
	2.1.3.2.2 Operational Guidance
	2.1.3.2.3 KMD
	2.1.3.2.4 Test

	2.1.4 Key Chaining (FCS_KYC_EXT)
	2.1.4.1 FCS_KYC_EXT.1 Key Chaining (Initiator)
	2.1.4.1.1 TSS
	2.1.4.1.2 Operational Guidance
	2.1.4.1.3 KMD
	2.1.4.1.4 Test

	2.1.5 Cryptographic Operation (Salt, Nonce, and Initialization Vector Generation) (FCS_SNI_EXT)
	2.1.5.1 FCS_SNI_EXT.1 Cryptographic Operation (Salt, Nonce, and Initialization Vector Generation)
	2.1.5.1.1 TSS
	2.1.5.1.2 Operational Guidance
	2.1.5.1.3 KMD
	2.1.5.1.4 Test

	2.2 Security Management (FMT)
	2.2.1 Management of Functions in TSF (FMT_MOF)
	2.2.1.1 FMT_MOF.1 Management of Functions Behavior
	2.2.1.1.1 TSS
	2.2.1.1.2 Operational Guidance
	2.2.1.1.3 KMD
	2.2.1.1.4 Test

	2.2.2 Specification of Management Functions (FMT_SMF)
	2.2.2.1 FMT_SMF.1 Specification of Management Functions
	2.2.2.1.1 TSS
	2.2.2.1.2 Operational Guidance
	2.2.2.1.3 KMD
	2.2.2.1.4 Test

	2.2.3 Security Management Roles (FMT_SMR)
	2.2.3.1 FMT_SMR.1 Security Roles
	2.2.3.1.1 TSS
	2.2.3.1.2 Operational Guidance
	2.2.3.1.3 KMD
	2.2.3.1.4 Test

	2.3 Protection of the TSF (FPT)
	2.3.1 Key and Key Material Protection (FPT_KYP_EXT)
	2.3.1.1 FPT_KYP_EXT.1 Protection of Key and Key Material
	2.3.1.1.1 TSS
	2.3.1.1.2 Operational Guidance
	2.3.1.1.3 KMD
	2.3.1.1.4 Test

	2.3.2 Power Management (FPT_PWR_EXT)
	2.3.2.1 FPT_PWR_EXT.1 Power Saving States
	2.3.2.1.1 TSS
	2.3.2.1.2 Operational Guidance
	2.3.2.1.3 KMD
	2.3.2.1.4 Test

	2.3.2.2 FPT_PWR_EXT.2 Timing of Power Saving States
	2.3.2.2.1 TSS
	2.3.2.2.2 Operational Guidance
	2.3.2.2.3 KMD
	2.3.2.2.4 Test

	2.3.3 Trusted Update (FPT_TUD_EXT)
	2.3.3.1 FPT_TUD_EXT.1 Trusted Update
	2.3.3.1.1 TSS
	2.3.3.1.2 Operational Guidance
	2.3.3.1.3 KMD
	2.3.3.1.4 Test

	3 Evaluation Activities for Optional Requirements
	3.1 Protection of the TSF (FPT)
	3.1.1 TSF Testing (FPT_TST_EXT)
	3.1.1.1 FPT_TST_EXT.1 TSF Testing
	3.1.1.1.1 TSS
	3.1.1.1.2 Operational Guidance
	3.1.1.1.3 KMD
	3.1.1.1.4 Test

	4 Evaluation Activities for Selection-Based Requirements
	4.1 Cryptographic Support (FCS)
	4.1.1 Cryptographic Key Management (FCS_CKM)
	4.1.1.1 FCS_CKM.1(a) Cryptographic Key Generation (Asymmetric Keys)
	4.1.1.1.1 TSS
	4.1.1.1.2 Operational Guidance
	4.1.1.1.3 KMD
	4.1.1.1.4 Test

	4.1.1.2 FCS_CKM.1(b) Cryptographic Key Generation (Symmetric Keys)
	4.1.1.2.1 TSS
	4.1.1.2.2 Operational Guidance
	4.1.1.2.3 KMD
	4.1.1.2.4 Test

	4.1.2 Cryptographic Operation (FCS_COP)
	4.1.2.1 FCS_COP.1(a) Cryptographic Operation (Signature Verification)
	4.1.2.1.1 TSS
	4.1.2.1.2 Operational Guidance
	4.1.2.1.3 KMD
	4.1.2.1.4 Test

	4.1.2.2 FCS_COP.1(b) Cryptographic Operation (Hash Algorithm)
	4.1.2.2.1 TSS
	4.1.2.2.2 Operational Guidance
	4.1.2.2.3 KMD
	4.1.2.2.4 Test

	4.1.2.3 FCS_COP.1(c) Cryptographic Operation (Keyed Hash Algorithm)
	4.1.2.3.1 TSS
	4.1.2.3.2 Operational Guidance
	4.1.2.3.3 KMD
	4.1.2.3.4 Test

	4.1.2.4 FCS_COP.1(d) Cryptographic Operation (Key Wrapping)
	4.1.2.4.1 TSS
	4.1.2.4.2 Operational Guidance
	4.1.2.4.3 KMD
	4.1.2.4.4 Test

	4.1.2.5 FCS_COP.1(e) Cryptographic Operation (Key Transport)
	4.1.2.5.1 TSS
	4.1.2.5.2 Operational Guidance
	4.1.2.5.3 KMD
	4.1.2.5.4 Test

	4.1.2.6 FCS_COP.1(f) Cryptographic Operation (AES Data Encryption/Decryption)
	4.1.2.6.1 TSS
	4.1.2.6.2 Operational Guidance
	4.1.2.6.3 KMD
	4.1.2.6.4 Test

	4.1.2.7 FCS_COP.1(g) Cryptographic Operation (Key Encryption)
	4.1.2.7.1 TSS
	4.1.2.7.2 Operational Guidance
	4.1.2.7.3 KMD
	4.1.2.7.4 Test

	4.1.3 Cryptographic Key Derivation (FCS_KDF_EXT)
	4.1.3.1 FCS_KDF_EXT.1 Cryptographic Key Derivation
	4.1.3.1.1 TSS
	4.1.3.1.2 Operational Guidance
	4.1.3.1.3 KMD
	4.1.3.1.4 Test

	4.1.4 Cryptographic Password Construct and Conditioning (FCS_PCC_EXT)
	4.1.4.1 FCS_PCC_EXT.1 Cryptographic Password Construct and Conditioning
	4.1.4.1.1 TSS
	4.1.4.1.2 Operational Guidance
	4.1.4.1.3 KMD
	4.1.4.1.4 Test

	4.1.5 Random Bit Generation (FCS_RBG_EXT)
	4.1.5.1 FCS_RBG_EXT.1 Random Bit Generation
	4.1.5.1.1 TSS
	4.1.5.1.2 Operational Guidance
	4.1.5.1.3 KMD
	4.1.5.1.4 Test

	4.1.6 Submask Combining (FCS_SMC_EXT)
	4.1.6.1 FCS_SMC_EXT.1 Submask Combining
	4.1.6.1.1 TSS
	4.1.6.1.2 Operational Guidance
	4.1.6.1.3 KMD
	4.1.6.1.4 Test

	4.1.7 Validation of Cryptographic Elements (FCS_VAL_EXT)
	4.1.7.1 FCS_VAL_EXT.1 Validation
	4.1.7.1.1 TSS
	4.1.7.1.2 Operational Guidance
	4.1.7.1.3 KMD
	4.1.7.1.4 Test

	5 Evaluation Activities for SARs
	5.1 ASE: Security Target Evaluation
	5.1.1 Conformance Claims (ASE_CCL.1)

	5.2 Development (ADV)
	5.2.1 Basic Functional Specification (ADV_FSP.1)
	5.2.1.1 Evaluation Activity
	5.2.1.2 Evaluation Activity
	5.2.1.3 Evaluation Activity

	5.3 Guidance Documents (AGD)
	5.3.1 Operational User Guidance (AGD_OPE.1)
	5.3.2 Preparative Procedures (AGD_PRE.1)

	5.4 Life-cycle Support (ALC)
	5.4.1 Labelling of the TOE (ALC_CMC.1)
	5.4.2 TOE CM coverage (ALC_CMS.1)

	5.5 Tests (ATE)
	5.5.1 Independent Testing – Conformance (ATE_IND.1)

	5.6 Vulnerability Assessment (AVA)
	5.6.1 Vulnerability Survey (AVA_VAN.1)
	5.6.1.1 Evaluation Activity (Documentation):
	5.6.1.2 Evaluation Activity

	Evaluation Activity: The evaluator shall examine the interface documentation to ensure it describes the purpose and method of use for each TSFI that is identified as being security relevant.
	Evaluation Activity: The evaluator shall examine the interface documentation to ensure it describes the purpose and method of use for each TSFI that is identified as being security relevant.
	The evaluator shall perform the CEM activity as specified.
	If the iTC specifies any tools to be used in performing this analysis in section A.3.4, the following text is also included in this cell: “The calibration of test resources specified in paragraph 1418 of the CEM applies to the tools listed in Appendix A, Section A.1.4.”
	The evaluator shall perform the CEM activity as specified.
	Replace CEM work unit with activities outlined in Appendix A, Section A.1.
	Replace the CEM work unit with the activities specified in Appendix A, section A.2.
	The CEM work unit is captured in Appendix A, Section A.3; there are no substantive differences.
	The evaluator shall perform the CEM activity as specified. See Appendix A, Section A.3 for guidance related to attack potential for confirmed flaws.
	The evaluator shall perform the CEM activity as specified.
	Replace the CEM work unit with the reporting called for in Appendix A, Section A.3.
	This work unit is not applicable for Type 1 and Type 2 flaws (as defined in Appendix A, Section A.1), as inclusion in this Supporting Document by the iTC makes any confirmed vulnerabilities stemming from these flaws subject to an attacker possessing a Basic attack potential. This work unit is replaced for Type 3 and Type 4 flaws by the activities defined in Appendix A, Section A.3.
	Replace the CEM work unit with the reporting called for in Appendix A, Section A.3.
	6 Required Supplementary Information
	7 References
	A. Vulnerability Analysis
	A.1 Sources of Vulnerability Information
	A.1.1 Type 1 Hypotheses—Public-Vulnerability-based
	A.1.2 Type 2 Hypotheses—iTC-Sourced
	A.1.3 Type 3 Hypotheses—Evaluation-Team-Generated
	A.1.4 Type 4 Hypotheses—Tool-Generated
	A.2 Process for Evaluator Vulnerability Analysis
	A.3 Reporting

	B. FDE Equivalency Considerations

