Mapping Between # collaborative Protection Profile for Full Drive Encryption— Authorization Acquisition, Version 2.0, 09-September-2016 #### and ### NIST SP 800-53 Revision 4 #### Important Caveats - **Product vs. System.** The Common Criteria is designed for the evaluation of products; the Risk Management Framework (NIST SP 800-37 Revision 1, DOD 8510.01) and associated control/control interpretations (NIST SP 800-53 Revision 4, CNSSI № 1253) are used for the assessment and authorization of mission systems. **Products cannot satisfy controls outside of the system context.** Products may support a system satisfying particular controls, but typically satisfaction also requires the implementation of operational procedures; further, given that systems are typically the product of integration of multiple products configured to meet mission requirements, an overall system assessment is required to determine if the control is satisfied in the overall system context. - **SA-4(7).** Perhaps it is needless to say, but satisfaction of any NIAP PP supports system satisfaction of SA-4(7), which is the implementation of CNSSP № 11. - **System context of supported controls.** For a conformant TOE to support these controls in the context of an information system, the selections and assignments completed in the TOE's Security Target must be congruent with those made for the supported controls. For example, the TOE's ability to require re-authentication in order to transition out of a Compliant power saving state only supports IA-11 to the extent that this behavior falls under the "organization-defined defined circumstances or situations requiring re-authentication" assigned by that control. The security control assessor must compare the TOE's functional claims to the behavior required for the system to determine the extent to which the applicable controls are supported. | Common Criteria Version 3.x SFR | | NIST SP 800-53 Revision 4
Control | | Comments and
Observations | |---------------------------------|----------------------------------|--------------------------------------|---|--| | FCS_AFA_EXT.1 | Authorization Factor Acquisition | IA-5 | Authenticator
Management | A conformant TOE will have the ability to ensure that authorization factors are sufficiently strong for use. | | | | SC-28 | Protection of
Information at
Rest | A conformant TOE will ensure the confidentiality of data at rest by requiring the presentation of at least one valid authorization | | | | | | factor in order to decrypt stored data. | |------------------|---|-------|--|--| | FCS_AFA_EXT.2 | Timing of Authorization Factor Acquisition | IA-11 | Re-
authentication | A conformant TOE will require a user to reauthenticate following any transition out of a Compliant power saving state. | | FCS_CKM.4(a) | Cryptographic Key Destruction: Power Management | SC-12 | Cryptographic
Key
Establishment
and
Management | A conformant TOE has
the ability to destroy
keys based on
organizational policy
and standards. | | FCS_CKM.4(d) | Cryptographic Key Destruction: Software TOE, 3 rd Party Storage | SC-12 | Cryptographic
Key
Establishment
and
Management | A conformant TOE has
the ability to securely
destroy cryptographic
keys. | | FCS_CKM_EXT.4(a) | Cryptographic Key and Key Material Destruction: Destruction Timing | SC-12 | Cryptographic
Key
Establishment
and
Management | A conformant TOE has
the ability to destroy
keys when appropriate
in order to conform to
organizational policy
and standards. | | FCS_CKM_EXT.4(b) | Cryptographic Key and Key Material Destruction: Power Management | SC-12 | Cryptographic
Key
Establishment
and
Management | A conformant TOE has
the ability to destroy
keys based on
organization policy and
standards. | | FCS_KYC_EXT.1 | Key Chaining
(Initiator) | SC-13 | Cryptographic
Protection | If the TSF provides the mechanism for securing keys stored in a key chain, it will implement NSA-approved and FIPS-validated cryptography in order to satisfy this function. | | FCS_SNI_EXT.1 | Cryptographic Operation (Salt, Nonce, and Initialization Vector Generation) | SC-12 | Cryptographic
Key
Establishment
and
Management | A conformant TOE's use of salts, nonces, and/or IVs as needed ensures that generated cryptographic keys | | FMT_MOF.1 | Management of
Functions
Behavior | AC-6 | Least Privilege | A conformant TOE will
enforce least privilege
by ensuring that only
authorized
administrators have the | | | | | | ability to manage power saving states. | |---------------|---------------------------------------|----------|---|--| | FMT_SMF.1 | Specification of Management Functions | CM-6 | Configuration Settings | A conformant TOE may satisfy one or more optional capabilities defined in this SFR. In general, a conformant TOE will satisfy this control to the extent that the TOE provides a method to configure its behavior in accordance with STIGs or other organizational requirements. Specific additional controls may be supported depending on the functionality claimed by the TOE; the security control assessor must review what has been selected in the Security Target and determine what additional support is provided, if any. | | | | IA-5 | Authenticator
Management | The management functionality of the TSF supports this control by providing the ability for a user to change an authorization factor. | | | | MP-6 | Media
Sanitization | The management functionality of the TSF supports this control by providing a method to sanitize an encrypted drive by forwarding requests to erase a DEK. | | | | SC-28(1) | Protection of Information at Rest: Cryptographic Protection | The management functionality of the TSF supports this control by providing a method to change the value of the DEK that is used to encrypt stored data. | | FPT_KYP_EXT.1 | Protection of Key
and Key Material | IA-5 | Authenticator
Management | A conformant TOE has the ability to protect authenticators using PKI. | | | | SC-12 | Cryptographic
Protection | A conformant TOE will
ensure that secret key
and keying material data
are not stored in
plaintext except in
specific cases where
appropriate. | |------------------------------------|-------------------------------|---------|--|---| | FPT_PWR_EXT.1 | Power Saving
States | N/A | N/A | While the TOE will perform cryptographic operations to secure data at rest when certain power state transitions occur, this SFR only pertains to the definition of the power states themselves and therefore does not address any security controls on its own. | | FPT_PWR_EXT.2 | Timing of Power Saving States | N/A | N/A | While the TOE will perform cryptographic operations to secure data at rest when certain power state transitions occur, this SFR only pertains to when power state transitions occur and therefore does not address any security controls on its own. | | FPT_TUD_EXT.1 | Trusted Update | CM-5(3) | Access Restrictions for Change: Signed Components Flaw Remediation | A conformant TOE has the ability to require a signed update. A conformant TOE has the ability to remedy implementation flaws through software | | | | SI-7(1) | Software, Firmware and Information Integrity: Integrity Checks | updates. The TOE has the ability to verify the integrity of updates to itself. | | Optional Requirement FPT_TST_EXT.1 | TSF Testing | SI-6 | Security
Function
Verification | A conformant TOE will run automatic tests to ensure correct operation of its own functionality. | | Selection-Based Req | wirements | SI-7 | Software,
Firmware, and
Information
Integrity | One of the self-tests the TOE may perform is an integrity test of its own software and/or firmware. | |---------------------|---|-------------------|--|---| | FCS_CKM.1(a) | Cryptographic Key Generation: Asymmetric Keys | SC-12
SC-12(3) | Cryptographic Key Establishment and Management Cryptographic Key Establishment and Management: Asymmetric Keys | A conformant TOE provides a key generation function in support of the key lifecycle process. The TOE will implement the key generation function using asymmetric keys. | | FCS_CKM.1(b) | Cryptographic Key Generation: Symmetric Keys | SC-12(2) | Cryptographic Key Establishment and Management Cryptographic Key Establishment and Management: Symmetric Keys | A conformant TOE provides a key generation function in support of the key lifecycle process. The TOE will implement the key generation function using symmetric keys. | | FCS_COP.1(a) | Cryptographic Operation: Signature Verification | SC-13 | Cryptographic Protection | A conformant TOE has
the ability to perform
signature verification
using NSA-approved
and FIPS-validated
algorithms. | | FCS_COP.1(b) | Cryptographic Operation: Hash Algorithm | SC-13 | Cryptographic
Protection | A conformant TOE has
the ability to perform
hashing using NSA-
approved and FIPS-
validated algorithms. | | FCS_COP.1(c) | Cryptographic Operation: Message Authentication | SC-13 | Cryptographic
Protection | A conformant TOE has
the ability to perform
keyed-hash message
authentication using
NSA-approved and
FIPS-validated
algorithms. | | FCS_COP.1(d) | Cryptographic | SC-13 | Cryptographic | A conformant TOE has | |---------------|-----------------------|---------|--------------------|----------------------------| | 1 C5_CO1.1(u) | Operation: Key | BC-13 | Protection | the ability to perform | | | Wrapping Key | | Trotection | key wrapping using | | | wrapping | | | NSA-approved and | | | | | | FIPS-validated | | | | | | algorithms. | | ECC. COD 1(1) | Curunta amambia | SC-13 | Commission | <u> </u> | | FCS_COP.1(e) | <u>Cryptographic</u> | SC-13 | Cryptographic | A conformant TOE has | | | Operation: Key | | Protection | the ability to perform | | | Transport | | | key transport using | | | | | | NSA-approved and | | | | | | FIPS-validated | | 777 777 | | 0.0.10 | | algorithms. | | FCS_COP.1(f) | Cryptographic | SC-13 | Cryptographic | A conformant TOE has | | | Operation: AES | | Protection | the ability to perform | | | Data | | | AES encryption and | | | Encryption/Decry | | | decryption using NSA- | | | ption | | | approved and FIPS- | | | | | | validated algorithms. | | FCS_COP.1(g) | Cryptographic | SC-13 | Cryptographic | A conformant TOE has | | | Operation: Key | | Protection | the ability to perform | | | Encryption | | | key encryption using | | | | | | NSA-approved and | | | | | | FIPS-validated | | | | | | algorithms. | | FCS_KDF_EXT.1 | Cryptographic | SC-12 | Cryptographic | A conformant TOE has | | | Key Derivation | | Key | the ability to derive keys | | | | | Establishment | in support of the key | | | | | and | lifecycle process. | | | | | Management | | | FCS_PCC_EXT.1 | Cryptographic | IA-5(1) | Authenticator | A compliant TOE has | | | Password | | Management: | the ability to condition | | | Construct and | | Password-Based | stored passwords, which | | | Conditioning | | Authentication | satisfies part (c) of this | | | | | | control. | | | | SC-13 | Cryptographic | A conformant TOE has | | | | | Protection | the ability to perform | | | | | | password-based key | | | | | | derivation based on | | | | | | FIPS and NSA- | | | | | | approved standards. | | FCS_RBG_EXT.1 | Cryptographic | SC-12 | Cryptographic | A conformant TOE has | | | Operation | | Key | the ability to perform | | | (Random Bit | | Establishment | random bit generation | | | Generation) | | and | based on FIPS and | | | | | Management | NSA-approved | | | | | | standards. | | FCS_SMC_EXT.1 | Submask | SC-12 | Cryptographic | A conformant TOE has | | | Combining | | Key | the ability to perform | | | | | Establishment | submask combining in | | EGG MAL ENT 1 | X 7 1: 1 4: | A.C. 2 | and
Management | support of key generation functions. | |---------------|--------------------|----------|---|--| | FCS_VAL_EXT.1 | <u>Validation</u> | AC-3 | Access
Enforcement | A conformant TOE will ensure that encrypted data at rest is not decrypted unless a valid authorization factor is provided. | | | | SC-28 | Protection of
Information at
Rest | A conformant TOE will
ensure that information
at rest is protected by
requiring a valid
authorization factor in
order to provide access
to it. | | | | SC-28(1) | Protection of Information at Rest: Cryptographic Protection | The authorization factor used to access protected information at rest is validated using a cryptographic method. |