
Functional Package for Transport Layer Security (TLS)

Version: 1.0

2018-12-17

National Information Assurance Partnership

1



Revision History

Version Date Comment

1.0 2018-12-17 First
publication

Contents

1 Introduction
1.1 Overview
1.2 Terms

1.2.1 Common Criteria Terms
1.2.2 Technology Terms

1.3 Format of this Document
1.4 Compliant Targets of Evaluation

2 Conformance Claims
3 Security Requirements

3.1 Security Functional Requirements
3.1.1 Cryptographic Support (FCS)

Appendix A - Optional Requirements
Appendix B - Selection-Based Requirements
Appendix C - Objective Requirements
Appendix D - References
Appendix E - Acronyms

2



1 Introduction

1.1 Overview

Transport Layer Security (TLS) and the closely-related Datagram TLS (DTLS) are cryptographic protocols designed to provide
communications security over IP networks. Several versions of the protocol are in widespread use in software that provides
functionality such as web browsing, email, instant messaging, and voice-over-IP (VoIP). Major web sites use TLS to protect
communications to and from their servers. TLS is also used to protect communications between hosts and network
infrastructure devices for administration. The underlying platform, such as an operating system, often provides the actual TLS
implementation. The primary goal of the TLS protocol is to provide confidentiality and integrity of data transmitted between two
communicating endpoints, as well as authentication of at least the server endpoint.

TLS supports many different methods for exchanging keys, encrypting data, and authenticating message integrity. These
methods are dynamically negotiated between the client and server when the TLS connection is established. As a result,
evaluating the implementation of both endpoints is typically necessary to provide assurance for the operating environment.

This "Functional Package for Transport Layer Security" (short name "TLS-PKG") defines functional requirements for the
implementation of the Transport Layer Security (TLS) and Datagram TLS (DTLS) protocols. The requirements are intended to
improve the security of products by enabling their evaluation.

1.2 Terms

1.2.1 Common Criteria Terms

Common Criteria
(CC)

Common Criteria for Information Technology Security Evaluation.

Package
(Package)

A named set of security requirements. A package is either a functional package containing only SFRs, or
an assurance package containing only SARs. Packages can be used in the construction of larger
packages, PPs, and STs.

Protection Profile
(PP)

An implementation-independent set of security requirements for a category of products.

Protection Profile
Module (PP-
Module)

An extension of the security requirements in a Protection Profile which introduces new elements to the
base PP and may also refine or interpret some of the elements in the base PP.

Security Target
(ST)

A set of implementation-dependent security requirements for a specific product.

Target of
Evaluation
(TOE)

The product under evaluation.

TOE Security
Functionality
(TSF)

The security functionality of the product under evaluation.

TOE Summary
Specification
(TSS)

A description of how a TOE satisfies the SFRs in a ST.

Security
Functional
Requirement
(SFR)

A requirement for security enforcement by the TOE.

1.2.2 Technology Terms

Transport Layer Security (TLS) Cryptographic network protocol for providing communications security over a TCP/IP

3



network

Datagram Transport Layer
Security (DTLS)

Cryptographic network protocol, based on TLS, which provides communications security
for datagram protocols

Certificate Authority (CA) Issuer of digital certificates

1.3 Format of this Document

Section 3 Security Requirements contains baseline requirements which must be implemented in the product and included in
any PP/PP-Module/ST that claims conformance to this Package. There are three other types of requirements that can be
included in a PP/PP-Module/ST claiming conformance to this Package:

Appendix A - Optional Requirements contains requirements that may optionally be included in the PP/PP-Module/ST, but
inclusion is at the discretion of the PP/PP-Module/ST author. For requirements that have selections, if the PP/PP-Module
allows the selection (or the ST selects particular selections), then there are additional requirements based on these
selections contained in this appendix that will need to be included in the PP/PP-Module/ST.
Appendix B - Selection-Based Requirements contains requirements based on selections in the requirements in Section 3
Security Requirements or the PP/PP-Module/ST: if certain selections are made, then the corresponding requirements in
that appendix must be included.
Appendix C - Objective Requirements contains requirements that will be included in the baseline requirements in future
versions of this package. Earlier adoption by vendors is encouraged. Otherwise, these are treated the same as Optional
Requirements.

1.4 Compliant Targets of Evaluation

The Target of Evaluation (TOE) in this Package is a product which acts as a TLS client or server, or both. This Package
describes the security functionality of TLS in terms of [CC].

The contents of this Package must be appropriately combined with a PP or PP-Module. When this Package is instantiated by a
PP or PP-Module, the Package must include selection-based requirements in accordance with the selections or assignments
indicated in the PP or PP-Module. These may be expanded by the the ST author.

The PP or PP-Module which instantiates this Package must typically include the following components in order to satisfy
dependencies of this Package. It is the responsibility of the PP or PP-Module author who instantiates this Package to ensure
that dependence on these components is satisfied:

Component Explanation

FCS_CKM.2 To support TLS ciphersuites that use RSA, DHE or ECDHE for key exchange, the PP or PP-Module
must include FCS_CKM.2 and specify the corresponding algorithm.

FCS_COP.1 To support TLS ciphersuites that use AES for encryption/decryption, the PP or PP-module must include
FCS_COP.1 (iterating as needed) and specify AES with corresponding key sizes and modes. To support
TLS ciphersuites that use SHA for hashing, the PP or PP-Module must include FCS_COP.1 (iterating as
needed) and specify SHA with corresponding digest sizes.

FCS_RBG_EXT.1 To support random bit generation needed for the TLS handshake, the PP or PP-Module must include
FCS_RBG_EXT.1.

FIA_X509_EXT.1 To support validation of certificates needed during TLS connection setup, the PP or PP-Module must
include FIA_X509_EXT.1.

FIA_X509_EXT.2 To support the use of X509 certificates for authentication in TLS connection setup, the PP or PP-Module
must include FIA_X509_EXT.2.

An ST must identify the applicable version of the PP or PP-Module and this Package in its conformance claims.

4



2 Conformance Claims

This Package serves to provide Protection Profiles with additional SFRs and associated Evaluation Activities specific to
TLS clients and servers.

This Package conforms to Common Criteria [CC] for Information Technology Security Evaluation, Version 3.1, Revision 5.
It is CC Part 2 extended conformant.

In accordance with CC Part 1, dependencies are not included when they are addressed by other SFRs. The evaluation
activities provide adequate proof that any dependencies are also satisfied.

5



FCS_TLS_EXT.1.1

3 Security Requirements

This chapter describes the security requirements to be fulfilled by the product. Those requirements comprise functional
components from Part 2 of [CC]. The following notations are used:

Selection (denoted by italicized text): is used to select one or more options provided by the [CC] in stating a requirement.
Assignment operation (denoted by italicized text): is used to assign a specific value to an unspecified parameter, such
as the length of a password. Showing the value in square brackets indicates assignment.
Iteration operation: are identified with a number inside parentheses (e.g. "(1)").

3.1 Security Functional Requirements

The Security Functional Requirements included in this section are derived from Part 2 of the Common Criteria for Information
Technology Security Evaluation, Version 3.1, Revision 5, with additional extended functional components.

3.1.1 Cryptographic Support (FCS)

FCS_TLS_EXT.1 TLS Protocol

The product shall implement [selection:

TLS as a client,
TLS as a server,
DTLS as a client,
DTLS as a server

].

Application Note: If TLS as a client is selected, then the ST must include the requirements
from FCS_TLSC_EXT.1. 
If TLS as a server is selected, then the ST must include the requirements from
FCS_TLSS_EXT.1. 

If DTLS as a client is selected, then the ST must include the requirements from
FCS_DTLSC_EXT.1. 
If DTLS as a server is selected, then the ST must include the requirements from
FCS_DTLSS_EXT.1.

Evaluation Activity 

Guidance
The evaluator shall ensure that the selections indicated in the ST are consistent with
selections in the dependent components.

6



Appendix A - Optional Requirements

There are currently no Optional Requirements in this Package.

7



FCS_TLSC_EXT.1.1

Appendix B - Selection-Based Requirements

As indicated in the introduction to this Package, this appendix lists requirements that are activated based on selections made in
the PP/PP-Module/ST or in other portions of this Package itself.

FCS_TLSC_EXT.1 TLS Client Protocol

This selection-based component depends upon selection in FCS_TLS_EXT.1.1.

The product shall implement TLS 1.2 (RFC 5246) and [selection: TLS 1.1 (RFC 4346), no
earlier TLS versions] as a client that supports the cipher suites [selection:

TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,
TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

] and also supports functionality for [selection:

mutual authentication,
session renegotiation,
none

].

Application Note: The ST author should select the cipher suites that are supported, and
must select at least one cipher suite. The cipher suites to be tested in the evaluated
configuration are limited by this requirement. However, this requirement does not restrict the
TOE's ability to propose additional cipher suites beyond the ones listed in this requirement in
its Client Hello message. That is, the TOE may propose any cipher suite but the evaluation
will only test cipher suites from the above list. It is necessary to limit the cipher suites that can
be used in an evaluated configuration administratively on the server in the test environment.
GCM cipher suites are preferred over CBC cipher suites, ECDHE preferred over RSA and
DHE, and SHA256 or SHA384 over SHA. 

TLS_RSA_WITH_AES_128_CBC_SHA is not required despite being mandated by RFC
5246. 

These requirements will be revisited as new TLS versions are standardized by the IETF. 

If any ECDHE or DHE cipher suites are selected, then FCS_TLSC_EXT.5 is required. 

If mutual authentication is selected, then the ST must additionally include the requirements
from FCS_TLSC_EXT.2. If the TOE implements mutual authentication, this selection must be
made. 

If session renegotiation is selected, then the ST must additionally include the requirements
from FCS_TLSC_EXT.4. If the TOE implements session renegotiation, this selection must be
made.

Evaluation Activity 

8



TSS
The evaluator shall check the description of the implementation of this protocol in the
TSS to ensure that the cipher suites supported are specified. The evaluator shall check
the TSS to ensure that the cipher suites specified include those listed for this
component.
Guidance
The evaluator shall also check the operational guidance to ensure that it contains
instructions on configuring the product so that TLS conforms to the description in the
TSS.
Tests
The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the cipher
suites specified by the requirement. This connection may be established as part of
the establishment of a higher-level protocol, e.g., as part of an EAP session. It is
sufficient to observe the successful negotiation of a cipher suite to satisfy the
intent of the test; it is not necessary to examine the characteristics of the
encrypted traffic in an attempt to discern the cipher suite being used (for example,
that the cryptographic algorithm is 128-bit AES and not 256-bit AES).
Test 2: The goal of the following test is to verify that the TOE accepts only
certificates with appropriate values in the extendedKeyUsage extension, and
implicitly that the TOE correctly parses the extendedKeyUsage extension as part
of X.509v3 server certificate validation. 

The evaluator shall attempt to establish the connection using a server with a
server certificate that contains the Server Authentication purpose in the
extendedKeyUsage extension and verify that a connection is established. The
evaluator shall repeat this test using a different, but otherwise valid and trusted,
certificate that lacks the Server Authentication purpose in the extendedKeyUsage
extension and ensure that a connection is not established. Ideally, the two
certificates should be similar in structure, the types of identifiers used, and the
chain of trust.
Test 3: The evaluator shall send a server certificate in the TLS connection that
does not match the server-selected cipher suite (for example, send a ECDSA
certificate while using the TLS_RSA_WITH_AES_128_CBC_SHA cipher suite or
send a RSA certificate while using one of the ECDSA cipher suites.) The evaluator
shall verify that the product disconnects after receiving the server’s Certificate
handshake message.
Test 4: The evaluator shall configure the server to select the
TLS_NULL_WITH_NULL_NULL cipher suite and verify that the client denies the
connection.
Test 5: The evaluator shall perform the following modifications to the traffic:

Test 5.1: Change the TLS version selected by the server in the Server Hello
to an undefined TLS version (for example 1.5 represented by the two bytes
03 06) and verify that the client rejects the connection.
Test 5.2: Change the TLS version selected by the server in the Server Hello
to the most recent unsupported TLS version (for example 1.1 represented by
the two bytes 03 02) and verify that the client rejects the connection.
Test 5.3: [conditional] If DHE or ECDHE cipher suites are supported, modify
at least one byte in the server’s nonce in the Server Hello handshake
message, and verify that the client does not complete the handshake and no
application data flows.
Test 5.4: Modify the server’s selected cipher suite in the Server Hello
handshake message to be a cipher suite not presented in the Client Hello
handshake message. The evaluator shall verify that the client does not
complete the handshake and no application data flows.
Test 5.5: [conditional] If DHE or ECDHE cipher suites are supported, modify
the signature block in the server’s Key Exchange handshake message, and
verify that the client does not complete the handshake and no application
data flows. This test does not apply to cipher suites using RSA key
exchange. If a TOE only supports RSA key exchange in conjunction with
TLS, then this test shall be omitted.

9



FCS_TLSC_EXT.1.2

Test 5.6: Modify a byte in the Server Finished handshake message, and
verify that the client does not complete the handshake and no application
data flows.
Test 5.7: Send a message consisting of random bytes from the server after
the server has issued the Change Cipher Spec message and verify that the
client does not complete the handshake and no application data flows. The
message must still have a valid 5-byte record header in order to ensure the
message will be parsed as TLS.

The product shall verify that the presented identifier matches the reference identifier
according to RFC 6125.

Application Note: The rules for verification of identity are described in Section 6 of RFC
6125. The reference identifier is established by the user (e.g. entering a URL into a web
browser or clicking a link), by configuration (e.g. configuring the name of a mail server or
authentication server), or by an application (e.g. a parameter of an API) depending on the
product service. Based on a singular reference identifier’s source domain and application
service type (e.g. HTTP, SIP, LDAP), the client establishes all reference identifiers which are
acceptable, such as a Common Name for the Subject Name field of the certificate and a
(case-insensitive) DNS name, URI name, and Service Name for the Subject Alternative
Name field. The client then compares this list of all acceptable reference identifiers to the
presented identifiers in the TLS server’s certificate. 
The preferred method for verification is the Subject Alternative Name using DNS names, URI
names, or Service Names. Verification using the Common Name for the purposes of
backwards compatibility is optional. Additionally, support for use of IP addresses in the
Subject Name or Subject Alternative name is discouraged, as against best practices, but may
be implemented. Finally, the client should avoid constructing reference identifiers using
wildcards. However, if the presented identifiers include wildcards, the client must follow the
best practices regarding matching; these best practices are captured in the evaluation
activity.

Evaluation Activity 

TSS
The evaluator shall ensure that the TSS describes the client’s method of establishing all
reference identifiers from the application-configured reference identifier, including which
types of reference identifiers are supported (e.g. Common Name, DNS Name, URI
Name, Service Name, or other application-specific Subject Alternative Names) and
whether IP addresses and wildcards are supported. The evaluator shall ensure that this
description identifies whether and the manner in which certificate pinning is supported or
used by the product. 
Guidance
The evaluator shall verify that the AGD guidance includes instructions for setting the
reference identifier to be used for the purposes of certificate validation in TLS. 
Tests
The evaluator shall configure the reference identifier according to the AGD guidance
and perform the following tests during a TLS connection:

Test 1: The evaluator shall present a server certificate that contains a CN that
does not match the reference identifier and does not contain the SAN extension.
The evaluator shall verify that the connection fails.

Note that some systems might require the presence of the SAN extension. In this
case the connection would still fail but for the reason of the missing SAN extension
instead of the mismatch of CN and reference identifier. Both reasons are
acceptable to pass Test 1.
Test 2: The evaluator shall present a server certificate that contains a CN that
matches the reference identifier, contains the SAN extension, but does not contain
an identifier in the SAN that matches the reference identifier. The evaluator shall
verify that the connection fails. The evaluator shall repeat this test for each
supported SAN type.
Test 3: [conditional] If the TOE does not mandate the presence of the SAN

10



FCS_TLSC_EXT.1.3

extension, the evaluator shall present a server certificate that contains a CN that
matches the reference identifier and does not contain the SAN extension. The
evaluator shall verify that the connection succeeds. If the TOE does mandate the
presence of the SAN extension, this Test shall be omitted.
Test 4: The evaluator shall present a server certificate that contains a CN that
does not match the reference identifier but does contain an identifier in the SAN
that matches. The evaluator shall verify that the connection succeeds.
Test 5: The evaluator shall perform the following wildcard tests with each
supported type of reference identifier. The support for wildcards is intended to be
optional. If wildcards are supported, the first, second, and third tests below shall be
executed. If wildcards are not supported, then the fourth test below shall be
executed.

Test 5.1: [conditional]: If wildcards are supported, the evaluator shall present
a server certificate containing a wildcard that is not in the left-most label of
the presented identifier (e.g. foo.*.example.com) and verify that the
connection fails.
Test 5.2: [conditional]: If wildcards are supported, the evaluator shall present
a server certificate containing a wildcard in the left-most label but not
preceding the public suffix (e.g. *.example.com). The evaluator shall
configure the reference identifier with a single left-most label (e.g.
foo.example.com) and verify that the connection succeeds. The evaluator
shall configure the reference identifier without a left-most label as in the
certificate (e.g. example.com) and verify that the connection fails. The
evaluator shall configure the reference identifier with two left-most labels
(e.g. bar.foo.example.come) and verify that the connection fails.
Test 5.3: [conditional]: If wildcards are supported, the evaluator shall present
a server certificate containing a wildcard in the left-most label immediately
preceding the public suffix (e.g. *.com). The evaluator shall configure the
reference identifier with a single left-most label (e.g. foo.com) and verify that
the connection fails. The evaluator shall configure the reference identifier with
two left-most labels (e.g. bar.foo.com) and verify that the connection fails.
Test 5.4: [conditional]: If wildcards are not supported, the evaluator shall
present a server certificate containing a wildcard in the left-most label (e.g.
*.example.com). The evaluator shall configure the reference identifier with a
single left-most label (e.g. foo.example.com) and verify that the connection
fails.

Test 6: [conditional] If URI or Service name reference identifiers are supported,
the evaluator shall configure the DNS name and the service identifier. The
evaluator shall present a server certificate containing the correct DNS name and
service identifier in the URIName or SRVName fields of the SAN and verify that
the connection succeeds. The evaluator shall repeat this test with the wrong
service identifier (but correct DNS name) and verify that the connection fails.
Test 7: [conditional] If pinned certificates are supported the evaluator shall present
a certificate that does not match the pinned certificate and verify that the
connection fails.

The product shall not establish a trusted channel if the server certificate is invalid [selection:
with no exceptions, except when override is authorized].

Application Note: Validity is determined by the identifier verification, certificate path, the
expiration date, and the revocation status in accordance with RFC 5280. Certificate validity
shall be tested in accordance with testing performed for FIA_X509_EXT.1 as defined in any PP
or PP-Module which instantiates this Package.

Evaluation Activity 

Tests
The evaluator shall demonstrate that using an invalid certificate results in the function
failing as follows, unless excepted:

Test 1: The evaluator shall demonstrate that a server using a certificate without a

11



FCS_TLSC_EXT.2.1

FCS_TLSC_EXT.4.1

FCS_TLSC_EXT.4.2

valid certification path results in an authentication failure. Using the administrative
guidance, the evaluator shall then load the trusted CA certificate(s) needed to
validate the server's certificate, and demonstrate that the connection succeeds.
The evaluator then shall delete one of the CA certificates, and show that the
connection fails.
Test 2: The evaluator shall demonstrate that a server using a certificate which has
been revoked results in an authentication failure.
Test 3: The evaluator shall demonstrate that a server using a certificate which has
passed its expiration date results in an authentication failure.
Test 4: The evaluator shall demonstrate that a server using a certificate which
does not have a valid identifier results in an authentication failure.

FCS_TLSC_EXT.2 TLS Client Support for Mutual Authentication

This selection-based component depends upon selection in FCS_TLSC_EXT.1.1.

The product shall support mutual authentication using X.509v3 certificates.

Application Note: The use of X.509v3 certificates for TLS is addressed in FIA_X509_EXT.2.1.
This requirement adds that a client must be capable of presenting a certificate to a TLS
server for TLS mutual authentication.

Evaluation Activity 

TSS
The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1
includes the use of client-side certificates for TLS mutual authentication. 
Guidance
The evaluator shall verify that the AGD guidance required per FIA_X509_EXT.2.1 includes
instructions for configuring the client-side certificates for TLS mutual authentication. 
Tests
The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a connection to a server that is not
configured for mutual authentication (i.e. does not send Server’s Certificate
Request (type 13) message). The evaluator observes negotiation of a TLS channel
and confirms that the TOE did not send Client’s Certificate message (type 11)
during handshake.
Test 2: The evaluator shall establish a connection to a server with a shared trusted
root that is configured for mutual authentication (i.e. it sends Server’s Certificate
Request (type 13) message). The evaluator observes negotiation of a TLS channel
and confirms that the TOE responds with a non-empty Client’s Certificate message
(type 11) and Certificate Verify (type 15) message.

FCS_TLSC_EXT.4 TLS Client Support for Renegotiation

This selection-based component depends upon selection in FCS_TLSC_EXT.1.1.

The product shall support secure renegotiation through use of the “renegotiation_info” TLS
extension in accordance with RFC 5746.

The product shall include (choose only one of) [selection: renegotiation_info extension,
TLS_EMPTY_RENEGOTIATION_INFO_SCSV cipher suite] in the ClientHello message.

Application Note: RFC 5746 defines an extension to TLS that binds renegotiation
handshakes to the cryptography in the original handshake. The cipher suite included in the
selection is a means for clients to be compatible with servers that don’t support the extension.
It is recommended that client implementations support both the cipher suite and the
extension.

12



FCS_TLSC_EXT.5.1

FCS_TLSS_EXT.1.1

Evaluation Activity 

Tests
The evaluator shall perform the following tests:

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the
traffic between the two TLS endpoints. The evaluator shall verify that either the
“renegotiation_info” field or the SCSV cipher suite is included in the ClientHello
message during the initial handshake.
Test 2: The evaluator shall verify the Client’s handling of ServerHello messages
received during the initial handshake that include the “renegotiation_info”
extension. The evaluator shall modify the length portion of this field in the
ServerHello message to be non-zero and verify that the client sends a failure and
terminates the connection. The evaluator shall verify that a properly formatted field
results in a successful TLS connection.
Test 3: The evaluator shall verify that ServerHello messages received during
secure renegotiation contain the “renegotiation_info” extension. The evaluator shall
modify either the “client_verify_data” or “server_verify_data” value and verify that
the client terminates the connection.

FCS_TLSC_EXT.5 TLS Client Support for Supported Groups Extension

This selection-based component depends upon selection in FCS_TLSC_EXT.1.1, FCS_DTLSC_EXT.1.1.

The product shall present the Supported Groups Extension in the Client Hello with the
supported groups [selection:

secp256r1,
secp384r1,
secp521r1,
ffdhe2048(256),
ffdhe3072(257),
ffdhe4096(258),
ffdhe6144(259),
ffdhe8192(260)

].

Application Note: If an elliptic curve or Diffie-Hellman ciphersuite is selected in
FCS_TLSC_EXT.1.1 or FCS_DTLSC_EXT.1.1, then FCS_TLSC_EXT.5 shall be included in the ST.
This requirement does not limit the elliptic curves the client may propose for authentication
and key agreement. The Supported Groups Extension was previously referred to as the
Supported Elliptic Curves Extension and is described in RFC 7919.

Evaluation Activity 

TSS
The evaluator shall verify that TSS describes the Supported Groups Extension.
Tests
The evaluator shall also perform the following test: 

Test 1: The evaluator shall configure a server to perform ECDHE key exchange
using each of the TOE’s supported curves and/or groups. The evaluator shall
verify that the TOE successfully connects to the server.

FCS_TLSS_EXT.1 TLS Server Protocol

This selection-based component depends upon selection in FCS_TLS_EXT.1.1.

The product shall implement TLS 1.2 (RFC 5246) and [selection: TLS 1.1 (RFC 4346), no
earlier TLS versions] as a server that supports the cipher suites [selection:

13



TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,
TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

] and no other cipher suites, and also supports functionality for [selection:

mutual authentication,
session renegotiation,
none

].

Application Note: The ST author should select the cipher suites that are supported, and
must select at least one cipher suite. It is necessary to limit the cipher suites that can be used
in an evaluated configuration administratively on the server in the test environment. If
administrative steps need to be taken so that the cipher suites negotiated by the
implementation are limited to those in this requirement, then the appropriate instructions need
to be contained in the guidance. GCM cipher suites are preferred over CBC cipher suites,
ECDHE preferred over RSA and DHE, and SHA256 or SHA384 over SHA. 

TLS_RSA_WITH_AES_128_CBC_SHA is not required despite being mandated by RFC
5246. 

These requirements will be revisited as new TLS versions are standardized by the IETF. 

If mutual authentication is selected, then the ST must additionally include the requirements
from FCS_TLSS_EXT.2. If the TOE implements mutual authentication, this selection must be
made. 

If session renegotiation is selected, then the ST must additionally include the requirements
from FCS_TLSS_EXT.4. If the TOE implements session renegotiation, this selection must be
made.

Evaluation Activity 

TSS
The evaluator shall check the description of the implementation of this protocol in the
TSS to ensure that the cipher suites supported are specified. The evaluator shall check
the TSS to ensure that the cipher suites specified include those listed for this
component.
Guidance
The evaluator shall also check the operational guidance to ensure that it contains
instructions on configuring the TOE so that TLS conforms to the description in the TSS.
Tests
The evaluator shall also perform the following tests:

Test 1: The evaluator shall establish a TLS connection using each of the cipher
suites specified by the requirement. This connection may be established as part of
the establishment of a higher-level protocol, e.g., as part of an EAP session. It is
sufficient to observe the successful negotiation of a cipher suite to satisfy the intent
of the test; it is not necessary to examine the characteristics of the encrypted
traffic in an attempt to discern the cipher suite being used (for example, that the
cryptographic algorithm is 128-bit AES and not 256-bit AES).

14



FCS_TLSS_EXT.1.2

FCS_TLSS_EXT.1.3

Test 2: The evaluator shall send a Client Hello to the server with a list of cipher
suites that does not contain any of the cipher suites in the server’s ST and verify
that the server denies the connection. Additionally, the evaluator shall send a
Client Hello to the server containing only the TLS_NULL_WITH_NULL_NULL
cipher suite and verify that the server denies the connection.
Test 3: If RSA key exchange is used in one of the selected ciphersuites, the
evaluator shall use a client to send a properly constructed Key Exchange message
with a modified EncryptedPreMasterSecret field during the TLS handshake. The
evaluator shall verify that the handshake is not completed successfully and no
application data flows.
Test 4: The evaluator shall perform the following modifications to the traffic:

Test 4.1: Change the TLS version proposed by the client in the Client Hello
to a non-supported TLS version (for example 1.3 represented by the two
bytes 03 04) and verify that the server rejects the connection.
Test 4.2: Modify a byte in the data of the client's Finished handshake
message, and verify that the server rejects the connection and does not send
any application data.
Test 4.3: Demonstrate that the TOE will not resume a session for which the
client failed to complete the handshake (independent of TOE support for
session resumption): Generate a Fatal Alert by sending a Finished message
from the client before the client sends a ChangeCipherSpec message, and
then send a Client Hello with the session identifier from the previous
incomplete session, and verify that the server does not resume the session.
Test 4.4: Send a message consisting of random bytes from the client after
the client has issued the ChangeCipherSpec message and verify that the
server denies the connection.

The product shall deny connections from clients requesting SSL 2.0, SSL 3.0, TLS 1.0 and
[selection: TLS 1.1, none].

Application Note: All SSL versions are denied. Any TLS version not selected in
FCS_TLSS_EXT.1.1 should be selected here.

Evaluation Activity 

TSS
The evaluator shall verify that the TSS contains a description of the denial of old SSL
and TLS versions consistent relative to selections in FCS_TLS_EXT.1.1.
Guidance
The evaluator shall verify that the AGD guidance includes any configuration necessary
to meet this requirement.
Tests

Test 1: The evaluator shall send a Client Hello requesting a connection with
version SSL 2.0 and verify that the server denies the connection. The evaluator
shall repeat this test with SSL 3.0 and TLS 1.0, and TLS 1.1 if it is selected.

The product shall perform key establishment for TLS using [selection:

RSA with size [selection: 2048 bits, 3072 bits, 4096 bits, no other sizes] ,
Diffie-Hellman parameters with size [selection: 2048 bits, 3072 bits, 4096 bits, 6144
bits, 8192 bits, no other sizes] ,
Diffie-Hellman groups [selection: ffdhe2048, ffdhe3072, ffdhe4096, ffdhe6144,
ffdhe8192, no other groups] ,
ECDHE parameters using elliptic curves [selection: secp256r1, secp384r1, secp521r1]
and no other curves ,
no other key establishment methods

]

Application Note: If the ST lists an RSA cipher suite in FCS_TLSS_EXT.1.1, the ST must
include the RSA selection in the requirement. 

15



FCS_TLSS_EXT.2.1

FCS_TLSS_EXT.2.2

If the ST lists a DHE cipher suite in FCS_TLSS_EXT.1.1, the ST must include either the Diffie-
Hellman selection for parameters of a certain size, or for particular Diffie-Hellman groups. The
selection for "Diffie-Hellman parameters" refers to the method defined by RFC 5246 (and
RFC 4346) Section 7.4.3 where the server provides Diffie-Hellman parameters to the client.
The Supported Groups extension defined in RFC 7919 identifies particular Diffie-Hellman
groups, which are listed in the following selection. Regarding this distinction, it is acceptable
to use Diffie-Hellman group 14 with TLS (there is currently no ability to negotiate group 14
using the Supported Groups extension, but it could be used with the "Diffie-Hellman
parameters" selection). As in RFC 7919, the terms "DHE" and "FFDHE" are both used to
refer to the finite-field-based Diffie-Hellman ephemeral key exchange mechanism, distinct
from elliptic-curve-based Diffie Hellman ephemeral key exchange (ECDHE). 

If the ST lists an ECDHE cipher suite in FCS_TLSS_EXT.1.1, the ST must include the selection
for ECDHE using elliptic curves in the requirement.

Evaluation Activity 

TSS
The evaluator shall verify that the TSS describes the key agreement parameters of the
server's Key Exchange message.
Guidance
The evaluator shall verify that any configuration guidance necessary to meet the
requirement must be contained in the AGD guidance.
Tests

The evaluator shall conduct the following tests. The testing can be carried out
manually with a packet analyzer or with an automated framework that similarly
captures such empirical evidence. Note that this testing can be accomplished in
conjunction with other testing activities. For each of the following tests,
determining that the size matches the expected size is sufficient.
Test 1: [conditional] If RSA-based key establishment is selected, the evaluator
shall attempt a connection using RSA-based key establishment with a supported
size. The evaluator shall verify that the size used matches that which is configured.
The evaluator shall repeat this test for each supported size of RSA-based key
establishment.
Test 2: [conditional] If finite-field (i.e. non-EC) Diffie-Hellman ciphers are selected,
the evaluator shall attempt a connection using a Diffie-Hellman key exchange with
a supported parameter size or supported group. The evaluator shall verify that the
key agreement parameters in the Key Exchange message are the ones
configured. The evaluator shall repeat this test for each supported parameter size
or group.
Test 3: [conditional] If ECDHE ciphers are selected, the evaluator shall attempt a
connection using an ECDHE ciphersuite with a supported curve. The evaluator
shall verify that the key agreement parameters in the Key Exchange message are
the ones configured. The evaluator shall repeat this test for each supported elliptic
curve.

FCS_TLSS_EXT.2 TLS Server Support for Mutual Authentication

This selection-based component depends upon selection in FCS_TLSS_EXT.1.1.

The product shall support authentication of TLS clients using X.509v3 certificates.

The product shall not establish a trusted channel if the client certificate is invalid.

Application Note: The use of X.509v3 certificates for TLS is addressed in FIA_X509_EXT.2.1
This requirement adds that this use must include support for client-side certificates for TLS
mutual authentication. Validity is determined by the certificate path, the expiration date, and
the revocation status in accordance with RFC 5280. Certificate validity shall be tested in
accordance with testing performed for FIA_X509_EXT.1.

16



FCS_TLSS_EXT.2.3

Evaluation Activity 

TSS
The evaluator shall ensure that the TSS description required per FIA_X509_EXT.2.1
includes the use of client-side certificates for TLS mutual authentication.
Guidance
The evaluator shall verify that the AGD guidance required per FIA_X509_EXT.2.1 includes
instructions for configuring the client-side certificates for TLS mutual authentication. The
evaluator shall ensure that the AGD guidance includes instructions for configuring the
server to require mutual authentication of clients using these certificates.
Tests
The evaluator shall use TLS as a function to verify that the validation rules in
FIA_X509_EXT.1.1 are adhered to and shall perform the following tests. The evaluator
shall apply the AGD guidance to configure the server to require TLS mutual
authentication of clients for the following tests, unless overridden by instructions in the
test activity:

Test 1: The evaluator shall configure the server to send a certificate request to the
client. The client shall send a certificate_list structure which has a length of zero.
The evaluator shall verify that the handshake is not finished successfully and no
application data flows.
Test 2: The evaluator shall configure the server to send a certificate request to the
client. The client shall send no client certificate message, and instead send a client
key exchange message in an attempt to continue the handshake. The evaluator
shall verify that the handshake is not finished successfully and no application data
flows.
Test 3: The evaluator shall configure the server to send a certificate request to the
client without the supported_signature_algorithm used by the client’s certificate.
The evaluator shall attempt a connection using the client certificate and verify that
the handshake is not finished successfully and no application data flows.
Test 4: The evaluator shall demonstrate that using a certificate without a valid
certification path results in the function failing. Using the administrative guidance,
the evaluator shall then load a certificate or certificates needed to validate the
certificate to be used in the function, and demonstrate that the function succeeds.
The evaluator then shall delete one of the certificates, and show that the function
fails.
Test 5: The aim of this test is to check the response of the server when it receives
a client identity certificate that is signed by an impostor CA (either Root CA or
intermediate CA). To carry out this test the evaluator shall configure the client to
send a client identity certificate with an issuer field that identifies a CA recognised
by the TOE as a trusted CA, but where the key used for the signature on the client
certificate does not in fact correspond to the CA certificate trusted by the TOE
(meaning that the client certificate is invalid because its certification path does not
in fact terminate in the claimed CA certificate). The evaluator shall verify that the
attempted connection is denied.
Test 6: The evaluator shall configure the client to send a certificate with the Client
Authentication purpose in the extendedKeyUsage field and verify that the server
accepts the attempted connection. The evaluator shall repeat this test without the
Client Authentication purpose and shall verify that the server denies the
connection. Ideally, the two certificates should be identical except for the Client
Authentication purpose.
Test 7: The evaluator shall perform the following modifications to the traffic: a)
Configure the server to require mutual authentication and then modify a byte in the
client’s certificate. The evaluator shall verify that the server rejects the connection.
b) Configure the server to require mutual authentication and then modify a byte in
the signature block of the client’s Certificate Verify handshake message. The
evaluator shall verify that the server rejects the connection.

The product shall not establish a trusted channel if the Distinguished Name (DN) or Subject
Alternative Name (SAN) contained in a certificate does not match one of the expected
identifiers for the client.

17



FCS_TLSS_EXT.4.1

FCS_TLSS_EXT.4.2

FCS_DTLSC_EXT.1.1

Application Note: The client identifier may be in the Subject field or the Subject Alternative
Name extension of the certificate. The expected identifier may either be configured, may be
compared to the domain name, IP address, username, or email address used by the client, or
may be passed to a directory server for comparison. In the latter case, the matching itself
may be performed outside the TOE.

Evaluation Activity 

TSS
If the product implements mutual authentication, the evaluator shall verify that the TSS
describes how the DN and SAN in the certificate is compared to the expected identifier.
Guidance
If the DN is not compared automatically to the domain name, IP address, username, or
email address, the evaluator shall ensure that the AGD guidance includes configuration
of the expected identifier or the directory server for the connection.
Tests

Test 1: The evaluator shall send a client certificate with an identifier that does not
match any of the expected identifiers and verify that the server denies the
connection. The matching itself might be performed outside the TOE (e.g. when
passing the certificate on to a directory server for comparison).

FCS_TLSS_EXT.4 TLS Server Support for Renegotiation

This selection-based component depends upon selection in FCS_TLSS_EXT.1.1.

The product shall support the "renegotiation_info" TLS extension in accordance with RFC
5746.

The product shall include the renegotiation_info extension in ServerHello messages.

Application Note: RFC 5746 defines an extension to TLS that binds renegotiation
handshakes to the cryptography in the original handshake.

Evaluation Activity 

Tests
The following tests require connection with a client that supports secure renegotiation
and the "renegotiation_info" extension.

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the
traffic between the two TLS endpoints. The evaluator shall verify that the
“renegotiation_info” field is included in the ServerHello message.
Test 2: The evaluator shall modify the length portion of the field in the ClientHello
message in the initial handshake to be non-zero and verify that the server sends a
failure and terminates the connection. The evaluator shall verify that a properly
formatted field results in a successful TLS connection.
Test 3: The evaluator shall modify the "client_verify_data" or "server_verify_data"
value in the ClientHello message received during secure renegotiation and verify
that the server terminates the connection.

FCS_DTLSC_EXT.1 DTLS Client Protocol

This selection-based component depends upon selection in FCS_TLS_EXT.1.1.

The product shall implement DTLS 1.2 (RFC 6347) and [selection: DTLS 1.0 (RFC 4347), no
earlier DTLS versions] as a client that supports the cipher suites [selection:

TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,
TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,

18



FCS_DTLSC_EXT.1.2

FCS_DTLSC_EXT.1.3

TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

] and also supports functionality for [selection:

mutual authentication,
none

].

Application Note: If any ECDHE or DHE cipher suites are selected, then FCS_TLSC_EXT.5 is
required. 

If mutual authentication is selected, then the ST must additionally include the requirements
from FCS_DTLSC_EXT.2. If the TOE implements mutual authentication, this selection must be
made. 

Differences between DTLS 1.2 and TLS 1.2 are outlined in RFC 6347; otherwise the
protocols are the same. All application notes listed for FCS_TLSC_EXT.1.1 that are relevant to
DTLS apply to this requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSC_EXT.1.1, but
ensuring that DTLS (and not TLS) is used in each evaluation activity. 

For tests which involve version numbers, note that in DTLS the on-the-wire
representation is the 1's complement of the corresponding textual DTLS version
numbers. This is described in Section 4.1 of RFC 6347 and RFC 4347. For example,
DTLS 1.0 is represented by the bytes 0xfe 0xff, while the undefined DTLS 1.4 would be
represented by the bytes 0xfe 0xfb.

The product shall verify that the presented identifier matches the reference identifier
according to RFC 6125.

Application Note: All application notes listed for FCS_TLSC_EXT.1.2 that are relevant to DTLS
apply to this requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSC_EXT.1.2.

The product shall not establish a trusted channel if the server certificate is invalid [selection:
with no exceptions, except when override is authorized].

Application Note: All application notes listed for FCS_TLSC_EXT.1.3 that are relevant to DTLS
apply to this requirement.

Evaluation Activity 

19



FCS_DTLSC_EXT.1.4

FCS_DTLSC_EXT.2.1

FCS_DTLSS_EXT.1.1

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSC_EXT.1.3.

The product shall [selection: terminate the DTLS session, silently discard the record] if a
message received contains an invalid MAC or if decryption fails in the case of GCM and other
AEAD ciphersuites.

Evaluation Activity 

TSS
The evaluator shall verify that the TSS describes the actions that take place if a
message received from the DTLS Server fails the MAC integrity check.
Tests
The evaluator shall establish a connection using a server. The evaluator will then modify
at least one byte in a record message, and verify that the client discards the record or
terminates the DTLS session.

FCS_DTLSC_EXT.2 DTLS Client Support for Mutual Authentication

This selection-based component depends upon selection in FCS_DTLSC_EXT.1.1.

The product shall support mutual authentication using X.509v3 certificates.

Application Note: All application notes listed for FCS_TLSC_EXT.2.1 that are relevant to DTLS
apply to this requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSC_EXT.2.1.

FCS_DTLSS_EXT.1 DTLS Server Protocol

This selection-based component depends upon selection in FCS_TLS_EXT.1.1.

The product shall implement DTLS 1.2 (RFC 6347) and [selection: DTLS 1.0 (RFC 4347), no
earlier DTLS versions] as a server that supports the ciphersuites [selection:

TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,
TLS_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 as defined in RFC 5246,
TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

] and no other cipher suites, and also supports functionality for [selection:

mutual authentication,
none

].

20



FCS_DTLSS_EXT.1.2

FCS_DTLSS_EXT.1.3

FCS_DTLSS_EXT.1.4

Application Note: If mutual authentication is selected, then the ST must additionally include
the requirements from FCS_DTLSS_EXT.2. If the TOE implements mutual authentication, this
selection must be made. 

All application notes listed for FCS_TLSS_EXT.1.1 that are relevant to DTLS apply to this
requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.1.1, but
ensuring that DTLS (and not TLS) is used in each stage of the evaluation activities. 

For tests which involve version numbers, note that in DTLS the on-the-wire
representation is the 1's complement of the corresponding textual DTLS version
numbers. This is described in Section 4.1 of RFC 6347 and RFC 4347. For example,
DTLS 1.0 is represented by the bytes 0xfe 0xff, while the undefined DTLS 1.4 would be
represented by the bytes 0xfe 0xfb.

The product shall deny connections from clients requesting [assignment: list of protocol
versions].

Application Note: Any specific DTLS version not selected in FCS_DTLSS_EXT.1.1 should be
assigned here. This version of the PP does not require the server to deny DTLS 1.0, and if
the TOE supports DTLS 1.0 then "none" can be assigned. In a future version of this PP, DTLS
1.0 will be required to be denied.

Evaluation Activity 

Tests
If any DTLS versions are assigned, then the evaluator shall perform the evaluation
activities listed for FCS_TLSS_EXT.1.2.

The product shall not proceed with a connection handshake attempt if the DTLS Client fails
validation.

Application Note: The process to validate the IP address of a DTLS client is specified in
section 4.2.1 of RFC 6347 (DTLS 1.2) and RFC 4347 (DTLS 1.0). The server validates the
DTLS client during Connection Establishment (Handshaking) and prior to sending a Server
Hello message. After receiving a ClientHello, the DTLS Server sends a HelloVerifyRequest
along with a cookie. The cookie is a signed message using a keyed hash function. The DTLS
Client then sends another ClientHello with the cookie attached. If the DTLS server
successfully verifies the signed cookie, the Client is not using a spoofed IP address.

Evaluation Activity 

TSS
The evaluator shall verify that the TSS describes how the DTLS Client IP address is
validated prior to issuing a ServerHello message.
Tests
Modify at least one byte in the cookie from the Server's HelloVerifyRequest message,
and verify that the Server rejects the Client's handshake message.

The product shall perform key establishment for DTLS using [selection:

RSA with size 2048 bits and [selection: 3072 bits, 4096 bits, no other sizes] ,
ECDHE parameters over NIST curves [selection: secp256r1, secp384r1, secp521r1]
and no other curves,
Diffie-Hellman parameters of size 2048 and [selection: 3072 bits, 4096 bits, 6144 bits,
8192 bits, no other size] ,
no other key establishment methods

21



FCS_DTLSS_EXT.1.5

FCS_DTLSS_EXT.2.1

FCS_DTLSS_EXT.2.2

FCS_DTLSS_EXT.2.3

]

Application Note: If the ST lists an RSA cipher suite in FCS_DTLSS_EXT.1.1, the ST must
include the RSA selection in the requirement. 
If the ST lists a DHE cipher suite in FCS_DTLSS_EXT.1.1, the ST must include the Diffie-
Hellman selection in the requirement. 
If the ST lists an ECDHE cipher suite in FCS_DTLSS_EXT.1.1, the ST must include the NIST
curves selection in the requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.1.3.

The product shall [selection: terminate the DTLS session, silently discard the record] if a
message received contains an invalid MAC or if decryption fails in the case of GCM and other
AEAD ciphersuites.

Evaluation Activity 

TSS
The evaluator shall verify that the TSS describes the actions that take place if a
message received from the DTLS client fails the MAC integrity check.
Tests
The evaluator shall establish a connection using a client. The evaluator will then modify
at least one byte in a record message, and verify that the server discards the record or
terminates the DTLS session.

FCS_DTLSS_EXT.2 DTLS Server Support for Mutual Authentication

This selection-based component depends upon selection in FCS_DTLSS_EXT.1.1.

The product shall support mutual authentication of DTLS clients using X.509v3 certificates.

Application Note: All application notes listed for FCS_TLSS_EXT.2.1 that are relevant to DTLS
apply to this requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.2.1.

The product shall not establish a trusted channel if the client certificate is invalid.

Application Note: All application notes listed for FCS_TLSS_EXT.2.2 that are relevant to DTLS
apply to this requirement.

Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.2.2.

The product shall not establish a trusted channel if the Distinguished Name (DN) or Subject
Alternative Name (SAN) contained in a certificate does not match one of the expected
identifiers for the client.

Application Note: All application notes listed for FCS_TLSS_EXT.2.3 that are relevant to DTLS
apply to this requirement.

22



Evaluation Activity 

Tests
The evaluator shall perform the evaluation activities listed for FCS_TLSS_EXT.2.3.

23



FCS_TLSC_EXT.3.1

FCS_TLSS_EXT.3.1

Appendix C - Objective Requirements

This appendix includes requirements that specify security functionality which also addresses threats. The requirements are not
currently mandated in the body of this Package as they describe security functionality not yet widely-available in commercial
technology. However, these requirements may be included in the ST such that the product is still conformant to this Package,
and it is expected that they be included as soon as possible.

FCS_TLSC_EXT.3 TLS Client Support for Signature Algorithms Extension

The product shall present the signature_algorithms extension in the Client Hello with the
supported_signature_algorithms value containing the following hash algorithms: [selection:
SHA256, SHA384, SHA512] and no other hash algorithms.

Application Note: This requirement limits the hashing algorithms supported for the purpose
of digital signature verification by the client and limits the server to the supported hashes for
the purpose of digital signature generation by the server. The signature_algorithms extension
is only supported by TLS 1.2.

Evaluation Activity 

TSS
The evaluator shall verify that TSS describes the signature_algorithm extension and
whether the required behavior is performed by default or may be configured.
Guidance
If the TSS indicates that the signature_algorithm extension must be configured to meet
the requirement, the evaluator shall verify that AGD guidance includes configuration of
the signature_algorithm extension. 
Tests
The evaluator shall also perform the following tests:

Test 1: The evaluator shall configure the server to send a certificate in the TLS
connection that is not supported according to the Client's HashAlgorithm
enumeration within the signature_algorithms extension (for example, send a
certificate with a SHA-1 signature). The evaluator shall verify that the product
disconnects after receiving the server's Certificate handshake message.
Test 2: [conditional] If the client supports a DHE or ECDHE cipher suite, the
evaluator shall configure the server to send a Key Exchange handshake message
including a signature not supported according to the client's HashAlgorithm
enumeration (for example, the server signed the Key Exchange parameters using
a SHA-1 signature). The evaluator shall verify that the product disconnects after
receiving the server's Key Exchange handshake message.

FCS_TLSS_EXT.3 TLS Server Support for Signature Algorithms Extension

The product shall present the HashAlgorithm enumeration in supported_signature_algorithms
in the Certificate Request with the following hash algorithms: [selection: SHA256, SHA384,
SHA512] and no other hash algorithms.

Application Note: This requirement limits the hashing algorithms supported for the purpose
of digital signature verification by the server and limits the client to the supported hashes for
the purpose of digital signature generation by the client. The supported_signature_algorithms
is only supported by TLS 1.2.

Evaluation Activity 

TSS
The evaluator shall verify that TSS describes the supported_signature_algorithms field
of the Certificate Request and whether the required behavior is performed by default or
may be configured.
Guidance
If the TSS indicates that the supported_signature_algorithms field must be configured to

24



meet the requirement, the evaluator shall verify that AGD guidance includes
configuration of the supported_signature_algorithms field.
Tests
The evaluator shall also perform the following test: 
The evaluator shall configure the server to send the signature_algorithms extension in
the Certificate Request message indicating that the hash algorithm used by the client’s
certificate is not supported. The evaluator shall attempt a connection using that client
certificate and verify that the server denies the client’s connection.

25



Appendix D - References

Identifier Title

[CC] Common Criteria for Information Technology Security Evaluation -

Part 1: Introduction and General Model, CCMB-2017-04-001, Version 3.1 Revision 5, April 2017.
Part 2: Security Functional Components, CCMB-2017-04-002, Version 3.1 Revision 5, April
2017.
Part 3: Security Assurance Components, CCMB-2017-04-003, Version 3.1 Revision 5, April
2017.

26

http://www.commoncriteriaportal.org/cc
http://www.commoncriteriaportal.org/cc
http://www.commoncriteriaportal.org/cc


Appendix E - Acronyms

Acronym Meaning

AES Advanced Encryption Standard

CA Certificate Authority

CBC Cipher Block Chaining

CN Common Name

DHE Diffie-Hellman Ephemeral

DN Distinguished Name

DNS Domain Name Server

DTLS Datagram Transport Layer Security

EAP Extensible Authentication Protocol

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

GCM Galois/Counter Mode

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

IP Internet Protocol

LDAP Lightweight Directory Access Protocol

NIST National Institute of Standards and
Technology

RFC Request for Comment (IETF)

RSA Rivest Shamir Adelman

SAN Subject Alternative Name

SCSV Signaling Cipher Suite Value

SHA Secure Hash Algorithm

SIP Session Initiation Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

27


	Functional Package for Transport Layer Security (TLS)
	Revision History
	Contents

	1 Introduction
	1.1 Overview
	1.2 Terms
	1.2.1 Common Criteria Terms
	1.2.2 Technology Terms

	1.3 Format of this Document
	1.4 Compliant Targets of Evaluation

	2 Conformance Claims
	3 Security Requirements
	3.1 Security Functional Requirements
	3.1.1 Cryptographic Support (FCS)
	FCS_TLS_EXT.1 TLS Protocol



	Appendix A - Optional Requirements
	Appendix B - Selection-Based Requirements
	FCS_TLSC_EXT.1 TLS Client Protocol
	FCS_TLSC_EXT.2 TLS Client Support for Mutual Authentication
	FCS_TLSC_EXT.4 TLS Client Support for Renegotiation
	FCS_TLSC_EXT.5 TLS Client Support for Supported Groups Extension
	FCS_TLSS_EXT.1 TLS Server Protocol
	FCS_TLSS_EXT.2 TLS Server Support for Mutual Authentication
	FCS_TLSS_EXT.4 TLS Server Support for Renegotiation
	FCS_DTLSC_EXT.1 DTLS Client Protocol
	FCS_DTLSC_EXT.2 DTLS Client Support for Mutual Authentication
	FCS_DTLSS_EXT.1 DTLS Server Protocol
	FCS_DTLSS_EXT.2 DTLS Server Support for Mutual Authentication

	Appendix C - Objective Requirements
	FCS_TLSC_EXT.3 TLS Client Support for Signature Algorithms Extension
	FCS_TLSS_EXT.3 TLS Server Support for Signature Algorithms Extension

	Appendix D - References
	Appendix E - Acronyms

