
U.S. Government Protection Profile for
 Separation Kernels in Environments

Requiring High Robustness
Version 1.03

IInnffoorrmmaattiioonn AAssssuurraannccee DDiirreeccttoorraattee

29 June 2007

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

This page intentionally left blank.

1

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Foreword

1 This publication, “U.S. Government Protection Profile for Separation Kernels in Environments
Requiring High Robustness”, is issued by the Information Assurance Directorate as part of its
program to promulgate security standards for information systems. This protection profile is
based on the “Common Criteria for Information Technology Security Evaluations, Version 2.3.”
[1]

2 Comments on this document should be directed to: ppcomments@iatf.net. The comments should
include the title of the document, the page, the section number, and paragraph number, detailed
comment and recommendations.

2

mailto:ppcomments@iatf.net

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table of Contents

1. Introduction.. 10

1.1 Identification .. 10

1.2 Overview... 10

1.3 Mutual Recognition of Common Criteria Certificates... 11

1.4 Conventions.. 11

1.5 Glossary of Terms.. 15

1.6 Document Organization .. 23

2. Target of Evaluation (TOE) Description .. 25

2.1 Product Type.. 25

2.2 General TOE Functionality .. 27

2.3 TOE Concepts .. 28
2.3.1 Principle of Least Privilege..30
2.3.2 Partitions and the Partitioned Information Flow Policy (PIFP) ...30
2.3.3 Partitions and Subject Address Spaces ..37
2.3.4 TOE Configuration Changes..38

2.4 Modes, States, and Trusted Recovery.. 40

2.5 Trusted Delivery .. 42

2.6 Platform Considerations ... 43
2.6.1 Platform Components ..43
2.6.2 Platform Interfaces...44

2.7 Evaluation Considerations.. 45
2.7.1 Security Management ..45
2.7.2 TOE Component Development Diversity..46

2.8 Use of High Robustness... 47

3. TOE Security Environment ... 48

3.1 Threats.. 48

3.2 Security Policy ... 49

3

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

3.3 Security Usage Assumptions... 50

4. Security Objectives ... 52

4.1 TOE Security Objectives... 52

4.2 Environment Security Objectives .. 55

5. TOE Security Functional Requirements... 57

5.1 Security Audit (FAU) .. 57
5.1.1 Security Audit Automatic Response (FAU_ARP)...57
5.1.2 Security Audit Data Generation (FAU_GEN) ...58
5.1.3 Security Audit Review (FAU_SAR) ...61
5.1.4 Security Audit Event Selection (FAU_SEL) ...62

5.2 User Data Protection (FDP).. 62
5.2.1 Information Flow Control Policy (FDP_IFC)..62
5.2.2 Information Flow Control Functions (FDP_IFF)...63
5.2.3 Residual Information Protection (FDP_RIP)...64

5.3 Identification and Authentication (FIA).. 65
5.3.1 User Attribute Definition (FIA_ATD)...65
5.3.2 User-Subject Binding (FIA_USB)...66

5.4 Security Management (FMT) ... 67
5.4.1 Explicit: Management of Configuration Data (FMT_MCD_EXP) ...68
5.4.2 Management of Functions in TSF (FMT_MOF) ...68
5.4.3 Management of Security Attributes (FMT_MSA)...69
5.4.4 Management of TSF Data (FMT_MTD) ...70
5.4.5 Specification of Management Functions (FMT_SMF)..70

5.5 Protection of the TSF (FPT) ... 71
5.5.1 Underlying Abstract Machine Test (FPT_AMT)...71
5.5.2 Explicit: Configuration Change (FPT_CFG_EXP) ..71
5.5.3 Explicit: Establishment of Secure State (FPT_ESS_EXP) ...73
5.5.4 Fail Secure (FPT_FLS)..73
5.5.5 Explicit: TOE Halt (FPT_HLT_EXP) ...74
5.5.6 Explicit: TOE Maintenance (FPT_MTN_EXP)..74
5.5.7 Explicit: Principle of Least Privilege (FPT_PLP_EXP) ..74
5.5.8 Explicit: Trusted Recovery (FPT_RCV_EXP) ..75

4

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.5.9 Explicit: TOE Restart (FPT_RST_EXP) ..76
5.5.10 Reference Mediation (FPT_RVM) ...76
5.5.11 Domain Separation (FPT_SEP) ..76
5.5.12 Time Stamps (FPT_STM)...77
5.5.13 Explicit: TSF Self Test (FPT_TST_EXP)...77

5.6 Resource Utilization (FRU)... 78
5.6.1 Resource Allocation (FRU_RSA)..78
5.6.2 Explicit: Predictable Resource Utilization by the TSF (FRU_PRU_EXP.1).......................................79

End Notes .. 79

6. TOE Security Assurance Requirements.. 83

6.1 Configuration Management (ACM) .. 85
6.1.1 CM Automation (ACM_AUT) ..85
6.1.2 CM Capabilities (ACM_CAP)...85
6.1.3 CM Scope (ACM_SCP)...87

6.2 Delivery and Operation (ADO) .. 87
6.2.1 Delivery (ADO_DEL) ...87
6.2.2 Installation, Generation and Start-Up (ADO_IGS)..89

6.3 Development (ADV) .. 90
6.3.1 Architectural Design with Domain Separation and Non-Bypassability (ADV_ARC)90
6.3.2 Configuration Tool Design (ADV_CTD) ..91
6.3.3 Functional Specification (ADV_FSP) ...92
6.3.4 High-Level Design (ADV_HLD) ..92
6.3.5 Implementation Representation (ADV_IMP)..93
6.3.6 Trusted Initialization (ADV_INI) ..94
6.3.7 TSF Internals (ADV_INT)...97
6.3.8 Low-level Design (ADV_LLD)...99
6.3.9 Load Tool Design (ADV_LTD) ..100
6.3.10 Representation Correspondence (ADV_RCR)..101
6.3.11 Security Policy Modeling (ADV_SPM) ...101

6.4 Guidance Documents (AGD) .. 102
6.4.1 Administrator Guidance (AGD_ADM) ...102
6.4.2 User Guidance (AGD_USR)..104

5

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.5 Life Cycle Support (ALC)... 104
6.5.1 Development Security (ALC_DVS) ..104
6.5.2 Flaw Remediation (ALC_FLR) ...105
6.5.3 Life Cycle Definition (ALC_LCD) ...106
6.5.4 Tools and Techniques (ALC_TAT)...107

6.6 Ratings Maintenance (AMA).. 107
6.6.1 Assurance Maintenance Plan (AMA_AMP)..107

6.7 Platform Assurance (APT) ... 108
6.7.1 Platform Definition (APT_PDF)..109
6.7.2 Platform Specification (APT_PSP)..110
6.7.3 Platform Conformance Testing (APT_PCT) ...111
6.7.4 Platform Security Testing (APT_PST) ..111
6.7.5 Platform Vulnerability Assessment (APT_PVA) ..112

6.8 Testing (ATE)... 113
6.8.1 Coverage (ATE_COV) ..113
6.8.2 Depth (ATE_DPT)...113
6.8.3 Functional Tests (ATE_FUN)..113
6.8.4 Independent Testing (ATE_IND) ..114

6.9 Vulnerability Assessment (AVA) ... 114
6.9.1 Covert Channel Analysis (AVA_CCA)...114
6.9.2 Misuse (AVA_MSU)...115
6.9.3 Strength of TOE Security Functions (AVA_SOF) ..116
6.9.4 Vulnerability Analysis (AVA_VLA)...116

End Notes .. 117

7. Rationale... 119

7.1 Security Objectives derived from Threats .. 119

7.2 Objectives derived from Security Policies... 128

7.3 Objectives derived from Assumptions ... 130

7.4 Requirements Rationale.. 133

7.5 TOE Environment Requirements Rationale... 150

7.6 Explicit Requirements Rationale ... 151

6

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

7.6.1 Explicit TOE Functional Requirements...151
7.6.2 Explicit TOE Assurance Requirements ...157

7.7 Rationale for Strength of Function .. 166

7.8 Rationale for Non-Applicable Dependencies... 166

7.9 Rationale for Assurance Rating ... 168

8. References .. 169

Appendix A - Acronyms ... 170

Appendix B - Cryptographic Standards, Policies, and Other Publications 171

Appendix C – Rationale for Two-Level Policy.. 172

Appendix D – Rationale for Secure State ... 174

Appendix E – TSF Data Description... 175

Appendix F – Example TOE Scenario.. 176

Appendix G – Rationale for Class APT Platform Assurance... 178

1. Rationale for Class APT.. 178

2. APT_PDF_EXP — Platform Definition ... 178

3. APT_PSP_EXP — Platform Specification .. 179

4. APT_PCT_EXP — Platform Conformance Testing .. 179

5. APT_PST_EXP — Platform Security Testing .. 180

6. APT_PVA_EXP — Platform Vulnerability Assessment.. 181

7

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

List of Figures

Figure 2-1. Allocation of TOE Components .. 26
Figure 2-2. Example Configuration Data Transformation.. 27
Figure 2-3. Allocation of TOE Resources.. 29
Figure 2-4. TOE Configuration Change.. 39
Figure 2-5. TOE Transition Diagram.. 42
Figure 2-6. Trusted Delivery Scenario .. 43
Figure 2-7. Platform Components and Their Relationships.. 45
Figure F-1. Example TOE Scenario .. 177

8

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

List of Tables

Table 1.1. Functional Requirements Operation Conventions _________________________________ 13
Table 2-1. Access Matrix Representation for Partition Abstraction ____________________________ 31
Table 2-2. Reference Access Matrix Representation for Least Privilege Abstraction_______________ 34
Table 2-2a. Example of TOE Implementing Explicit DENY SA Rule for Least Privilege Abstraction
___ 34

Table 2-2b. Example of TOE Implementing Explicit ALLOW PA Rule with Don’t-Care SA Rule for Least
Privilege Abstraction __ 35
Table 2-2c. Example of TOE Implementing Explicit ALLOW SA Rule with Implicit DENY PA Rule for
Least Privilege Abstraction__ 35
Table 2-2d. Example of TOE Implementing Default DENY Rule with Don’t Care SA Rule for Least
Privilege Abstraction __ 36
Table 2-2e. Example of TOE Implementing SA Over-rides PA Rules for Least Privilege Abstraction__ 36
Table 2-3. Partition Address Spaces and Subject Bindings___________________________________ 37
Table 2-4. Partition Flow Table ___ 37
Table 2-5. Subject-resource Flow Table ___ 38
Table 2-6. Possible Mode/State Combination ___ 41
Table 5.1. Explicitly Stated Functional Requirements_______________________________________ 57
Table 5.2. Auditable Events ___ 59
Table 6.1. Explicit Assurance Requirements __ 83
Table 6.2. SKPP High Robustness Assurance Requirements Relative to EAL6 ___________________ 84
Table 7.1. Mapping of Security Objectives to Threats______________________________________ 119
Table 7.2. Mapping of Security Objectives to Security Policies ______________________________ 128
Table 7.3. Mapping of Security Objectives to Assumptions__________________________________ 131
Table 7.4. Mapping of Security Requirements to Objective__________________________________ 133
Table 7.5. Mapping of Security Requirements for TOE Environment to Objectives _______________ 150
Table 7.6. Rationale for Explicit TOE Functional Requirements _____________________________ 151
Table 7.7. Rationale for Explicit TOE Assurance Requirements______________________________ 157
Table 7.8. Rationale for Non-Applicable Component Dependencies __________________________ 168

9

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

1. Introduction
3 This section contains overview information necessary to allow a Protection Profile (PP) to be

registered through a Protection Profile Registry. The PP identification provides the labeling and
descriptive information necessary to identify, catalogue, register, and cross-reference a PP. The
PP overview summarizes the profile in narrative form and provides sufficient information for a
potential user to determine whether the PP is of interest. The overview can also be used as a
stand-alone abstract for PP catalogues and registers. The “Conventions” section provides the
notation, formatting, and conventions used in this protection profile. The “Glossary of Terms”
section gives a basic definition of terms, which are specific to this PP. The “Document
Organization” section briefly explains how this document is organized.

1.1 Identification
4 Title: U.S. Government Protection Profile for Separation Kernels in Environments Requiring

High Robustness Version 1.03.

5 Registration: Information Assurance Directorate

6 Keywords: separation kernel, high robustness, data isolation, information flow control, partition,
cryptography, commercial-off-the-shelf (COTS).

1.2 Overview
7 This “U.S. Government Protection Profile for Separation Kernels in Environments Requiring

High Robustness” (SKPP) specifies the security functional and assurance requirements for a
class of separation kernels [10]. Unlike those traditional security kernels which perform all
trusted functions for a secure operating system, a separation kernel’s primary security function is
to partition (viz. separate) the subjects and resources of a system into security policy-equivalence
classes, and to enforce the rules for authorized information flows between and within partitions.

8 Products that conform to this protection profile support information flow control, resource
isolation, trusted initialization, trusted delivery, trusted recovery and audit capabilities. [6] The
isolation and information flow policies are defined by the separation kernel’s configuration data.
A conformant product also includes the support tools and procedures used to accurately generate
and securely distribute that configuration data. Specific assurance requirements are allocated to
those support tools and procedures.

9 A separation kernel evaluated against this PP provides a highly robust foundation for system
services and applications in mission-critical embedded systems, and a high degree of assurance
for the enforcement of related security policies. Such policies include those for the management
of classified and other high-valued information, whose confidentiality, integrity or releasability
must be protected. For example, SKPP separation mechanisms, when integrated within a high
assurance security architecture, are appropriate to support critical security policies for the
Department of Defense (DoD), Intelligence Community, the Department of Homeland Security,
Federal Aviation Administration, and industrial sectors such as finance and manufacturing.

10

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

10 The claim that products conforming to this protection profile are candidates for use in National
Security Systems1 derives from its basis in DoD and National Information Assurance (IA)
guidance and policies. However, conformance to this protection profile, by itself, does not offer
sufficient confidence that national security information is appropriately protected in the context
of a larger system in which the conformant product is integrated. Designers of such systems must
apply appropriate systems security engineering principles and techniques to afford acceptable
protection for national security information. In particular, it is the responsibility of the system
designer and authorized administrator to define support for a coherent application-level security
policy in the separation kernel’s configuration data, as well as to ensure that the configuration
data itself is coherent and self-consistent. It is only with well-formed configuration data that the
separation kernel can be expected to enforce mission-critical security policies. Requirements for
coherent configuration data are indicated in the environmental objectives
(OE.TRUSTED_FLOWS). The judgment as to whether a given instantiation of configuration
data is well formed with respect to a particular application-level security policy is beyond the
scope of this protection profile, but must be determined before secure deployment of an SKPP-
based product.

1.3 Mutual Recognition of Common Criteria
Certificates

11 The assurance requirements contained in this PP reflect techniques, activities, and evidence,
appropriate for the establishment of trustworthiness in a compliant TOE for application in U.S.
Government high robustness environments. The assurance requirements are comprised of both
CC-defined assurance components from EAL6 and EAL7 and explicitly stated assurance
components which are either new (i.e., not contained in the CC) or modifications of existing CC
assurance components. Hence, this PP makes no EAL claim.

12 COTS separation kernels meeting the requirements of this profile provide a high level of
robustness. Under the “Arrangement on the Mutual Recognition of Common Criteria
Certificates in the field of Information Technology Security” document, only CC requirements at
or below EAL4 are mutually recognized. Because this profile contains assurance components
that exceed EAL 4, the US will recognize only certificates issued by the US evaluation scheme
to meet this profile. Other national schemes are likewise under no obligation to recognize US
certificates with assurance components exceeding EAL4.

1.4 Conventions
13 The notation, formatting, and conventions used in this protection profile are consistent with

version 2.3 of the Common Criteria for Information Technology Security Evaluation. Font style
and clarifying information conventions were developed to aid the reader. Italicized words are

1 National Security Systems are systems that contain classified information or involve intelligence activities, involve
cryptologic activities related to national security, involve command and control of military forces, involve
equipment that is an integral part of a weapon or weapon system, or involve equipment that is critical to the direct
fulfillment of military or intelligence missions.

11

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

defined in the glossary.

14 The CC permits four functional component operations: assignment, iteration, refinement, and
selection to be performed on functional requirements. These operations are defined in Common
Criteria, Part 1, Section 6.4.1.3.2 as:
- assignment: allows the specification of an identified parameter;
- refinement: allows the addition of details or the narrowing of requirements;
- selection: allows the specification of one or more elements from a list; and
- iteration: allows a component to be instantiated with varying context and/or operations.

15 Assignments or selections occurring in CC components left to be specified by the developer in
subsequent security target documentation are italicized and identified between brackets (“[]”).
In addition, when an assignment or selection has been left to the discretion of the developer, the
text “assignment:” or “selection:” is indicated within the brackets. Assignments or selection
created by the PP author (for the developer to complete) are bold, italicized, and between
brackets (“[]”). CC selections completed by the PP author are underlined and CC assignments
completed by the PP author are bold.

16 Refinements are identified with “Refinement:” right after the short name. They permit the
addition of extra detail when the component is used. The underlying notion of a refinement is
that of narrowing. There are two types of narrowing possible: narrowing of implementation and
narrowing of scope [1]. Additions to the CC text are specified in bold. Deletions of the CC text
are identified in the “End Notes” with a bold number after the element (“8”).

17 Iterations are identified with a number inside parentheses (“(#)”). These follow the short family
name and allow components to be used more than once with varying operations.

18 Explicit Requirements are used when the Common Criteria does not offer suitable requirements
to meet the PP needs. The convention for explicit requirements is the same as that used in the
CC. To ensure these requirements are explicitly identified, the ending “_EXP” is appended to the
newly created short name.

19 Application Notes are used to provide the reader with additional requirement understanding or to
clarify the author’s intent. These are italicized and usually appear following the element needing
clarification.

20 Table 1.1 provides examples of the conventions (explained in the above paragraphs) for the
permitted operations. The examples in Table 1.1 are not from this PP.

12

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table 1.1. Functional Requirements Operation Conventions

Convention Purpose Operation

Bold The purpose of bolded text is used to alert the reader that
additional text has been added to the CC. This could be an
assignment that was completed by the PP author or a refinement
to the CC statement.
Examples:

FDP_IFC.2.1 The TSF shall enforce Information
Flow Control policy on subjects and all
resources and on all operations that cause
information to flow to and from subjects
covered by the SFP.

FAU_GEN.1.1 Refinement: The TSF shall be able to
generate audit data for the following auditable
events:

(Completed)
Assignment

or

Refinement

Italics The purpose of italicized text is to inform the reader of an
assignment or selection operation to be completed by the
developer or ST author. It has been left as it appears in the CC
requirement statement.
Examples:

FAU_ARP.1.1 The TSF shall take [assignment: list
of least disruptive actions] upon detection of a
potential security violation.

FDP_RIP.2.1 The TSF shall ensure that any previous
information content of a resource is made
unavailable upon the [selection: allocation of the
resource to, deallocation of the resource from]
all exported resources.

Assignment
(to be completed
by developer or

ST author)

or

Selection
(to be completed
by developer or

ST author)

Underline The purpose of underlined text is to inform the reader that a
choice was made from a list provided by the CC selection
operation statement.
Example:

FAU_SEL.1.1 The TSF shall be able to include or
exclude auditable events from the set of audited
events based on the following attributes:

a) subject identity,
b) event type,
c) success of auditable security events, and
d) failure of auditable security events.

Selection
(completed by

PP author)

13

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Convention Purpose Operation

Parentheses
(Iteration #)

The purpose of using parentheses and an iteration number is to
inform the reader that the author has selected a new field of
assignments or selections with the same requirement and that the
requirement will be used multiple times. Iterations are
performed at the component level. The component behavior
name includes information specific to the iteration between
parentheses.
Example:

5.4.1.1 Explicit: Management of TSF Data (for
Configuration Data) (FMT_MTD_EXP.1(1))

FMT_MTD_EXP.1.1(1) The TSF shall restrict the
ability to select and activate the TSF policy
configuration data to authorized subjects.

5.4.1.1 Explicit: Management of TSF Data (for General
TSF Data) (FMT_MTD_EXP.1(2))

FMT_MTD_EXP.1.1(2) The TSF shall prevent
modification of TSF policy configuration data.

Explicit: (_EXP) The purpose of using Explicit: before the family or component
behavior name is to alert the reader and to explicitly identify a
newly created component. To ensure these requirements are
explicitly identified, the “_EXP” is appended to the newly
created short name and the component and element names are
bolded.
Example:

5.4.1.1 Explicit: Management of Security Functions
Behavior (FMT_MOF_EXP.1)

FMT_MOF_EXP.1.1 The TSF shall restrict the ability
to enable and disable audit generation to the
configuration data.

Explicit
Requirement

14

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Convention Purpose Operation

Endnotes The purpose of endnotes is to alert the reader that the author has
deleted Common Criteria text. An endnote number is inserted at
the end of the requirement, and the endnote is recorded on the
last page of the section. The endnote statement first states that a
deletion was performed and then provides the rationale.
Following is the family behavior or requirement in its original
and modified form. A strikethrough is used to identify deleted
text and bold for added text. A text deletion rationale is
provided. Examples:
Text as shown:

FAU_SAA.1.2 Refinement: The TSF shall monitor
the accumulation or combination of the
following events known to indicate a potential
security violation: [assignment: subset of
defined auditable events].1

Endnote statement:
 A deletion of CC text was performed in FAU_SAA.1.2. Rationale:

The words “enforce the following rules for monitoring audited
events: a)” were deleted for clarity and flow of the requirement.
Additionally the assignment was moved from the middle of the
requirement to the end for clarity and flow of the requirement.
FAU_SAA.1.2 Refinement: The TSF shall enforce the following

rules for monitoring audited events: a) monitor the
accumulation or combination of [assignment: subset of
defined auditable events] the following events known to
indicate a potential security violation: [assignment: subset of
defined auditable events].

Refinement

1.5 Glossary of Terms
21 This profile includes terms from the Common Criteria [1] by reference. Other terms are

described in this section to aid in the understanding and application of the requirements.

Administrator,
authorized

Any person authorized to configure, install, integrate, or maintain the
Target of Evaluation (TOE) or its data. An authorized administrator is
one of several possible trusted individuals: see trusted individual.

Assurance baseline The collection of all the evaluation evidence and evaluation materials at
the time of the TOE evaluation [8].

15

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Assurance maintenance
plan

The plan that defines the assurance maintenance process for the Target
of Maintenance (TOM) and outlines the technical approach to be taken
to maintain the assurance gained during the evaluation process [8].

Configuration change

– Activation

– Constrained

– Dynamic

– Offline/Static

– Selective

– Total

– Unconstrained

Next configuration

A configuration change modifies the TOE configuration data, thereby
changing the operational configuration of the TOE. For example, the
Partitioned Information Flow Policy could be modified.

A configuration change involves two abstract actions: the first defines
what the next configuration is going to be, and the second activates the
change. The actual activation can occur offline, i.e., a static
configuration change, or during an execution session, i.e., a dynamic
configuration change.

Replacing all configuration data with data from a configuration vector is
called a total configuration change. Modification of individual elements
of configuration data is called a selective configuration change.
Selective changes can be constrained by the TOE to a subset of the
configuration data, or can be unconstrained.

Static configuration changes are manifested by the initialization
function. Dynamic configuration changes can occur via the initialization
function (i.e., through a restart), or through a reconfiguration function.

16

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Configuration data

Configuration vector

 TSF internal –

Configuration vector
set

 TSF internal –

Configuration data is a set of values in the TOE Security Functions
(TSF) that defines the initial secure state and the operational
configuration of the TOE. The trusted initialization function transforms
a configuration vector into the configuration data. The TSF relies on the
configuration data to maintain secure state during runtime. The
configuration data is a subset of TSF data, and includes, but is not
limited to, the following descriptions:

• assignment (binding) of subjects and exported resources
(including portions of addressable memory) to partitions

• Partitioned Information Flow Policy

• processor time and memory allocation quotas

• audit configuration parameters

• clock parameters (e.g., time zone, granularity)

• execution periods for self-test

A Configuration vector is a set of values that is suitable for use by the
initialization function to create TSF configuration data. The
Configuration vector set (CVS) is a collection of multiple configuration
vectors. The configuration vector set is imported to the TSF by the
initialization function. An imported vector is called a TSF internal
vector. An imported vector set is called a TSF internal vector set. There
must be at least one TSF internal vector defined at all times. The
configuration vector set is used by the TSF to support configuration
changes. The configuration vector set must be protected from
modification to ensure the integrity of the TOE configuration.

Configuration function The procedures and automated mechanisms employed to generate the
TSF configuration vectors and corresponding integrity seals. The output
of the configuration function can take different forms, for example:
placement of the implementation or configuration information onto
suitable media (e.g., CD, ROM or flash memory). The configuration
function may be combined with the load function if the configuration
data is compiled as part of the TSF implementation.

Controlled operation An operation available only to authorized subjects.

See subject.

Covert channel An unintended and/or unauthorized communications path that can be
used to transfer information in a manner that violates a security policy
[6]. Covert channels allow transfer of information through indirect
access by subjects to internal resources; whereas, a transfer of
information in violation of the security policy through exported
resource(s) would be a TSF flaw.

17

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Delivery, trusted Procedures and automated mechanisms employed to deliver a copy of
the TOE from the TOE developer to the customer, such that the
customer copy is assured to be the same as the developer’s master copy.

Execution session An execution session is the set of states from initialization to either (1)
completion of the shutdown of the TOE or (2) commencement of a
restart of the TOE. Both operational mode and maintenance mode can
occur in a single execution session.

Flow

Flow, mode of
 Mode, direction

 Mode, attribute

Flow, partition

Information movement in the TOE may be initiated by the TSF (e.g.,
appending TSF status or audit data to an exported resource) or by a
subject. Subjects invoke information movement via “controlled
operations,” [2] such as write_resource.

A controlled operation may cause one or more flows, each of which
characterizes information moving between a subject and a unique
exported resource, which when projected to partition space (i.e., to the
related partitions), comprises a flow between the subject’s partition and
the exported resource’s partition.

A flow is defined as a [partition/subject, partition/exported resource,
mode] triplet. The mode of the flow consists of a direction and an
attribute. The direction indicates data movement from the subject and its
partition to the exported resource and its partition or vice versa. The
attribute has one of three values: ALLOW, DENY, and NULL. This
results in six possible values for the mode of a flow: e.g., READ-
ALLOW, READ-DENY, READ-NULL, WRITE-ALLOW, WRITE-
DENY, WRITE-NULL. NULL is interpreted as an implicit DENY for
Partition rules and as “don’t care” for Subject-Exported Resource rules.

Abstractly, there is a flow definition for both directions of data
movement for every partition/partition pair and for every
subject/exported-resource pair in the system. Thus, the “combined”
mode for each of these pairs has nine possible values: [READ-ALLOW,
with WRITE-ALLOW or WRITE-DENY or WRITE-NULL], [READ-
DENY, with WRITE-ALLOW or WRITE-DENY or WRITE-NULL],
[READ-NULL, with WRITE-ALLOW or WRITE-DENY or WRITE-
NULL]. In the runtime configuration data, or in a given configuration
vector, a ‘blank’ or unassigned value for a particular direction and pair is
interpreted as NULL.

The terminology used for mode “direction” (such as send and receive,
write and read or modify and observe) and “attribute” can vary from
TOE to TOE, as long as the semantics described here are expressible.
ST authors may further restrict the mode primitives to establish policies
regarding execution, device control, etc.

18

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Initialization function The procedures and automated mechanisms that establish the TSF in an
initial secure state.

The initialization function includes the TOE boot mechanism that
establishes the TSF security domain and brings the software portion of
the TSF implementation and TSF data into the TSF security domain
(e.g., read it from disk, from ROM, or from flash memory into a memory
space allocated for TSF functions and data).

Initialization can occur as a result of system power-on or from a restart.

Load function The procedures and automated mechanisms to convert the software
portion of the TSF implementation and/or configuration vectors into a
TOE-useable form. The load function can take different forms,
including: compilation of configuration data as part of the TSF
implementation; or the insertion or installation of the media into the
TOE hardware at either the TOE developer or customer site.

Maintenance mode A contiguous period during an execution session when operational mode
functions are restricted, or recovery functions are available that are not
available during operational mode, or both. The intended use of
maintenance mode is to enable the TOE to return to a secure state, or
prevent the TOE from entering an insecure state. The functions
restricted or made available during maintenance mode are specific to the
developer's strategy for failure recovery.

Operational
configuration

The operational configuration of the TOE determines its behavior
during an execution session, as specified in the configuration data.

Operational mode A runtime mode in which all security functions of the TOE are available.

19

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Partition Given a set A of elements a, an abstract PARTITION (upper case) of A is
a collection of subsets of those elements such that each a ∈ A belongs to
exactly one of the subsets. In this document, A is the set of all exported
resources, and each subset is called a partition (lower case). The
members of each partition are designated by the configuration data to be
treated equivalently with respect to the Partition Rule of the Partitioned
Information Flow Policy (PIFP) (see PIFP, FDP_IFF), thus forming an
equivalence class.

Each individual subject and each individual exported resource is
assigned (bound) to exactly a single partition. Zero or more subjects and
zero or more exported resources may be bound to a particular partition,
thus a partition may be empty or null (i.e., an empty set) – for example it
may help to simplify administration of the TOE to have a placeholder for
emergency activity (see dynamic configuration change). Also, a
partition may be configured such that its subjects and exported resources
may be only written to or only read from.

Note that a partition is not an active entity: see subject.

Partitioned information
flow policy (PIFP)

The policy enforced by the TSF that provides for the separation of
partitions via controlled information flows between partitions, and
between the subjects and exported resources allocated to those partitions
when required.

Note that the PIFP defines only the authorizations for flows between
partitions and between the subjects and exported resources allocated to
those partitions. Flow authorizations may be expressed as a combination
of explicit positive authorizations and implicit or explicit negative
authorizations. The PIFP does not define the size and locations of
partitions or the allocation of subjects and exported resources to
partitions. (See configuration data).

Platform

Platform Component

The physical components of the TOE; the TOE hardware and
accompanying firmware. The TOE platform is defined by the ST author
to consist of one or more platform components, each of which is
independently procurable. Examples of platform components are: the
complete platform, a CPU, and a disk drive.

Platform interface

 – External

 – Internal

An internal platform interface is accessible only to TOE components,
whereas an external platform interface is one that is directly accessible
to entities outside the TOE, as well as to TOE components.

Principle of Least
Privilege

This principle requires that each subject and TSF internal module be
granted the most restrictive set of privileges needed for the performance
of authorized tasks [12]. The application of this principle limits the
damage that can result from accident, error, or unauthorized use [5].

20

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Reconfiguration
function

A reconfiguration function causes a configuration change during an
execution session without passing control to the initialization function.

Residual information
protection (RIP)

Protection of information that has been logically deleted or released,
which is not available to subjects, but may still be present within the
system and may be recoverable. It also applies to protection of resources
that are serially reused by different subjects within the system. [2]

Note that residual information protection applies to all resources in the
TOE: those exported by the TSF as well as those internal to the TSF: see
resource, exported resource, internal resource.

Resource

Resource, Exported

Resource, Internal

Resources are the totality of all hardware, firmware and software and
data that are executed, utilized, created, protected or exported by the
TSF.

Exported resources are those resources to which an explicit reference is
possible via a TSF interface (TSFI), e.g., the programming or
configuration interface. See also, Subject.

Internal resources are those resources used exclusively by the TSF, and
which have no explicit reference via a TSF interface.

Restart A restart occurs when the initialization function is invoked during an
execution session without cycling the power off and on.

Secure state

Secure state, initial

The meaning of “secure state” is dependent on the TSP model. “Secure
state” in this protection profile means that

(1) the TSF data is consistent and uncorrupted, and the TSF can
correctly enforce the policy represented by the TSP model, and

(2) all TSF actions and transitions subsequent to the initial secure
state

(a) are allowed by the TSP model, or,

(b) are successfully rolled back to some previous secure
state, or,

(c) result in a transition of the TSF to the initial secure
state.

The initial secure state is the secure state arrived at after a successful
initialization. There is only one initial secure state associated with an
execution session.

21

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Security domain A security domain is a bounded and protected set of resources. The TSF
maintains separate security domains for its own protection, and provides
a security domain for each subject.

The security domains of the TSF are distinct from (i.e., non-overlapping)
the security domains of subjects and other entities external to the TSF.

The security domain of a subject includes the exported resources that it
is allowed to use, including the memory and I/O addresses (viz., the
"address space") that it may access. A subject’s security domain may
include resources in partitions other than its own. The security domains
of different subjects may overlap.

Separation kernel Hardware and/or firmware and/or software mechanisms whose primary
function is to establish, isolate and separate multiple partitions and
control information flow between the subjects and exported resources
allocated to those partitions.

Subject

Subject, authorized

An active entity within the TSF scope of control (TSC) that causes
operations to be performed. A subject is an abstraction created by the
TSF and exported at the TSFI. A subject is a type of exported resource.

In this protection profile, there are runtime TOE security administrative
functions that can only be performed by authorized subjects, which are
designated as such in the configuration data. In contrast, the PIFP rules
define the authorized flows for all subjects, including authorized
subjects.

Target of Maintenance
(TOM)

The subject of the assurance maintenance process, comprising an
evaluated TOE together with any changes to the associated assurance
baseline [8].

TSF data Data created by and for the TOE that, when in a TSF security domain,
affects the operation of the TSF. TSF data includes but is not limited to
internal data structures, configuration data, and TSF-generated data.

TSF internal vector

TSF internal vector set

See configuration vector and configuration vector set above.

Trusted individual A person who performs procedures upon which the security of the TOE
and the processes used to develop the TOE may depend. The roles and
responsibilities of these persons may include those that develop,
configure, install, manage, operate and maintain the TOE, as required for
a specific TOE type developed to execute in specific operational
environments and contexts. See authorized administrator.

The requirements for establishing the trustworthiness of trusted
individuals are allocated to the environment. See the security objective
OE.TRUSTED_INDIVIDUAL.

22

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

User The term “user” has different meanings, depending on context [1].

During runtime, subjects interact with the TOE, and are referred to as
users, in terms of what they are allowed to do or observe.

Also, TOE-application developers (including integrators in some cases),
who write the code that defines the behavior of subjects, are referred to
as users, in terms of how they understand, or how they may interact with
the TOE via subjects.

Similarly, trusted individuals are users, in terms of how they understand,
or how they may interact with the TOE, e.g., via administrative
functions. In this sense, trusted individuals are the only “human users”
[1] of the TOE.

The customer is also a user, in the sense that they are the recipients of
trusted delivery, and as data owners, are the ultimate beneficiaries of the
security properties provided by the TOE.

1.6 Document Organization
22 Section 1 provides the introductory material for the protection profile.

23 Section 2 describes the Target of Evaluation in terms of its envisioned usage and connectivity.

24 Section 3 defines the expected TOE security environment in terms of the threats to its security,
the security assumptions made about its use, and the security policies that must be followed.

25 Section 4 identifies the security objectives derived from the threats and policies.

26 Section 5 identifies and defines the security functional requirements from the CC that must be
met by the TOE in order for the functionality-based objectives to be met.

27 Section 6 identifies the TOE security assurance requirements.

28 Section 7 provides a rationale to explicitly demonstrate that the information technology security
objectives satisfy the policies and threats. Arguments are provided for the coverage of each
policy and threat. The section then explains how the set of requirements are complete relative to
the objectives, and that each security objective is addressed by one or more component
requirements. Arguments are provided for the coverage of each objective.

29 Section 8 identifies background material used as reference to create this profile.

30 Appendix A defines frequently used acronyms.

31 Appendix B identifies cryptographic standards, policies and other publication referenced in this
PP.

32 Appendix C provides a rationale for the IFC/IFF requirements.

33 Appendix D provides a rationale for the secure state definition.

23

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

34 Appendix E provides a description of the various types of TSF data.

35 Appendix F provides an example scenario for TOE functions.

36 Appendix G provides a rationale for platform assurance requirements.

24

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

2. Target of Evaluation (TOE)
Description

2.1 Product Type
37 This protection profile (“SKPP”) specifies requirements for a separation kernel TOE, inclusive

of its underlying platform2, assured to High Robustness criteria (refer to Section 6 for a mapping
of High Robustness to Common Criteria Security Assurance Requirements). To be highly
robust, the SKPP requires that the functionality, architecture and design of the separation kernel
be minimized in size and complexity. The resulting TOE is suitable for protecting highly
sensitive information (see Use of High Robustness, Section 2.8). Its core functional
requirements include:

• Protection of all resources (including CPU, memory and devices) from unauthorized
access

• Separation of internal resources used by the TSF from exported resources made
available to subjects

• Partitioning and isolation of exported resources
• Mediation of information flows between partitions and between exported resources
• Audit services

38 The separation kernel allocates all exported resources under its control into partitions. The
partitions are isolated except for explicitly allowed information flows. The actions of a subject in
one partition are isolated from (viz., cannot be detected by or communicated to) subjects in
another partition, unless that flow has been allowed. The partitions and flows are defined in
configuration data. Note that "partition" and "subject" are orthogonal abstractions. "Partition,"
as indicated by its mathematical genesis, provides for a set-theoretic grouping of system entities,
whereas "subject" allows us to reason about the individual active entities of a system. Thus, a
partition (a collection, containing zero or more elements) is not a subject (an active element), but
may contain zero or more subjects.

39 The TOE provides to its hosted software programs high-assurance partitioning and information
flow control properties that are both tamperproof and non-bypassable. These capabilities provide
a configurable trusted foundation for a variety of system architectures. For example, in one class
of system security architecture, software programs enforce application-level (vs. kernel-level)
security policies, within the constraints of the separation kernel’s policy. Examples of hosted
software programs include multilevel secure reference monitors, guards, device drivers, file
managers, and message-passing services, as well as those that implement traditional operating

2 The existing functional and assurance requirements contained in this protection profile are broad enough to
accommodate a uni-processor as well as a multi-processor TOE. However, in a multi-processor implementation
there is an expected increase in TOE complexity and, therefore, the level of difficulty in generating the required
evidence for some areas (e.g., security policy definition/modeling, architecture requirements, covert channel
analysis, testing, processor state consistency).

25

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

system, middleware and virtual machine monitor abstractions.

Target of Evaluation

Trusted Delivery
Function

Initialization Function

TSF

Runtime Software

Configuration
Data

Hardware

Configuration Function

Load Function

Figure 2-1. Allocation of TOE Components

40 Figure 2-1 depicts the components that comprise the TOE and TSF. Each TOE component
outside of the TSF serves a role in establishing the TSF’s initial secure state. After initialization,
the TSF will enforce the defined policy. The security functional requirements (SFRs) for the
TSF are found in Section 5. Functional requirements for non-TSF TOE components, as well as
assurance requirements for all TOE components, are found in Section 6. The role of non-TSF
functions in establishing the initial secure state of the TSF are as follows:

• Trusted Delivery: The TOE developer employs cryptographically-based trusted
delivery functions and procedures to deliver the TOE to the customer. The customer may
be a system integrator, application developer or end user. Trusted delivery is used for the
initial product distribution as well as for updates. See Section 2.5.

• Configuration: The TOE’s configuration function translates human-readable (e.g.,
ASCII) representations of configuration vectors into machine-readable (e.g., binary)
format. An authorized administrator uses the configuration function and related
procedures to generate, validate, and protect the integrity of each configuration vector.

• Load: A trusted individual employs the load function and related procedures to
transfer (“load”) the software implementation and configuration vectors into a form that
is accessible by the TOE. An example is the placement of configuration vectors into
flash memory. TOE software and configuration vectors (i.e., a configuration vector set)
may be loaded together or separately. Loading may occur in the customer IT
environment as well as in the TOE developer IT environment (see example in Appendix
F). The load function may also be used as part of offline trusted recovery.

• Initialization: A trusted individual or IT mechanism in the TOE environment starts

26

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

the TOE initialization function (e.g. via a power-on switch or electronic signal). At this
time, the initialization function: verifies the integrity of the TSF code and data; transfers
that code and data into the TSF security domain; establishes the TSF in operational mode
in its initial secure state or establishes the TSF in maintenance mode in support of
recovery actions to reestablish secure state. In this process, the initialization function uses
the information in one of the configuration vectors to establish the configuration data.

41 Figure 2-2 is a conceptual illustration of how configuration information is created and
transformed into configuration data and TSF internal vectors. Other TOE functionality,
including that of the TSF, is discussed in subsequent sections.

Figure 2-2. Example Configuration Data Transformation

Boot
Function

Boot
Function

Configuration
vector

Configuration
Tool

Configuration
Tool

Load
Function

Load
Function

TSF internal
vector

Configuration data

TSF

Z

X

Y

Z

X

Y

Configuration
vector set

X

TSF internal
vector set

Boot media

Z

X

Y

Z

X

Y

Boot
Function

Boot
Function

Configuration
vector

Configuration
Tool

Configuration
Tool

Load
Function

Load
Function

TSF internal
vector

Configuration data

TSF

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Configuration
vector set

X

TSF internal
vector set

Boot media

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

2.2 General TOE Functionality
42 A TOE includes the following security features:

− Information flow control that enforces strict partition isolation, with the exception of explicit
interactions specified by the configuration data

− Cryptographic mechanisms that provide functions to verify the integrity of TSF code and
data during trusted delivery

− Trusted initialization and recovery functions
− Detection and response to security function failures
− Generation of audit data

27

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

43 Among the features not required are:

− User interfaces during an execution session or initialization
− Identification and Authentication which mandates authorized users to be uniquely identified

and authenticated by the TSF
− Discretionary Access Control (DAC) which restricts access to objects based on the identity

of subjects and/or groups to which they belong, and allows authorized users to specify
protection for objects that they control

− Cryptographic services for applications to encrypt, decrypt, hash, and digitally sign data as it
resides within the system and as it is transmitted to other systems

− Complete physical protection mechanisms

44 These features, if required in a system utilizing the TOE, must be provided by that system.
Alternatively, the developer can extend the TOE functionality as defined in this protection
profile, for example, through incorporation of additional requirements in the ST.

2.3 TOE Concepts
45 The goal of the separation kernel is to virtualize and allocate shared resources such that each

partition encompasses a resource set that appears to be entirely its own. To achieve this ideal for
resources that can only be accessed by one subject at a time, such as the CPU, the TSF must
ensure that the temporal usage patterns from different partitions are not apparent to each other
(e.g., through static “periods processing”). For resources such as memory, which do not require
mutual exclusion to the whole, the TSF might achieve isolation by allocating physically distinct
portions of the resource to different partitions. Furthermore, TSF utilization of its own internal
resources must also preserve the desired isolation properties. Subjects, and resources made
available to subjects by the TSF, are called exported resources.

28

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Figure 2-3. Allocation of TOE Resources

TSF Security Functions

Partition A Partition B Partition C

Subject 1

Resource 4
Resource

5

Resource 6

Resource
7

Resource 8

Resource
9

Resource
10

Subject 2 Subject 3

TSF Security Functions

Partition APartition A Partition BPartition B Partition CPartition C

Subject 1

Resource 4
Resource

5

Resource 6

Resource
7

Resource 8

Resource
9

Resource
10

Subject 2 Subject 3

46 The TOE rules for isolation are referred to as the Partitioned Information Flow Policy (PIFP).
The PIFP defines the authorizations for information flow between partitions and between
subjects and exported resources. The mode or direction of the flow – such as send, receive, read
(including execute-only, which could be further restricted by the ST author), write or read-write
– indicates whether information flows from the subject to the exported resource (e.g., write) or
from the resource to the subject (e.g., read), or both. Thus, an information flow is defined as a
<partition/subject, partition/exported resource, mode> triplet. Note that the exported resource
may be another subject. By default, the TOE allows no information flow between partitions or
between subjects and exported resources.

47 Figure 2-3 shows a hypothetical example of the allocation of subjects and other exported
resources to partitions. The resources inside of each rectangle are bound to that partition.
Allowed information flow is indicated by the directed arrows. Inter-partition flows are also
shown, for example, Subject 2 is allowed to write Resource 6, and Subject 3 is allowed to read
Resource 9. This example is intended to illustrate the application the Least Privilege Abstraction
of the PIFP (see Section 2.3.2). With this policy abstraction, subject(s) in a partition can have
different access rights to resources in the same or different partitions. Resources 7, 8 and 10 are
included to illustrate this finer grained control of information flow.

48 The configuration data may be comprised of:

• Definition of partitions, both in terms of the allocation of exported resources to partitions

29

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

(including the allocation of subjects and physical memory to the partition), partition identity,
and partition quotas for time and space resource consumption

• Definition of the authorizations for information flow between partition-pairs and between
subject-exported resource pairs

• Designation of authorizations for subjects

• Definition of test parameters to be used by the abstract machine test and TSF self-test
mechanisms

• Definition of audit function behavior

2.3.1 Principle of Least Privilege
49 The Principle of Least Privilege (PoLP) is a foundational element in the design of high assurance

systems and the rationale for its use is thoroughly documented elsewhere [5]. Several aspects of
this principle are especially germane to understanding the significant requirements for least
privilege in the SKPP. These requirements involve both the TSF internal structure and the
ability of the TSF to mediate the actions of subjects.

50 Assume that a given TSF is made up of several components. If one of the TSF components
became corrupted, the adverse effects on other components would be less pervasive if PoLP has
been followed in the design. Second, because the privileges afforded each component will be
minimal with respect to the overall policy, security analysis of the TSF is less complex. And
finally, if a TSF limits each subject to utilize only those flows that it requires to complete its
function, the TOE audit functions will be able to more accurately record information associated
with the causes of various actions (see P.ACCOUNTABILITY in Section 3).

51 Thus, the ability to achieve the goals of confinement of damage, evaluatability and
accountability is governed by both the degree to which the TSF is structured with least privilege
and the granularity with which PoLP is applied to resources exported at the TSF interface.

2.3.2 Partitions and the Partitioned Information Flow Policy (PIFP)
52 A partition is an abstraction implemented by the TSF from resources under its control. Each

partition is allocated zero or more exported resources (e.g., programs, tasks, processes, threads,
files, buffers, devices, etc), as defined in the configuration data.

53 The TSF may initiate information flow (e.g., appending TSF status or audit data to an exported
resource) or a subject may do so. Subjects invoke information flow in the TOE via “controlled
operations.”[2]

54 The PIFP is based on the following fundamental principles:

A. The scope of the PIFP includes all exported resources; there are no exemptions.

B. A controlled operation may result in multiple information flows, in which case, the PIFP
must explicitly authorize each flow. Therefore, none of the flows associated with the
controlled operation may occur if any one (1) of the multiple information flows is
unauthorized. The purpose of this restriction is to reduce the complexity of the TOE.

30

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

C. The SKPP defines two (2) partition policy abstractions, each of which represents a different
granularity of policy enforcement with respect to information flow.

55 The policy abstractions are the partition abstraction and the least privilege abstraction. The
policy abstraction most appropriate for a given partition is determined by the heterogeneity of
flows required by the subjects in that partition (per PoLP, the flows allowed by the configuration
data may never exceed the flows that are required by the functionality of the subjects). Recall,
each flow is a triplet: <partition/subject, partition/exported resource, mode>).

56 The two policy abstractions are defined below, along with examples to illustrate how to interpret
the PIFP for each type of partition.

57 PARTITION ABSTRACTION: The subjects in a partition have homogeneous
requirements for access, on a per-partition basis, to exported resources.

58 In the partition abstraction, the TSF enforces the same restrictions on all subjects bound to a
given partition, that is, the flow authorizations assigned to that partition apply equally to all
subjects in that partition. Administrative procedures (as specified in AGD_ADM) are relied
upon to ensure that the partition can only be configured with subjects whose functionality
requires the exact same set of access rights to all of the exported resources of a given partition
(i.e., the same or a different partition). The TSF enforces restrictions on the subjects in the
partition at the granularity of access to partitions, using partition identities, per the Partition Rule
defined in FDP_IFF.1.2-NIAP-0407. For example, if any one subject of a partition requires
access to resources in another partition, then all subjects in that partition must have the same
access to all of those resources. Since (1) all of the subjects would have identical subject-
exported resource authorization to cause a flow (e.g., each subject in partition p is allowed to
read each resource in partition q), and (2) the Partition Rules are set minimally as required by
PoLP, then the Partition Rules for p would be identical to the rules for the subjects in p (viz., p
read q) and the Partition Rule can be used to indicate the allowed flows for all of the subjects in
partition p without weakening PoLP.

Table 2-1. Access Matrix Representation for Partition Abstraction

Partition D
Resources

Partition E
Resources

Partition F
Resources

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
S1 RW RW RW R R R W W W W
S2 RW RW RW R R R W W W W

Partition
D

Subjects S3 RW RW RW R R R W W W W
- - - - - - - - - - -
- - - - - - - - - - -

Partition
E

Subjects - - - - - - - - - - -
S4 - - - RW RW RW R R R R
S5 - - - RW RW RW R R R R

Partition
F

Subjects S6 - - - RW RW RW R R R R

59 An example of a configuration that meets this restriction is shown in Table 2-1 (where ‘R’ =
read, ‘W’ = write; the ST author may further refine these modes). Here, all of the subjects of

31

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

partition D require read-only access to the all of the exported resources in partition E, etc., and
there are no subjects in partition E.

60 Assurance requirements stipulate that procedures or functions must be provided to ensure that
these configuration restrictions are upheld. Also, the partition identifier may equate to an
identifier for the set of subjects assigned to that partition.

61 LEAST PRIVILEGE ABSTRACTION: The subjects in a partition have heterogeneous
requirements for access to exported resources.

62 For this case, the partition may have subjects that require different access rights to support their
functionality. Information flow is enforced using separate identities for each subject, exported
resource, and the partition itself. The TOE supports PoLP by providing the ability to restrict the
subjects in the partition in terms of both partition-partition flows and subject-exported resource
flows. The least privilege abstraction requires that both partition-pair and subject-exported
resource pair authorizations are used to determine if a flow mode is allowed. Additionally, the
least privilege abstraction requires that the subject-exported resource pair authorization takes
precedence over the partition-pair authorization, i.e., the subject-exported resource pair
authorization overrides the partition-pair authorization. This precedence relationship does not
require that all subjects have fine-grained subject-exported resource authorizations. For the case
where fine-grained subject-exported resource authorizations do not exist, the partition-pair
authorizations apply. This allows for per-partition grouping of subjects irrespective of their
access requirements. The least privilege abstraction subject-exported authorization rules also
must be expressive enough to support the Principle of Least Privilege such that the TSF can
differentiate between positive and negative authorizations for each requested flow.

63 In the least privilege abstraction, the TSF enforces restrictions on the subjects in the partition at
the granularity of access to exported resources as defined by the Subject-Exported Resource Rule
defined in FDP_IFF.1.2-NIAP-0407.

64 Table 2-2 provides a reference example for implementation of the Least Privilege Abstraction
showing the inter-relationship of the partition-partition and subject-resource authorization that
comprise the abstraction. Tables 2-2a-2e provide examples of the versatility of the Least
Privilege abstraction, again, using an access matrix representation (where ‘r’ = read, ‘w’ = write
and all partitions use the least privilege abstraction.

65 The examples use the following terminology and conventions:
• A subject-resource flow is expressed in the form :

o Flow: [S, R, M]

where the argument S is a subject, R is a resource and M is a mode.

• The partition of a resource, r2, is indicated as:
o r2.P

• The partition of a subject, s3, is indicated as:
o s3.P

• PA is a matrix of rules expressing the partition-to-partition policy
• SA is a matrix of rules expressing the subject-exported resource policy

32

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

• Authorizations are expressed using a three-value logic for each possible mode (e.g., r,
w), where for the example of a ‘w’ mode:

o w = ALLOW Write (explicit allow)
o !w = DENY Write (explicit deny)
o blank = NULL (implicit DENY for PA; don’t care for SA)

• Given a flow, Flow1, the corresponding rules can be expressed in the forms:
o SA (Flow1.S, Flow1.R).M = [ALLOW|DENY|NULL]
o PA (Flow1.S.P, Flow1.R.P).M = [ALLOW|DENY|NULL]

As with flows, the subject and the subject’s partition are the first arguments of SA
and PA (respectively), and they are also the row (as opposed to column) indexes in
the corresponding matrices in Table 2-2.

• The following are equivalent expressions for explicit denial of flow1 in SA:
o SA (Flow1.S, Flow1.R).M = DENY

o !Flow1 ∈ SA

66 Using this notation, the security policy stated in FDP_IFF.1.2-NIAP-0407 is:
• An operation shall be allowed in the Partition Abstraction only if for all of its m flows:

o PA (Flown.S.P, Flown.R.P).M = ALLOW

 where n = 1..m

• An operation shall be allowed in the Least Privilege Abstraction only if for all of its m
flows either:

1. SA(Flown.S, Flown.R).M = ALLOW
(equivalently, Flown ∈ SA)

- or -

2. both:
a. PA(Flown.S.P, Flown.R.P).M = ALLOW)
- and -

 b. SA(Flown.S, Flown.R).M = NULL
 where n = 1..m

67 The partition-pair and subject-exported resource authorizations do not have to be consistent.
However, the TOE must be configured minimally with respect to both the authorized partition
flows and the authorized subject-exported resource flows, per PoLP.

33

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table 2-2. Reference Access Matrix Representation for Least Privilege Abstraction

Table 2-2a. Example of TOE Implementing Explicit DENY SA Rule for Least Privilege
Abstraction

Ps1

Pr1

Ps2

Pr2

W

PA rules

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA

then deny else (o)
if [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA

then allow else (p)
deny (q)

Op A would be allowed, per line p

w

w w

Resource =
ID: int,
P: int

Flow =
S: int,
R: int,
M: mode

Ps1

Pr1

Ps2

Pr2

W

PA rules

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA

then deny else (o)
if [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA

then allow else (p)
deny (q)

Op A would be allowed, per line p

w

w w

Resource =
ID: int,
P: int

Flow =
S: int,
R: int,
M: mode

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

w w

!w
Ps1

Pr1

Ps2

Pr2

W

W

!W

W

PA rules
Define Controlled Operation A =

Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be denied, per line m

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

w w

!w
Ps1

Pr1

Ps2

Pr2

W

W

!W

W

PA rules
Define Controlled Operation A =

Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be denied, per line m

34

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table 2-2b. Example of TOE Implementing Explicit ALLOW PA Rule with Don’t-Care SA
Rule for Least Privilege Abstraction

Table 2-2c. Example of TOE Implementing Explicit ALLOW SA Rule with Implicit DENY
PA Rule for Least Privilege Abstraction

Ps1

Pr1

Ps2

Pr2

PA rules

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be allowed, per line p

WPs1

Pr1

Ps2

Pr2

PA rules

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be allowed, per line p

W

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

w w

w
Ps1

Pr1

Ps2

Pr2

PA rules

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be allowed, per line n

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

w w

w
Ps1

Pr1

Ps2

Pr2

PA rules

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be allowed, per line n

35

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table 2-2d. Example of TOE Implementing Default DENY Rule with Don’t Care SA Rule
for Least Privilege Abstraction

Table 2-2e. Example of TOE Implementing SA Over-rides PA Rules for Least Privilege

Abstraction

Ps1

Pr1

Ps2

Pr2

W

W

PA rules

R

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be denied, per line q

!W

Ps1

Pr1

Ps2

Pr2

W

W

PA rules

R

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

Define Controlled Operation A =
Flow1: [s1.1, r8.2, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be denied, per line q

!W

Ps1

Pr1

Ps2

Pr2

W

W

!W

W

PA rules

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

!w

Define Controlled Operation A = Flow1: [s1.1, r8.2, w]

Define Controlled Operation B = Flow1: [s3.2, r6.1, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be allowed, per line n
Op B would be denied, per line m

Ps1

Pr1

Ps2

Pr2

W

W

!W

W

PA rules

r8.2

s1.1

r5.1

SA rules

s2.1

s3.2

s4.2

r7.2r6.1

w

!w

Define Controlled Operation A = Flow1: [s1.1, r8.2, w]

Define Controlled Operation B = Flow1: [s3.2, r6.1, w]

Policy: request to invoke A =
if (!Flow1 ∈ SA) then deny else (m)
if (Flow1 ∈ SA) then allow else (n)
if (![Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (o)

then deny else
If [Flow1.S.P, Flow1.R.P, Flow1.M] ∈ PA (p)

then allow else
deny (q)

Op A would be allowed, per line n
Op B would be denied, per line m

36

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

2.3.3 Partitions and Subject Address Spaces
68 The TOE may manage memory and make portions of it accessible (viz., “addressable”) at the

TSF interface in a variety of ways, including (controlled) access to physical memory, and the use
of various virtual memory techniques such as paging and segmentation. The TOE must assign
distinct portions of memory to each partition, forming non-overlapping partition address spaces.
The TOE must also assign address spaces to subjects, which may overlap (e.g., memory shared
between subjects). However, while a subject is an abstract resource that has been bound to
exactly one partition, a subject’s address space – those resources to which the subject can refer –
may include memory from different partition address spaces. The configuration data defines the
partition and subject address spaces.

69 Table 2-3 shows an example of the allocation of physical memory in a TOE instantiation with
4GB of memory that is not virtualized. The memory regions of each partition are exported (i.e.,
made available to subjects by the kernel) in smaller units, called blocks. The blocks are
delineated as offset:size relative to the start of their region, as measured in kilobytes. Partition 1
has one subject, m, and Partition 2 has one subject, n. Table 2-4 shows that the subjects in
Partition 1 are allowed to read resources from Partition 2. Table 2-5 shows that Subject m has an
address space that includes blocks from both Partition 1 and Partition 2, and both subjects have
heterogeneous flow assignments, indicative of the Least Privilege abstraction. Another example
of subjects with address spaces that cross partition boundaries is shown in Figure 2-3 (Subject 2
and Subject 3).

70 Note that asynchronous devices, such as a DMA device, can be modeled as subjects to account
for their spontaneous actions, although their actions must still be bound by the PIFP.

Table 2-3. Partition Address Spaces and Subject Bindings

 Subjects Memory Regions Blocks

Kernel 0 to .5 GB

Partition 1 m 1.5 to 3 GB A = 0:64
B = 512:64

Partition 2 n 3 to 4 GB C = 1:100
D = 512:128

 Table 2-4. Partition Flow Table
Resource Subject Partition 1 Partition 2

Partition 1 RW R

Partition 2 RW

37

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

 Table 2-5. Subject-resource Flow Table

 Resources (Memory Blocks)

 A B C D

Subject m RW R R R

Subject n R RW

2.3.4 TOE Configuration Changes
71 The entire PIFP can be changed offline – i.e., statically – by making available to the TOE a

different configuration vector or vector set (see Figure 2-2). In support of system-level
requirements (e.g., in response to operation needs or for reliability and availability), it may be
necessary to change the PIFP during an execution session. This protection profile does not
mandate that all TOE instances provide an online – i.e., dynamic – configuration change
capability, but if such functionality is available, it may be a total or a selective change, as
described below. In these descriptions, the most salient differences are underlined.

2.3.4.1 Static Total Configuration Change
72 The TOE is initialized with one configuration vector, which is used to define the TSF

configuration data.

73 This change requires that the TOE be halted (e.g., via external power loss or an authorized
subject). Then, before re-initialization of the TOE, an authorized administrator or mechanism
outside of the TOE loads or specifies a different configuration vector, which will become the
configuration data as a result of the next TSF initialization.

74 The assurance issue associated with this configuration change capability is to ensure that each
configuration vector used reflects the organization’s intent for TOE behaviour and policy
enforcement.

2.3.4.2 Dynamic Total Configuration Change
75 This change includes the following capabilities and assurance issues, over and above those of the

Static Total Configuration Change, as illustrated in Figure 2-4:

76 The TOE is initialized to contain a pre-specified configuration vector set (CVS). The TSF
provides the capabilities for an authorized subject to (1) designate a “next” configuration vector
(see j’ in Figure 2-4 indicating where the next configuration indicator j is updated), and (2)
change the configuration data from its current values to those defined by the “next” vector. This
change can occur through either a TSF initialization (e.g., restart) or an online reconfiguration
operation, as shown in Figure 2-4.

77 The SKPP does not require that the selection of the next configuration vector and the activation
of that vector occur together as an atomic action. Nor is it required that activating the next
configuration data includes halting or restarting the TOE – so long as secure state is maintained

38

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

before, during and after the change.

78 The additional assurance issue associated with this configuration change capability is to ensure
that only an authorized subject may request the configuration change, that the TOE properly
executes the change request, and that secure state is maintained before, during and after the
change, especially for the case of the online activation operation.

Figure 2-4. TOE Configuration Change

Apply Configuration j
to TSF as the
Current Configuration

CVS
• Configuration Vector 1
• Configuration Vector 2
• …
• Configuration Vector n

CVS
• Configuration Vector 1
• Configuration Vector 2
• …
• Configuration Vector n

Initialization

• Load CVS
• Apply Config.Vector i

to TSF as the
Current Configuration

Initialization

• Load CVS
• Apply Config.Vector i

to TSF as the
Current Configuration

TSF

• Current Configuration
• CVS
• Next Configuration

Indicator = j

TSF

• Current Configuration
• CVS
• Next Configuration

Indicator = j

Cycle Power

Initialization Configuration
selector = i

Initialization Configuration
selector = i

TransitionData Flow

Next configuration := j’

i := j
optional

Restart

CVS = Configuration Vector Set

Apply Configuration j
to TSF as the
Current Configuration

CVS
• Configuration Vector 1
• Configuration Vector 2
• …
• Configuration Vector n

CVS
• Configuration Vector 1
• Configuration Vector 2
• …
• Configuration Vector n

Initialization

• Load CVS
• Apply Config.Vector i

to TSF as the
Current Configuration

Initialization

• Load CVS
• Apply Config.Vector i

to TSF as the
Current Configuration

TSF

• Current Configuration
• CVS
• Next Configuration

Indicator = j

TSF

• Current Configuration
• CVS
• Next Configuration

Indicator = j

Cycle Power

Initialization Configuration
selector = i

Initialization Configuration
selector = i

TransitionData Flow

Next configuration := j’

i := j
optional

Restart

CVS = Configuration Vector Set

2.3.4.3 Dynamic Selective Configuration Change
79 There are two forms of dynamic selective change allowed. Whereas the previous change

capabilities require the selection of a configuration vector that predefined all aspects of the TOE
configuration, the selective change capabilities enable changes to individual configuration data
items. As with the Dynamic Total Configuration Change, these capabilities also require an
authorized subject to interact with the TSF to specify and initiate changes.

80 The two forms of selective change are constrained and unconstrained. In selecting either of
these options, the TOE developer incurs the responsibility to document any additional security
requirements in the Security Target such that the Common Criteria Part III, Class ASE Security
Target evaluation criteria are met. Furthermore, the TOE developer must provide the rationale to

39

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

demonstrate that the added functional requirements continue to meet the security objectives of
this profile, and are complete and consistent with the remaining functional requirements of this
profile.

81 The functional properties and assurance issues associated with selective configuration change are
as follows:

• Constrained Selective Change
The TSF provides the capability for an authorized subject to perform runtime changes to
individual configuration data items, as selected by the ST author, within explicit
constraints that are enforced by the TSF. Constraints may be mandatory across all
authorized changes, as well as specific to a single item.

Such changes may include creating and destroying partitions and the creation or
destruction of information flows between partitions, and between subjects and exported
resources.

The change constraints limit the type of policy “transitions” (e.g., prohibiting ad hoc
changes to a resource’s assigned partition) and new PIFP definitions (e.g., prohibiting
configurations that would allow information flows between certain “types” of partitions,
subjects and exported resources) that are achievable through selective configuration
changes. The change constraints can be defined in the configuration data or in the TSF
itself.

The additional assurance issue associated with this capability is to ensure that ad hoc
policy change requests and change constraints are consistent with the organization’s
policy intents, including those for partitioning and information flow. Additionally, the
authorized subject that performs these changes must be trusted with respect to the policy
allocated to the TSF, since it shares in the determination of how policy is to be enforced.

• Unconstrained Selective Change
The Unconstrained Selective Change is identical to the capabilities and assurance issues
of the Constrained Selective Change, except that:

There are no constraints on changes to the selected configuration data items.

The additional assurance issue associated with this capability is that, without any change
constraints it may be difficult for the TOE vendor to provide a convincing definition of
“secure transition” in the PIFP model3.

2.4 Modes, States, and Trusted Recovery
82 While in an execution session the TOE is in either operational mode or maintenance mode, and

simultaneously, is in either a secure state or an insecure state. A normal successful initialization
brings the TOE to a secure state, in operational mode (see “O\S” in Table 2-6). For the failures

3 The difficulty of analyzing the safety of arbitrary policy changes was proven to be mathematically “undecidable”
by Harrison, Russo and Ullman. [7]

40

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

and conditions specified by FPT_FLS.1,the TOE must remain in a secure state (i.e., “O\S, “M\S”
or “H\S”). Other failures and conditions could cause the TOE to temporarily enter an operational
insecure state (“O\I”). That is, between the time that a security failure first occurs and the time
that the TSF can detect it and respond, the conservative assumption is that the failure introduces
insecurity. This insecure state is ephemeral because the TOE must return to a secure state by: (1)
remaining in operational mode, e.g., if the failure is directly recoverable, (2) transitioning to
maintenance mode if the failure can be repaired there (“M\I”), or (3) halting (“H\S”).

Table 2-6. Possible Mode/State Combination

 STATE

MODE

Secure (S) Insecure (I)

Operational (O) O\S O\I
Execution Session

Maintenance (M) M\S M\I

Halted (H) H\S n/a

83 The purpose of maintenance mode is to provide a security environment in which to re-establish a

secure state or to ensure the ability of the TOE to continue to maintain a secure state. In
maintenance mode, the TOE must continue to ensure that no actions occur that would violate the
TSP. This may involve the disabling of subjects or TOE functions, and may include the repair
of damaged internal data structures.

84 When halted, the TOE is considered to be in a secure state, since no subject actions are possible.
However, if the TOE halted as a result of being in an insecure state, then any inconsistency
between the insecure and secure state must be resolved prior to the resumption of the TOE in the
operational mode. This could be accomplished in several ways, such as: halting, offline
maintenance, initialization into a new TOE configuration, initialization into maintenance mode,
or combinations of these. Figure 2-5 illustrates the possible transitions between “halted” and the
two modes of execution.

85 This protection profile allows the transition to maintenance mode to occur by way of halting the
system and restarting with a suitable configuration vector. Also, it does not require interaction
with an authorized administrator or other trusted individual to return from maintenance mode to
secure operational mode, as some other protection profiles might (e.g., see [2], paragraph 1245).
The implementation of maintenance mode is ST-specific, and its properties must be captured in
the Security Policy Model.

41

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Figure 2-5. TOE Transition Diagram

Operational
Mode

Halted
State

Maintenance
Mode

Operational
Mode

Halted
State

Maintenance
Mode

2.5 Trusted Delivery
86 The components of the TOE may be delivered to the customer environment in various ways,

both for the initial delivery and for subsequent updates. This protection profile requires the TOE
to include trusted delivery procedures and/or functions to verify that the on-site version of the
TOE matches the master version (see “Trusted Delivery” in Figure 2-6). Such a verification
function may be configured to execute on the TSF hardware or on other hardware, but in either
case the function and the hardware that it runs on are evaluated as part of the TOE, just as with
the initialization and configuration functions. Data integrity validation of the TOE and related
configuration vectors occurs again as part of initialization. Figure 2-6 shows how applications
and TOE configuration vectors may be installed by the TOE developer and/or by various entities
within the customer environment. If TOE components were modified after trusted delivery, then
the TOE would not be in an evaluated configuration.

42

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Figure 2-6. Trusted Delivery Scenario

SKPP Trusted Delivery Scenario

Application

Configuration
Vectors

TOE
Component(s)

TOE Developer

Application

Configuration
Vectors

TOE
Component(s)

Integrator
(optional)

Application

Configuration
Vectors

TOE
Component(s)

Maintenance
(optional)

Application

Configuration
Vectors

TOE

End User

Trusted Delivery Verified by
Trusted Delivery

Verified by
Trusted Initialization

Optional
Initialization

Legend:

Customer Environment

SKPP Trusted Delivery Scenario

Application

Configuration
Vectors

TOE
Component(s)

TOE Developer

Application

Configuration
Vectors

TOE
Component(s)

Application

Configuration
Vectors

TOE
Component(s)

TOE Developer

Application

Configuration
Vectors

TOE
Component(s)

Integrator
(optional)

Application

Configuration
Vectors

TOE
Component(s)

Application

Configuration
Vectors

TOE
Component(s)

Integrator
(optional)

Application

Configuration
Vectors

TOE
Component(s)

Maintenance
(optional)

Application

Configuration
Vectors

TOE
Component(s)

Application

Configuration
Vectors

TOE
Component(s)

Maintenance
(optional)

Application

Configuration
Vectors

TOE

End User

Trusted Delivery Verified by
Trusted Delivery

Verified by
Trusted Initialization

Optional
Initialization

Trusted Delivery Verified by
Trusted Delivery

Verified by
Trusted Initialization

Optional
Initialization

Trusted Delivery Verified by
Trusted Delivery

Verified by
Trusted Initialization

Optional
Initialization

Legend:

Customer Environment

2.6 Platform Considerations
87 For a high assurance system, the platform, which may consist of both hardware and firmware, is

considered to be an integral part of the TOE and is subject to certain evaluation requirements.
Appendix G provides a rationale for platform assurance requirements.

2.6.1 Platform Components
88 The hardware platform for a TOE is assembled from one or more instances of one or more types

of platform components. It is up to the ST author to define the components that make up the
platform. The intent is that a platform component should be an entity that can be procured
independently—either from the TOE developer or from other commercial sources—and
assembled in combination with other platform components to make up the entire platform.

89 For example, a very restrictive platform definition could say that there is just one type of
component (the complete platform), and that only one explicitly identified instance of that
component is acceptable in the platform definition. This restrictive approach could simplify
evaluation and documentation, but at the expense of limiting the scope of the TOE's evaluation

43

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

to only one particular piece of hardware. Such a limitation might be acceptable in the case of a
TOE that is intimately tied to a particular piece of purpose-built hardware, but is less acceptable
when the TOE is intended to run on commodity, general-purpose hardware platforms.

90 A less restrictive platform definition could still define a single component type, but allow
variability in that component's characteristics. For example, a hardware platform could be
defined as a particular model of server computer, but allow variability in the processor speed,
amount of memory, number of network interfaces, etc. This is still a simple approach for
evaluation purposes, as the platform definition need only accommodate variations in
characteristics, not interfaces between components.

91 A more open platform definition could define several component types that can be assembled (in
accordance with defined rules) to provide the TOE's hardware platform. For example, a product
intended for general-purpose platforms could define component types for “computer”, “disk
storage”, “network interface”, and so forth, and then give rules for how those components may
be assembled.

92 A platform component can be defined either by explicit identification or by specification.
Explicit identification (i.e., by a manufacturer's model designation) is simpler for evaluation and
documentation purposes, but may undesirable because that particular model may cease to be
available at some point in the future.

93 In contrast, definition of a platform component by specification accommodates hardware
evolution, but at the cost of a more complex evaluation process and assessment effort by the end-
user customer (who must assess a potential platform component against its specification). The
evaluation sponsor may choose to facilitate this activity by performing such assessments and
making the results available to end-users.

2.6.2 Platform Interfaces
94 A platform consists of one or more components: C1, C2, … Cn. Figure 2-7 shows platform

components and their interfaces. Each platform component presents zero or more internal inter-
component interfaces that are restricted to the platform itself, and zero or more programming or
I/O interfaces which are accessible by the TOE and applications running on the TOE.

95 Platform components, in particular the CPU, may support a notion of privilege by presenting
minimally a privileged (kernel) mode and an unprivileged (user) mode. Some platform
components, i.e. CPUs, support more granularity of privilege in the unprivileged modes (e.g.
rings). All privileged platform interfaces are internal to the TOE with access to those interfaces,
in general, restricted to the TSF. The TSF may choose to virtualize and export certain privileged
platform interfaces, while reserving the remainder for its exclusive use.4 Unprivileged platform
interfaces are accessible to both the TOE and its applications.

4 Normally, the system designer cannot control which platform interfaces are privileged; however, for certain
processors, the microcode can be modified so that instructions that are ordinary unprivileged can be turned into
privileged ones.

44

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Figure 2-7. Platform Components and Their Relationships

External Platform Interfaces

TOE Software

Pl
at

fo
rm C1 C2 Cn-1 Cn

C3 C4 . . . C5 C6

Internal Platform Interfaces

Virtualized Platform Abstractions

Unused Interfaces

Used Interfaces

C1…Cn Platform components

Application Software
External Platform Interfaces

TOE Software

Pl
at

fo
rm C1 C2 Cn-1 Cn

C3 C4 . . . C5 C6

Internal Platform Interfaces

Virtualized Platform Abstractions

Unused Interfaces

Used Interfaces

C1…Cn Platform components

Application Software

96 Because external platform interfaces are accessible to untrusted entities, emphasis is placed on
ensuring their correct behavior. An untrusted entity may, for example, attempt to use such
interfaces in ways that violate the normal assumptions and rules for correct use. Internal platform
interfaces are accessible only within the TSF, which is designed to use them in correct and well-
defined ways.

97 The TSF might not utilize all possible platform component interfaces presented to it, leaving
some platform component interfaces unused. Similarly, some inter-component interfaces might
not be used. The TSF may also virtualize selected internal platform interfaces and present those
virtualized abstractions at its interface. These abstractions, as well as the external platform
interfaces, are examples of the TOE’s exported resources.

2.7 Evaluation Considerations
2.7.1 Security Management

98 This protection profile does not include administrative roles, identification & authentication, or
security management functions associated with individuals who acquire administrative roles. It
is expected the TOE security management decisions and actions are performed offline by

45

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

authorized administrators or during an execution session by subjects granted the authorization to
do so. If the TOE requires a user interface for authorized administrators to perform security
management, then the appropriate requirements must be added to the Security Target such that
they are consistent with the objectives of this protection profile.

2.7.2 TOE Component Development Diversity
99 The TOE may include multiple hardware or software components that have been created by

different developers. While this diversity is not a conceptual problem for evaluation, it may
present constraints on the execution of the evaluation process, such as the order of the evaluation
of components. Regardless, the various components for a given TOE must be evaluated to the
requirements of this protection profile, based upon the role they serve while enforcing or
supporting the enforcement of the PIFP, supporting the generation of configuration vectors,
trusted distribution, or secure initialization of the TOE.

100 Similarly, the modular and component structure of each evaluated TOE may differ significantly.
The TOE may consist of separate initialization and runtime components, as well as separate
hardware independent and hardware dependent components5. This structure will be a critical
factor in the TOE evaluation, especially with regard to whether a module or component is
determined to be in the TSF, the TOE, or in the IT environment, since different requirements will
apply. For example, initialization components are not part of the TSF but, as part of the TOE, are
subject to evaluation scrutiny (see Figure 2-1). The SKPP takes a standard approach to address
different or unique requirements for different TOE configurations, as follows:

• When possible, differences in the criteria are first addressed through use of the CC-
defined operations of assignment, selection, iteration and refinement.

• In the cases where the CC-defined operations do not suffice, the CC-defined
explicitly stated requirements model is used.

• Where there are differences in the implications of the criteria, those differences are
addressed by the Application Notes that follow the criteria.

101 When the TOE is used in composition with other components or products to make up a larger
system, it is the responsibility of the larger system’s designers to articulate support for a coherent
application-level security policy in the TOE configuration data, as well as to ensure that the
configuration data itself is self-consistent. It is only with well-formed configuration data that the
TOE can be expected to enforce mission-critical policies. The judgment as to whether a given
instantiation of configuration data is self-consistent, or well formed with respect to the intended
application-level security policy is beyond the scope of this protection profile and beyond the
scope of the evaluation of the TOE.

5 Examples of hardware dependent components are an “architecture support package” (ASP) for interaction with a
specific processor and a “board support package” (BSP) for interaction with a specific processor environment
(devices, buses, I/O, etc.).

46

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

2.8 Use of High Robustness
102 A high robustness TOE is necessary protection for environments where the presence of both

sophisticated threat agents and high value resources makes the likelihood of an attempted
compromise high. An alternative perspective is to consider the damage to the organization that
would result if a TOE compromise were to occur. "Likelihood of compromise" and "damage
resulting from compromise" are parallel notions. They both are intrinsically linked to the value
of the data being processed – the more valuable the data, the greater the likelihood that an
adversary will attempt to compromise the TOE, similarly the greater the damage to the
organization that would result from such compromise.

47

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

3. TOE Security Environment
103 This section defines the expected TOE security environment in terms of the threats, security

assumptions, and the security policies that must be followed for the high robustness TOE.

3.1 Threats
104 The following threats are addressed by PP compliant TOEs:

T.ADMIN_ERROR An administrator may incorrectly install or configure the
TOE (including the misapplication of the protections
afforded by the PIFP), or install a corrupted TOE
resulting in ineffective security mechanisms.

T.ALTERED_DELIVERY The TOE may be corrupted or otherwise modified
during delivery such that the on-site version does not
match the master distribution version.

T.CONFIGURATION_CHANGE The lack of TSF-enforced constraints on the ability of an
authorized subject to invoke or dictate how the TOE is
reconfigured may result in the TOE transitioning to an
insecure (unknown, inconsistent, etc) state.

T.CONFIGURATION_INTEGRITY The TOE may be placed in a configuration that is not
consistent with that of the configuration vector due to
the improper loading of the configuration vector or
incorrect use of the configuration vector during TOE
initialization.

T.COVERT_CHANNEL_EXPLOIT An unauthorized information flow may occur between
partitions as a result of covert channel exploitation.

T.DENIAL_OF_SERVICE A malicious subject may block others from system
resources (e.g., system memory, persistent storage, and
processing time) via a resource exhaustion attack.

T.INCORRECT_CONFIG

The configuration vectors are not an accurate and
complete description of the operational configuration of
the TOE as used by an organization.

T.INCORRECT_LOAD

The software portion of the TSF implementation and/or
configuration vectors are not correctly converted into a
TOE-useable form.

48

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

T.INSECURE_STATE The TOE may be placed in an insecure state as a result
of an erroneous initialization, halt, reconfiguration or
restart, transition to maintenance mode, or as a result of
an unsuccessful recovery from a system failure or
discontinuity.

T.LEAST_PRIVILEGE The design and implementation of the TSF internals
may not suffice to limit the damage resulting from
accident, error or unauthorized use.

T.POOR_DESIGN Unintentional or intentional errors in requirements
specification or design of the TOE may occur, leading to
flaws that may be exploited by a malicious subject.

T.POOR_IMPLEMENTATION Unintentional or intentional errors in implementation of
the TOE design may occur, leading to flaws that may be
exploited by a malicious subject.

T.POOR_TEST Lack of or insufficient evaluation and runtime tests to
demonstrate that all TOE security functions operate
correctly (including in a fielded TOE) may result in
incorrect TOE behavior being undiscovered.

T.TSF_COMPROMISE A malicious subject may cause TSF data or executable
code to be inappropriately accessed (viewed, modified,
executed, or deleted).

T.UNAUTHORIZED_ACCESS A subject may gain access to resources or TOE security
management functions for which it is not authorized
according to the TOE security policy.

3.2 Security Policy
122 The following organizational security policies are addressed by PP compliant TOEs:

P.ACCOUNTABILITY The TOE shall provide the capability to make available
information regarding the occurrence of security relevant
events.

P.CONFIGURATION_CHANGE The TOE shall support the capability to perform a static
configuration change. The TOE may also provide the
capability for an authorized subject to select or redefine the
configuration vector to be used upon TOE startup, TOE
restart or TOE reconfiguration.

P.CRYPTOGRAPHY The TOE shall use NSA approved cryptographic
mechanisms.

49

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

P.INDEPENDENT_TESTING The TOE shall undergo independent testing.

P.RATINGS_MAINTENANCE A plan for procedures and processes to maintain the TOE’s
rating shall be in place to maintain the TOE’s rating once it is
evaluated.

P.SYSTEM_INTEGRITY The TOE shall provide the ability to periodically validate its
correct operation.

P.USER_GUIDANCE The TOE shall provide documentation regarding the correct
use of the TOE security features.

P.VULNERABILITY_ANALYSI
S_AND_TEST

The TOE shall undergo independent vulnerability analysis
and penetration testing by NSA to demonstrate that the TOE
is resistant to an attacker possessing a high attack potential.

3.3 Security Usage Assumptions
123 The specific conditions below are assumed to exist in a PP-compliant TOE environment:

A.PHYSICAL It is assumed that the non-IT environment provides the TOE
with appropriate physical security commensurate with the
value of the IT assets protected by the TOE.

A.SUBJECT_ALLOCATION It is assumed that a properly trained trusted individual will
create configuration vectors such that, for those partitions to
which subjects are allocated, each partition is allocated one or
more subjects (i.e., subjects with homogeneous access
requirements, or subjects with heterogeneous access
requirements) that are appropriate for the policy abstraction
supported by the TOE.

A.COVERT_CHANNELS If the TOE has covert storage and/or timing channels, then for
all subjects executing on that TOE, it is assumed that relative
to the IT assets to which they have access, those subjects will
have assurance sufficient to outweigh the risk that they will
violate the security policy of the TOE by using those covert
channels.

A.TRUSTED_FLOWS

For any subject configured to have unrestricted access in
multiple policy equivalence classes, it is assumed that the
subject is trusted at least with assurance commensurate with
the value of the IT assets in all equivalence classes to which it
has access.6

6 The TOE is allowed to be configured with multiple partitions representing a single policy equivalence class, and

50

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

A.TRUSTED_INDIVIDUAL It is assumed that any individual allowed to perform
procedures upon which the security of the TOE may depend is
trusted with assurance commensurate with the value of the IT
assets.

the resources in such a group of partitions would be treated equivalently with respect to the Partition Flow Rule of
the PIFP. For example, it might be desirable in a larger system that is built on an SKPP TOE for multiple TOE
partitions to be interpreted as “SECRET” in the application domain. To support this, the TOE configuration data
could be created to allow both read and write between each of those partitions. Refer to Section 7 for further
discussion of rationale for this assumption.

51

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

4. Security Objectives
124 This section defines the security objectives for the TOE and its environment. These objectives

are suitable to counter all identified threats and cover all identified organizational security
policies and assumptions. The security objectives allocated to the TOE are identified with “O.”
preceding the name of the objective. The security objectives allocated to the environment are
identified with “OE.” preceding the name of the objective.

4.1 TOE Security Objectives

O.ACCESS The TOE will ensure that subjects gain only
authorized access to exported resources.

O.ADMIN_GUIDANCE The TOE will provide administrators with the
necessary information for secure management of the
TOE.

O.AUDIT_GENERATION The TOE will provide the capability to detect,
generate and export audit records for security relevant
auditable events.

O.AUTHORIZED_SUBJECT The TOE will ensure that only authorized subjects are
allowed to access restricted resources.

O.BOUNDED_EXECUTION The TOE will exhibit predictable and worst-case
bounded execution behavior.

O.CHANGE_MANAGEMENT The configuration of, and all changes to, the
configuration items that comprise the TOE and its
development evidence will be analyzed, tracked, and
controlled by trusted individuals throughout the TOE’s
development.

O.CONFIGURATION_CHANGE The TOE will support the capability to perform a static
configuration change. The TOE may also provide the
capability for an authorized subject to select or
redefine the configuration vector to be used upon TOE
startup, TOE restart or TOE reconfiguration.

O.CORRECT_CONFIG The TOE will provide procedures and mechanisms to
generate the configuration vectors such that they
accurately describe the operational configuration of
the TOE as used by an organization.

52

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

O.CORRECT_INIT The TOE will provide mechanisms to correctly
transfer the software portion of the TSF
implementation and TSF data into the TSF’s security
domain and to correctly establish the TOE in an
operational configuration consistent with the
configuration vector that defines the configuration
data.

O.CORRECT_LOAD The TOE will provide procedures and mechanisms to
correctly convert the software portion of the TSF
implementation and/or configuration vectors into a
TOE-useable form.

O.CORRECT_TSF_OPERATION The TOE will provide a runtime self-test capability.

The TOE will provide the means for an authorized
subject to invoke and obtain the results of the self-test.

The TOE will take action in response to any failure of
a runtime self-test capability.

O.COVERT_CHANNEL_ANALYSIS The TOE will undergo appropriate covert channel
analysis by NSA to demonstrate that the TOE satisfies
covert channel mitigation metrics.

O.CRYPTOGRAPHY The TOE will use NIST FIPS-validated cryptography
as a baseline with additional NSA-approved methods
for key management (i.e., generation, access,
distribution, destruction, handling, and storage of
keys) and for cryptographic operations (i.e.,
encryption, decryption, signature, hashing, key
exchange, and random number generation services).

O.FUNCTIONAL_TESTING The TOE will undergo independent security functional
testing that demonstrates the TSF satisfies the security
functional requirements.

O.INIT_SECURE_STATE The TOE will provide mechanisms to transition the
TSF to an initial secure state without protection
compromise.

O.INSTALL_GUIDANCE The TOE will be delivered with the appropriate
installation guidance to establish and maintain TOE
security.

O.INTERNAL_LEAST_PRIVILEGE The entire TSF will be structured to achieve the
principle of least privilege among TSF modules.

53

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

O.MANAGE The TOE will provide all the functions necessary to
support the administrative users and authorized
subjects in their management of the TOE security
functions and configuration data, and restrict these
functions from use by unauthorized subjects.

O.RATINGS_MAINTENANCE Procedures and processes to maintain the TOE’s rating
will be documented.

O.RECOVERY_SECURE_STATE The TOE will provide procedures and/or mechanisms,
which can be used in the event of failure, faults, or
discontinuity, to preserve secure state and to transition
the TSF back to a secure state without protection
compromise.

O.REFERENCE_MONITOR The TOE will provide a reference validation
mechanism responsible for the enforcement of the
TSP.

The reference validation mechanism will execute in its
own security domain.

The reference validation mechanism must be tamper
proof, its enforcement functions must be always
invoked, and its design and implementation must be of
size and complexity small enough to be subject to
analysis and tests, the completeness of which can be
assured.

O.RESIDUAL_INFORMATION The TOE will ensure that any information contained in
a protected resource is not released to subjects when
the resource is reallocated.

O.RESOURCE_ALLOCATION The TOE will provide mechanisms that enforce
constraints on the allocation of exported TOE
resources.

O.SECURE_STATE The TOE will preserve secure state during an
execution session.

O.SOUND_DESIGN The TOE will be designed using sound design
principles and techniques which will be accurately
documented.

The TOE design will be completely and accurately
documented.

O.SOUND_IMPLEMENTATION The implementation of the TOE will be an accurate
instantiation of its design.

54

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

O.SUBJECT_ISOLATION The TOE will provide mechanisms to protect each
subject from unauthorized interference by other
subjects.

O.TRANSITION The TOE will provide the capabilities for an
authorized subject to restart the TOE, halt the TOE
and transition the TOE into maintenance mode.

O.TRUSTED_DELIVERY The integrity of the TOE must be protected during the
initial delivery and subsequent updates, and verified to
ensure that the on-site version matches the master
distribution version.

O.TSF_INTEGRITY The TOE will verify the integrity of the TSF code and
data.

O.USER_GUIDANCE The TOE will provide users with the necessary
information for secure use of the TOE.

O.VULNERABILITY_ANALYSIS_TEST The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of the
TOE does not allow attackers with high attack
potential to violate the TOE’s security policies.

4.2 Environment Security Objectives

OE.PHYSICAL Physical security will be provided for the TOE by the
non-IT environment commensurate with the value of
the IT assets protected by the TOE.

OE.SUBJECT_ALLOCATION A properly trained trusted individual will create
configuration vectors such that, for those partitions to
which subjects are allocated, each partition is allocated
one or more subjects (i.e., subjects with homogeneous
access requirements, or subjects with heterogeneous
access requirements) that are appropriate for the policy
abstraction supported by the TOE.

55

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

OE.COVERT_CHANNELS If the TOE has covert storage and/or timing channels,
then all subjects executing on that TOE will, relative
to the IT assets to which they have access, have
assurance sufficient to outweigh the risk that they will
violate the security policy of the TOE by using those
covert channels.

OE.TRUSTED_FLOWS For each configuration of the TOE, a partial order of
the flows that are allowed between policy equivalence
classes will be identified7. Any subject allowed by the
configuration data to cause information flow that is
contrary to the partial order will be trusted at least with
assurance commensurate with the value of the IT
assets in all equivalence classes to which it has access.

OE.TRUSTED_INDIVIDUAL Any individual allowed to perform procedures upon
which the security of the TOE may depend must be
trusted with assurance commensurate with the value of
the IT assets.

7 The partial ordering and equivalence class properties of a lattice flow policy are described by Denning [9].

56

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5. TOE Security Functional
Requirements

125 This section contains the requirements for the TOE security functions (TSF). The requirements
are applied against the TOE in conjunction with the underlying hardware that supports it. The
requirements contained in this section are either selected from Part 2 of the CC or are explicitly
stated in accordance with the CC rules for explicitly stated requirements (refer to CC Part III
APE_SRE). Table 5.1 lists the explicitly stated functional requirements in this section.

Table 5.1. Explicitly Stated Functional Requirements

Explicit Component Component Behavior Name

FAU_SAR_EXP.1 Audit Review

FAU_SEL_EXP.1 Selective Audit

FIA_ATD_EXP.1 Partition, Subject and Exported Resource Attribute Definition

FIA_USB_EXP.1 Partition, Subject and Exported Resource Attribute Binding

FMT_MCD_EXP.1 Management of Configuration Data

FMT_MSA_EXP.1 Management of Security Attributes

FMT_MSA_EXP.3 Static Policy Attribute Initialization

FPT_CFG_EXP.1 Configuration Change

FPT_ESS_EXP.1 Establishment of Secure State

FPT_HLT_EXP.1 TOE Halt

FPT_MTN_EXP.1 TOE Maintenance

FPT_MTN_EXP.2 TOE Maintenance Secure

FPT_PLP_EXP.1 TSF Least Privilege

FPT_RCV_EXP.2 Automated Recovery

FPT_RST_EXP.1 TOE Restart

FPT_TST_EXP.1 TSF Testing

FRU_PRU_EXP.1 TSF Predictable Resource Utilization

5.1 Security Audit (FAU)
5.1.1 Security Audit Automatic Response (FAU_ARP)
5.1.1.1 Security Alarms (FAU_ARP.1)

FAU_ARP.1.1 Refinement: The TSF shall take [assignment: list of the actions to
take] upon detection of any failure of the tests defined in FPT_AMT.1
and FPT_TST.1. 1

57

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: The TSF must take some action. The ST author is to fill in the open assignment
with the list of actions that are applicable for the TOE’s intended use, with particular
attention to providing the ability for the TOE to support system-level requirements for
fault/failure detection and response. Acceptable actions include a means to notify the IT
environment or explicit action taken by the TSF (e.g., shutdown, reconfiguration).

5.1.2 Security Audit Data Generation (FAU_GEN)
5.1.2.1 Audit Data Generation (FAU_GEN.1)

FAU_GEN.1.1-NIAP-0407 The TSF shall be able to generate an audit record of the
following auditable events:

a) Start-up and shutdown of the audit functions;
b) All auditable events for the basic level of audit;
c) All auditable events listed in Table 5.2; and
d) [selection: [assignment: all auditable events at a basic level of audit introduced by

the inclusion of additional SFRs determined by the ST author], [assignment: all
auditable events commensurate with a basic level of audit introduced by the
inclusion of explicit requirements determined by the ST author], “no additional
events”]

Application Note: For the selection, the ST author should choose one or both of the assignments
(as detailed in the following paragraphs), or select “no additional events”.

For the first assignment in the selection, the ST author augments the table (or lists explicitly)
the audit events associated with the basic level of audit for any SFRs that the ST author
includes in the ST that are not included in this PP.

Likewise, for the second assignment the ST author includes audit events that may arise due to
the inclusion of any explicit requirements in the ST that are not already in the PP. Because
“basic” audit is not defined for such requirements, the ST author will need to determine a set
of events that are commensurate with the type of information that is captured at the basic
level for similar requirements.

If no additional (CC or explicit) SFRs are included, or if additional SFRs are included that do
not have “basic” audit associated with them, then it is acceptable to assign “no additional
events” in this item.

In determining whether or not added functionality should have auditable events, the ST
author is to assess the added functionality in terms of its conceptual relationship with the core
functionality expressed in this PP and their corresponding requirements for auditable events.
As an example: FAU_SEL_EXP.1 requires that the set of auditable events be statically
determined prior to execution of the TSF and that the set of auditable events are not
modifiable during runtime. Since there is no capability to modify the audit behavior at
runtime, there is no requirement to audit changes to the runtime behavior. However, should
the ST author provide the capability for authorized subjects to modify the behavior of the
audit mechanism during runtime, then any such runtime modification constitutes an auditable
event.

Application Note: The audit record structure is to be documented in the administrative guidance
as required by AGD_ADM_EXP.1.14C. The TSF is expected to identify each auditable event
and to capture data that characterizes each auditable event as defined in Table 5-2 Auditable
Events. The TSF is not required to notify the IT environment of the existence of the audit data
and the TSF is not required to “push” the information to the IT environment.

58

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: It is common that for purposes of engineering analysis, embedded system
components record operational and health and status data to support post-operation analysis
and debugging. This data is referred to as instrumentation. This data is not necessarily
security relevant, that is, not associated with enforcement of the security policy by the TSF.
The audit data generation requirements in this PP should not be confused with
instrumentation requirements levied by applications. This protection profile does not forbid
integrating audit data with instrumentation data. However, if a single mechanism is used to
manage both, then all collected data must be protected as security-relevant audit data per the
requirements in this profile.

Table 5.2. Auditable Events

Security Functional
Requirement

Audit events prompted by requirement

Security Alarms (FAU_ARP.1) • Actions taken due to failure of TSF self tests and tests defined in
FPT_AMT.1.1

Application Note: TSF self tests include the suite of tests to determine the
correct operation of the software portion of the TSF implementation and the
TSF integrity tests for verification of TSF data and TSF executable code
integrity.

Audit Data Generation
(FAU_GEN.1)

(None)

Explicit: Audit Review
(FAU_SAR_EXP.1)

(None)

Explicit: Selective Audit
(FAU_SEL_EXP.1)

(None)

Complete Information Flow
Control (for Information Flow
Control Policy) (FDP_IFC.2)

(None)

Simple Security Attributes
(FDP_IFF.1)

• Denial of requested operation

Limited Illicit Information Flows
(FDP_IFF.3)

• The use of identified illicit information flow channels

Explicit: Full Residual
Information Protection
(FDP_RIP.2)

(None)

Explicit: Partition, Subject and
Exported Resource Attribute
Definition (FDP_ATD_EXP.1)

(None)

Explicit: User-Subject Binding
(FIA_USB_EXP.1 (1), (2), (3))

• Unsuccessful binding of security attributes to individual partitions,
subjects, non-subject exported resources

Explicit: Management of
Configuration Data
(FMT_MCD_EXP.1)

(None)

Management of Security
Functions (FMT_MOF.1)

(None)

59

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit: Management of
Security Attributes
(FMT_MSA_EXP.1)

(None)

Static Policy Attribute
Initialization (FMT_MSA.3)

• Any TSF assignment of a restrictive default value

Management of TSF Data
(FMT_MTD.1)

(None)

Secure TSF Data (FMT_MTD.3) • Rejection of specified values for TSF data

Specification of Management
Functions (FMT_SMF.1)

(None)

Underlying Abstract Machine
Test (FPT_AMT.1)

• Failures detected by tests of the underlying abstract machine and
the results of the tests

Explicit: Configuration Change
(FPT_CHG_EXP.1)

• All requests for a configuration change

Explicit: Establishment of
Secure State
(FPT_ESS_EXP.1)

• Startup of the TOE, i.e., successful and unsuccessful
establishment of secure state

Failure with Preservation of
Secure State (FPT_FLS.1)

• Failures detected by the FPT_AMT.1 and FMT_TST.1 tests
• Other TSF failures specified in the assignment statement of

FPT_FLS.1.1b

Explicit: TOE Halt
(FPT_HLT_EXP.1)

(None)

Explicit: TOE Maintenance
(FPT_MTN_EXP.1)

• Halt of the TOE when the TSF is unable to preserve secure state
after transitioning to maintenance mode from a secure state

Explicit: TOE Maintenance
Secure (FPT_MTN_EXP.2)

(None)

Explicit: TSF Least Privilege
(FPT_PLP_EXP.1)

(None)

Explicit: Automated Recovery
(FPT_RCV_EXP.2)

• TOE condition that causes the TSF to be in an insecure state
• Action taken to attempt to recover the TOE to a secure state

Function Recovery
(FPT_RCV.4)

• The inability of the TOE to return to a secure state after failure of a
security function

• The detection of a failure of a security function

Explicit: TOE Restart
(FPT_RST_EXP.1)

(None)

Non-Bypassability of the TSF
(FPT_RVM.1)

(None)

Complete Reference Monitor
(FPT_SEP.3)

(None)

Reliable Time Stamp
(FPT_STM.1)

• Changes to the TSF-internal time source

60

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit: TSF Testing
(FPT_TST_EXP.1)

• Failures of TSF self tests and the results of the tests

Explicit: Minimum and
Maximum Quotas (FRU_RSA.2)

• Attempt to exceed memory quota
• Attempt to exceed processing time quota

Explicit: TSF Predictable
Resource Utilization
(FRU_PRU_EXP.1)

(None)

Application Note: The use of the word “None” in Table 5-2 means that there are no requirements
for auditing events associated with the functions/mechanisms that implement the stated
Security Functional Requirement.

FAU_GEN.1.2-NIAP-0407 The TSF shall record within each audit record at least the
following information:

a) Date and time of the event, type of event, subject identity, and the outcome (success or
failure) of the event; and
b) For each audit event type, based on the auditable event definitions of the functional
components included in the PP/ST,

• the identity of the resource;
• for changes that affect the PIFP attributes, the new and old values of the

PIFP attributes specified at the TSFI.
Application Note: It is acceptable for the TSF to provide a timestamp that reflects the date and

time of the event as a relative time within the TOE. This is acceptable so long as the IT
environment is able to correlate that timestamp to date and time of day and the IT
environment is able to establish event sequences based upon timestamp values (that is, the
granularity to which a precise ordering of events can be determined is a function of the
precision of the underlying clock which in turn establishes the time-stamp format). The
administrative documentation is required to discuss the structure, precision, and
interpretation of the timestamp (ref AGD_ADM_EXP.1.14C).

Application Note: Audit information associated with security functions that are included in the ST
but that are not included in this PP should be contained within the audit record.

5.1.3 Security Audit Review (FAU_SAR)

5.1.3.1 Explicit: Audit Review (FAU_SAR_EXP.1)

FAU_SAR_EXP.1.1 The TSF shall export audit records for use by authorized
subjects.

FAU_SAR_EXP.1.2 The TSF shall provide the audit records in a manner suitable for
an authorized subject to interpret the information.

Application Note: FAU_SAR_EXP.1.1 may be satisfied by placing the audit records in an
internal “circular buffer” for which the authorized subject has responsibility for collecting
the information prior to it becoming overwritten. This element requires the TSF to provide an
external interface that the authorized subject can use to request the audit records.

Application Note: AGD_ADM_EXP.1.14C requires the administrator guidance to include
information on how to interprete audit records.

61

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.1.4 Security Audit Event Selection (FAU_SEL)
5.1.4.1 Selective Audit (FAU_SEL_EXP.1)

FAU_SEL_EXP.1.1 The TSF shall be able to include auditable events in or exclude
auditable events from the set of runtime audited events based on the
following attributes as specified by the configuration data:

a) Resource identity,
b) Subject identity,
c) Event type,
d) Success of auditable security events,
e) Failure of auditable security events,
f) [selection: [assignment: list of additional attributes specific to the audit capabilities

of the implementation], no additional attributes].
Application Note: The following clarification is provided with regard to the use of the words
“audited” and “auditable” above. As used above “auditable events” refers to the totality of
events that the TSF is capable of auditing at runtime. The set of “audited events” should be read
as the “set of events to be audited during an execution session” and refers to the subset of
auditable events for which the TSF will generate an audit event record should the indicated event
occur during runtime.
The TSF is not required to provide a run-time capability for management of the audit function
behavior. It is acceptable for the TSF to provide the means for the audit function behavior to be
specified by the configuration data, and for that behavior to remain in effect and unchanged until
such time that the TOE is initialized with a different set of audit configuration data.

5.2 User Data Protection (FDP)
5.2.1 Information Flow Control Policy (FDP_IFC)

5.2.1.1 Complete Information Flow Control (FDP_IFC.2)

FDP_IFC.2.1 Refinement: The TSF shall enforce the Partitioned Information Flow
SFP on
• All partitions
• All subjects
• All exported resources

for all possible operations that cause information to flow between
subjects and exported resources. 2

FDP_IFC.2.2 Refinement: The TSF shall ensure that all operations that cause any
information to flow between any subject and any exported resource are
covered by an information flow control SFP. 3

Application Note: Regardless of the abstraction at which information flows are enforced
(refer to FDP_IFF.1.1-NIAP-0407), the policy applies to all partitions, all subjects, and all
exported resources.

62

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.2.2 Information Flow Control Functions (FDP_IFF)

5.2.2.1 Simple Security Attributes (FDP_IFF.1)

FDP_IFF.1.1-NIAP-0407: Refinement: The TSF shall enforce the Partitioned
Information Flow SFP as a [selection: Partition Abstraction, Least
Privilege Abstraction] based on the flow(s) caused by an operation,
and the following types of partition, subject, and exported resource
security attributes associated with the operation: 4

• The identity of the subject involved in the flow of information;
• The identity of the partition to which the subject is assigned;
• The identity of the exported resource involved in the flow of

information;
• The identity of the partition to which the exported resource is assigned.

FDP_IFF.1.2-NIAP-0407 Refinement: The TSF shall permit an operation if, for
each flow associated with the operation, the following rules hold: 5

• For a TOE that is configured to enforce the PIFP as the Partition Abstraction:
a) The identity of the subject is in the set of defined subjects for the

identified partition;
b) The identity of the exported resource is in the set of defined exported

resources for the identified partition.
c) For the identified partition-pair, the partition-pair rule explicitly

authorizes the mode of the flow;
• For a TOE that is configured to enforce the PIFP as the Least Privilege

Abstraction:
a) The identity of the subject is in the set of defined subjects for the

identified partition;
b) The identity of the exported resource is in the set of defined exported

resources for the identified partition.
c) For the identified subject-exported resource pair

1. a subject-exported resource rule explicitly authorizes the mode of the
flow;

-OR-
2. the partition-pair rule corresponding to the subject-exported resource

pair explicitly authorizes the mode of the flow, and
3. the subject-exported resource pair rule is NULL for the mode of the

flow.
Application Note: Regardless of which abstraction is chosen for an execution session, the

authorized administrator has the responsibility to allocate subjects and exported resources to
partitions and to specify their authorizations such that requirements of the chosen abstraction
are met and the Principle of Least Privilege is achieved. Refer to Section 2 and AGD_ADM
for further information about selecting the correct abstraction.

63

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: The PIFP abstraction to be enforced during an execution session is determined
by the configuration data (see FPT_ESS_EXP.1.2), and applies to all partitions: the TOE is
either configured to enforce the Partition Abstraction or it is configured to enforce the Least
Privilege Abstraction.

Application Note: An individual flow is characterized by the triplet consisting of the
[partition/subject, partition/exported resource, mode] associated with the operation that
invokes the flow.

Application Note: The identity of the subject and the partition to which it is assigned is required
for both policy abstractions. For the Partition Abstraction, it is acceptable for a subject to
share the identity of the partition to which it is assigned for the purpose of flow mediation.

Application Note: The identity of the resource and the partition to which it is assigned is required
only for the Least Privilege Abstraction.

FDP_IFF.1.3-NIAP-0407 The TSF shall enforce the following information flow control
rules: no additional information flow control SFP rules.

FDP_IFF.1.4-NIAP-0407: The TSF shall provide the following: no additional SFP
capabilities.

FDP_IFF.1.5-NIAP-0407: The TSF shall explicitly authorize an information flow
based on the following rules: no explicit authorization rules.

FDP_IFF.1.6-NIAP-0407: The TSF shall explicitly deny an information flow based on
the following rules: no explicit denial rules.

5.2.2.2 Limited Illicit Information Flows (FDP_IFF.3)

FDP_IFF.3.1 The TSF shall enforce the Partitioned Information Flow SFP to limit
the capacity of covert timing channels and covert storage channels
between partitions to [assignment: metric establishing maximum
covert channel capacity].

5.2.3 Residual Information Protection (FDP_RIP)
5.2.3.1 Full Residual Information Protection (FDP_RIP.2)

FDP_RIP.2.1 Refinement: The TSF shall ensure that any previous information
content of a resource is made unavailable upon the [selection: allocation
of the resource, deallocation of the resource]. 6

Application Note: The general intent of this requirement is to ensure that when a resource is
reallocated, unauthorized access to the contents of the resource is prevented. This
requirement applies to those cases where the resource is explicitly allocated to and later
deallocated from a subject. In the case of an explicitly shared resource, such as two subjects
with access to a common address space, the TSF is not required to sanitize the address space
upon context switch to/from either of the subjects.

Application Note: This requirement applies to all TOE resources – those internal to the TSF as
well as those exported by the TSF.

64

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.3 Identification and Authentication (FIA)
5.3.1 User Attribute Definition (FIA_ATD)

5.3.1.1 Explicit: User Attribute Definition (for partition attributes)
(FIA_ATD_EXP.1(1))

FIA_ATD_EXP.1.1(1) The TSF shall maintain the following list of configuration data
security attributes for each partition:
• Identity of the partition
• Minimum and maximum quotas for memory
• Minimum and maximum quotas for processing time
• Information flow authorizations
• [selection: [assignment: list of additional partition security attributes], “no

other partition security attributes”].

5.3.1.2 Explicit: User Attribute Definition (for subject attributes)
(FIA_ATD_EXP.1(2))

FIA_ATD_EXP.1.1(2) The TSF shall maintain the following list of configuration data
security attributes for each subject:
• Identity of the subject
• Identity of the partition to which the subject is bound
• Subject authorizations
• Information flow authorizations
• [selection: [assignment: list of additional subject security attributes], “no

other subject security attributes”].

5.3.1.3 Explicit: User Attribute Definition (for non-subject exported resource
attributes) (FIA_ATD_EXP.1(3))

FIA_ATD_EXP.1.1(3) The TSF shall maintain the following list of configuration data
security attributes for each non-subject exported resource:
• Identity of the non-subject exported resource
• Identity of the partition to which the non-subject exported resource is bound
• Information flow authorizations
• [selection: [assignment: list of additional non-subject exported resource

security attributes], “no other non-subject exported resource security
attributes”].

Application Note: The configuration data fulfills the function that is typically performed by an

individual authorized to define users and to grant authorization to users for interaction with
exported resources.

65

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.3.2 User-Subject Binding (FIA_USB)

5.3.2.1 Explicit: User-Subject Binding (for partition attribute binding)
(FIA_USB_EXP.1(1))

FIA_USB_EXP.1.1(1) The TSF shall associate the following configuration data
security attributes with partitions:
• Partition ID
• Partition minimum/maximum memory quotas
• Partition minimum/maximum processing time quotas
• Information flow authorizations to other partitions
• [selection: [assignment: list of other partition security attributes], “no other

partition security attributes”].

FIA_USB_EXP.1.2(1) The TSF shall enforce the following rules on the initial
association of configuration data security attributes with partitions:

a) The identity of the partition is in the set of defined partitions;
b) [assignment: other rules for the initial association of attributes].

FIA_USB_EXP.1.3(1) The TSF shall enforce the following rules governing changes
to the configuration data security attributes associated with partitions:
[assignment: rules for the changing of attributes].

5.3.2.2 Explicit: User-Subject Binding (for subject attribute binding)
(FIA_USB_EXP.1(2))

FIA_USB_EXP.1.1(2) The TSF shall associate the following configuration data
security attributes with subjects:
• Subject ID
• Partition ID to which the subject is to be bound
• Authorizations for invoking TSFI
• Information flow authorizations relevant to the abstraction selected in

FDP_IFF.1.1-NIAP-0407
• [selection: [assignment: list of other subject security attributes], “no other

subject security attributes”].
Application Note: In developing the ST, the ST developer must ensure that the information flow

authorizations specified in the ST are consistent with the subject attributes required by the
flow policy enforcement mechanism when determining if a specific flow is authorized.

 FIA_USB_EXP.1.2(2) The TSF shall enforce the following rules on the initial
association of configuration data security attributes with subjects:

a) The identity of the partition to which the subject is assigned is in the set
of defined partitions;

b) [assignment: other rules for the initial association of attributes].

66

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

FIA_USB_EXP.1.3(2) The TSF shall enforce the following rules governing changes
to the configuration data security attributes associated with subjects:
[assignment: rules for the changing of attributes].

5.3.2.3 Explicit: User-Subject Binding (for non-subject exported resource
attribute binding) (FIA_USB_EXP.1(3))

FIA_USB_EXP.1.1(3) The TSF shall associate the following configuration data
security attributes with non-subject exported resources:
• Exported resource ID
• Partition ID to which the non-subject exported resource is to be bound
• Information flow authorizations relevant to the abstraction selected in

FDP_IFF.1.1-NIAP-0407
• [selection: [assignment: list of other non-subject exported resource security

attributes], “no other non-subject exported resource security attributes”].
Application Note: In developing the ST, the ST developer must ensure that the information flow

authorizations specified in the ST are consistent with the non-subject exported resource
attributes required by the flow policy enforcement mechanism when determining if a specific
flow is authorized

 FIA_USB_EXP.1.2(3) The TSF shall enforce the following rules on the initial
association of configuration data security attributes with non-subject
exported resources:

a) The identity of the partition to which the non-subject exported resource
is assigned is in the set of defined partitions;

b) [assignment: other rules for the initial association of attributes].

FIA_USB_EXP.1.3(3) The TSF shall enforce the following rules governing changes
to the configuration data security attributes associated with non-subject
exported resources: [assignment: rules for the changing of attributes].

Application Note: The concept of user-subject binding applies to the TOE in the sense that the
TSF is required to perform the binding of partition and exported resource attributes defined
in the configuration data to the internal representation of those attributes for each partition,
subject and non-subject exported resource when they are created during TOE initialization.

5.4 Security Management (FMT)
Application Note: This PP addresses security management of the TOE with the assumption that the TOE

provides no capability for direct interaction between authorized administrators and the TSF during
runtime. As a result, this profile does not address security management roles and the association of
authenticated users to security management roles.

However, this profile requires that the TOE must, by design, provide inherent support for the various type
of security management functions that are typically performed by authorized administrators (e.g., trusted
initialization, definition of initialization parameters, policy definition and enforcement attributes governing
subject/resource interaction, TSF function behavior, fault detection and response, trusted recovery, and
TOE reconfiguration). This profile expects that the combination of off-line TOE tools and procedures and
TSF functionality will serve to implement the totality of the required security management functions.

67

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: The security management components contained in this profile define the minimal set of
required capability, consistent with terms defined in the Glossary and discussion of the TOE found in
Section 2.

In this regard, the profile requires that only authorized subjects are able to invoke a change of the
operational configuration to a new configuration, and requires that the Partitioned Information Flow SFP
enforcement attributes be defined completely by each configuration vector. The management functions
associated with these capabilities are found in this section.

Application Note: This profile allows the TOE developer to provide dynamic configuration change capability.
Should the TOE developer wish to implement greater dynamicity in the reconfiguration capability, then it is
the responsibility of the TOE developer to express the detailed requirements of that capability in the
Security Target. The Security Target must address both the functional requirements for the dynamic
configuration change capability as well any derived requirements to ensure that the reconfiguration
capability is consistent with the objectives of this profile and does in fact satisfy them.

5.4.1 Explicit: Management of Configuration Data (FMT_MCD_EXP)

5.4.1.1 Explicit: Management of Configuration Data (FMT_MCD_EXP.1)

FMT_MCD_EXP.1.1 The TSF shall prevent unauthorized modification of the
configuration data.

Application Note: The TSF is required to maintain configuration data and TSF internal vector set
consistent with its capability to reconfigure. The configuration data defines the TSF
configuration and the initial secure state of the TSF. It must be protected from modification
to preserve the integrity of the TSF secure state at all times including the following:
shutdown, start-up, restart, and configuration change of the TOE into the same configuration
or some other configuration.

5.4.2 Management of Functions in TSF (FMT_MOF)
Application Note: The requirement for the TSF to “restrict the ability …” means that the TSF must have the

means to prevent unauthorized subjects from invoking the indicated capability/service provided by the TSF.
A TOE that prevents all subjects within the TSC from invoking the capability (i.e., no subject can have the
authorization) meets requirements of this form. However, for cases where the TOE Environment invokes a
TSF-provided service (e.g., via hardware watchdog timer, etc), those entities are considered “authorized”,
and an argument is to be made to demonstrate that other entities are not able to invoke the
capability/service.

Application Note: Some SFRs state requirements for restrictions associated with capabilities that are optional
and which, if selected in the Security Target, have security-relevant implications. For those cases, the
requirement to restrict the ability to invoke a non-implemented capability is met by the fact that the
capability does not exist and the TOE would no concept of an authorized subject for that capability.

5.4.2.1 Management of Security Functions Behavior (to change the TOE configuration)
(FMT_MOF.1(1))

FMT_MOF.1.1(1) Refinement: The TSF shall restrict the ability to invoke a
configuration change of the TOE to authorized subjects. 7

68

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.4.2.2 Management of Security Functions Behavior (to restart the TOE)
(FMT_MOF.1(2))

FMT_MOF.1.1(2) Refinement: The TSF shall restrict the ability to invoke a restart
of the TOE to authorized subjects. 8

Application Note: The restart function will result in the execution of the initialization function.
See Glossary of Terms section for a description of the initialization function.

5.4.2.3 Management of Security Functions Behavior (to halt the TOE) (FMT_MOF.1(3))

FMT_MOF.1.1(3) Refinement: The TSF shall restrict the ability to invoke a halt of
the TOE to authorized subjects. 9

5.4.2.4 Management of Security Functions Behavior (to initiate TOE self-tests)
(FMT_MOF.1(4))

FMT_MOF.1.1(4) Refinement: The TSF shall restrict the ability to initiate TSF self-
tests to authorized subjects. 10

5.4.2.5 Management of Security Functions Behavior (to transition the TOE to
maintenance mode) (FMT_MOF.1(5))

FMT_MOF.1.1(5) Refinement: The TSF shall restrict the ability to invoke a
transition of the TOE to maintenance mode to authorized subjects. 11

1Application Note: The configuration data alone provides the designation of those subjects with
authorization to perform the following: invoke a configuration change of the TOE, invoke a
restart of the TOE, invoke a halt of the TOE, initiate TSF self-tests and invoke a transition of
the TOE to maintenance mode..

Application Note: FMT_MSA_EXP allows additional authorizations to be assigned to subject.
Should the TOE developer choose to implement such authorizations, additional iterations of
this component in the form of the above refinements must be included in the ST.

5.4.3 Management of Security Attributes (FMT_MSA)

5.4.3.1 Explicit: Management of Security Attributes (FMT_MSA_EXP.1)

FMT_MSA_EXP.1.1 The TSF shall assign the following authorizations to subjects
as specified by the configuration data:
• Ability to invoke a TOE configuration change,
• Ability to invoke a TOE restart,
• Ability to invoke a TOE halt,
• Ability to invoke TSF self-tests,
• Ability to obtain results of TSF self-tests,
• Ability to enter a maintenance mode,
• Ability to obtain audit information,
• [assignment: list of additional authorizations that may be assigned to

subjects].

69

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

FMT_MSA_EXP.1.2 The TSF shall only assign authorizations to subjects as
specified by the configuration data.

Application Note: FPT_TST allows authorized subjects to invoke and obtain the results of the TSF
self-tests. Should that capability be implemented, this requirement supports designation of
those subjects authorized to perform those functions.

5.4.3.2 Explicit: Static Policy Attribute Initialization (FMT_MSA_EXP.3)

FMT_MSA_EXP.3.1 The TSF shall provide restrictive default values for each
attribute that has not been assigned a value by the configuration data.

Application Note: This requirement applies to all attributes associated with the establishment of
secure state that occurs during the initialization of the TOE (to include initialization as a
result of system power-on, as part of a reconfiguration, or as part of a trusted recovery).

5.4.4 Management of TSF Data (FMT_MTD)
5.4.4.1 Management of TSF Data (for obtaining TSF self-test results) (FMT_MTD.1(1))

FMT_MTD.1.1(1) The TSF shall restrict the ability to obtain the results of TSF self-
tests to authorized subjects.

5.4.4.2 Management of TSF Data (for obtaining audit information) (FMT_MTD.1(2))

FMT_MTD.1.1(2) The TSF shall restrict the ability to obtain audit information to
authorized subjects.

5.4.4.3 Secure TSF Data (FMT_MTD.3)

FMT_MTD.3.1 Refinement: The TSF shall ensure that only valid values are
accepted for TSF data. 12

Application Note: Valid implies that the values fall within the defined range for the TSF data
(e.g., an audit enable/disable indicator must be within range of a Boolean type).

5.4.5 Specification of Management Functions (FMT_SMF)
5.4.5.1 Specification of Management Functions (FMT_SMF.1)

FMT_SMF.1.1 The TSF shall be capable of performing the following security
management functions:
• Restart the TOE,
• Halt the TOE,
• Conduct TSF self-tests,
• Transition the TOE to maintenance mode,
• [selection: change the TOE configuration, [assignment: additional

management functions], “no additional management functions”]
Application Note: The selection must be consistent with FPT_CFG_EXP.1.1. Therefore, the ST

author must select “change the TOE configuration” above if the TOE provides a
configuration change capability as indicated by the selection made in FPT_CFG_EXP.1.1.

70

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.5 Protection of the TSF (FPT)
5.5.1 Underlying Abstract Machine Test (FPT_AMT)
5.5.1.1 Abstract Machine Testing (FPT_AMT.1)

FPT_AMT.1.1 Refinement: The TSF shall run a suite of tests during start-up,
periodically during normal operation, during recovery, and
[assignment: other conditions under which abstract machine testing
should occur] to demonstrate the correct operation of the security
assumptions provided by the abstract machine that underlies the
software portions of the TSF. 13

Application Note: The assignment statement is to be completed to express all forms of periodic
abstract machine testing capability implemented by the TSF. Note that should the TSF
implement a configuration change capability (ref: FPT_CFG_EXP.1), then “other conditions
…” should include configuration change.

Application Note: The test suite need only cover aspects of the underlying abstract machine on
which the TSF relies for policy support and enforcement, to include domain separation. The
test suite for periodic testing may be a subset of the start-up test. The periodic test suite
should constitute the maximum set of tests that can be run without interfering with the normal
system operation. The periodic test suite may be further divided into different test groups.
Each test group may be scheduled to run at different times during run-time.

Application Note: Annex J of the CC, Part 2, explains that with respect to the FPT class, the TSF
consists of three parts: a) the TSF’s abstract machine, b) the TSF’s implementation, and c)
the TSF data. This component covers the testing of the TSF’s abstract machine which is
defined in Annex J as “the virtual or physical machine upon which the specific TSF
implementation under evaluation executes.”

Application Note: It is intended that the abstract machine test suite be run as part of all recovery
actions identified in FPT_RCV_EXP.2.

5.5.2 Explicit: Configuration Change (FPT_CFG_EXP)
5.5.2.1 Explicit: Configuration Change (FPT_CFG_EXP.1)

FPT_CFG_EXP.1.1 The TSF shall provide [selection: dynamic total configuration
change capability, dynamic constrained configuration change capability,
dynamic unconstrained configuration change capability, no configuration
change capability].

Application Note: It is the intent of this profile to not mandate that all separation kernel
implementations provide a configuration change capability; such a capability is not required
for all product types based on a separation kernel. However, this profile recognizes that any
capability to change the configuration of the TOE must be implemented in a manner that
preserves the security objectives. Therefore, should the TOE developer choose to implement
a configuration change capability, that capability is a component of the TSF and must be fully
addressed in the ST. Since the CC provides no mechanism to express optional requirements,
this profile has chosen to employ the selection operation to articulate this choice to the TOE
developer. Should the TOE developer select “no configuration change capability” in the
above selection, then FPT_CFG_EXP.1.2 and FPT_CFG.1.3 do not apply..

71

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

FPT_CFG_EXP.1.2 The TSF shall enforce the following rules when changing the
configuration of the TOE:

1) For the dynamic total configuration change capability:
a) The TSF shall maintain a configuration vector set containing multiple

configuration vectors;
b) The TSF shall allow an authorized subject to select the next TSF internal

vector from the TSF internal vector set;
Application Note: The term “next” is used in FPT_CFG_EXP to convey the temporal relationship

that exists between the current TSF internal vector and the one selected or constructed by an
authorized subject (i.e., the “next” TSF internal vector). It is not used to convey a predefined
sequential ordering of TSF internal vectors.

 Regarding condition 1b), the PP does not dictate that the designation of the next
configuration and the execution of the change be a single, atomic event: the changeover could
be immediate, or delayed. The authorized subject can choose to delay the changeover until
the next initialization (e.g., see FPT_RST_EXP), if the TSF provides the means to export the
choice of “next configuration” such that it is accessible by the TOE initialization mechanism.

Application Note: The PP does not dictate that the TOE transition to the halt state before the
initialization process begins.

2) For the dynamic constrained configuration change capability:
a) The TSF shall allow an authorized subject to specify new values for the

following TOE configuration attributes [assignment: list of TOE
configuration attributes], thus defining the next TSF internal vector;

b) The TSF shall enforce the following mandatory constraints on all TOE
configuration attributes [assignment: list of mandatory constraints to
changes of the TOE configuration].

c) For each TOE configuration attribute that may be changed, the TSF shall
impose [selection: [assignment: list of constraints specific to each
attribute that can be changed], no constraints] on changes to that
attribute;

3) For the dynamic unconstrained configuration change capability:
a) The TSF shall allow an authorized subject to change the following TOE

configuration attributes [assignment: list of TOE configuration
attributes], thus defining the next TSF internal vector;

Application Note: In item 2b), the mandatory constraints enforced by the TSF apply globally, i.e.,
to all attributes irrespective of constraints and conditions specified in item 2c). In item 2c),
the constraints enforced by the TSF apply on a per-attribute basis.

FPT_CFG_EXP.1.3 When requested by an authorized subject, the TSF shall change
the configuration data to the values specified in the next TSF internal
vector.

FPT_CFG_EXP.1.4 The TSF shall preserve secure state during any change of TOE
configuration.

Application Note: Refer to Section 2 for discussion of the configuration change definitions,
concepts and options for implementation.

72

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: The intent of this profile is to not restrict the dynamicity of the implemented
configuration change capability. However, dynamic configuration change capabilities require
that associated management controls assurances be provided to ensure that secure state is
preserved and the core security properties of the TOE (as expressed by the Security
Objectives) are continuously met.. The Security Target must fully address this concern in its
functional and assurance requirements. It is beyond the scope of this Protection Profile to
define acceptable examples of ST requirements that would guarantee the continuity of secure
state during the course of dynamic configuration changes.

5.5.3 Explicit: Establishment of Secure State (FPT_ESS_EXP)

5.5.3.1 Explicit: Establishment of Secure State (FPT_ESS_EXP.1)

FPT_ESS_EXP.1.1 The TSF shall be established in a secure state as defined by the
configuration vector.

FPT_ESS_EXP.1.2 The TSF shall enforce the Partitioned Information Flow Policy
(PIFP) in accordance with the PIFP abstraction specified by the
configuration data.

FPT_ESS_EXP.1.3 The TSF shall verify that it is in a secure state upon completion
of the TOE initialization function and prior to authorizing any information
flows governed by the Partitioned Information Flow Policy (PIFP).

Application Note: FPT_ESS_EXP.1.1 expresses the requirement that the TSF shall be established
in a secure state – which is not a function of the TSF but is a function levied on the TOE.
ADV_ARC_EXP expresses requirements for how that secure state must be achieved.

Application Note: FPT_ESS_EXP.1.2 expresses the requirement for the TSF to use the
configuration data to establish the rules for PIFP enforcement. Note that the FDP_IFC/IFF
requirements address only the existence of the enforcement function. FPT_ESS requires that
the security policy enforced by that function shall be based on the configuration data.

Application Note: FPT_ESS_EXP1.3 expresses the need for the TSF to verify that it is in a secure
state prior to allowing any information flows to occur.

5.5.4 Fail Secure (FPT_FLS)
5.5.4.1 Failure with Preservation of Secure State (FPT_FLS.1)

FPT_FLS.1.1 The TSF shall preserve a secure state when the following types of
failures occur:

a) [assignment: list of failures that are detected by tests defined in FPT_AMT.1
and FPT_TST_EXP.1];

b) [assignment: other failures in the TSF].
Application Note: TSF failure modes vary and may include “hard” failures such as those

associated with hardware failure or unrecoverable software errors, and “soft” failures such
as intermittent hardware errors and recoverable software errors.

Application Note: The TSF is not expected to protect itself against all types of hardware errors.
For example, a radiation induced change of a single bit in a memory access control register
could result in an incorrect (but valid) memory location being accessed. This would not
always be detected by the hardware.

73

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.5.5 Explicit: TOE Halt (FPT_HLT_EXP)
5.5.5.1 Explicit: TOE Halt (FPT_HLT_EXP.1)

FPT_HLT_EXP.1.1 When requested by [selection: an authorized subject executing
on the TOE, a trusted individual in the TOE non-IT environment, an
authorized subject in the TOE IT environment], the TSF shall halt the
TOE.

FPT_HLT_EXP.1.2 The TSF shall preserve secure state when halting the TOE.
Application Note: The ability to halt the TOE is security-relevant. The intent of this requirement

is to ensure that only authorized subjects or trusted individuals are able to halt the TOE. The
PP authors recognize that this capability might be provided via a software or hardware
interface to the TSF. The ability of the TSF to securely halt the TOE via this interface must be
demonstrated.

5.5.6 Explicit: TOE Maintenance (FPT_MTN_EXP)

5.5.6.1 Explicit: TOE Maintenance (FPT_MTN_EXP.1)

FPT_MTN_EXP.1.1 When requested by an authorized subject, the TSF shall
transition the TOE to maintenance mode.

Application Note: The TSF may or may not be in a secure state when this function is invoked.

FPT_MTN_EXP.1.2 When maintenance mode is entered from a secure state, the
TSF shall continue to preserve secure state.

FPT_MTN_EXP.1.3 When the TSF is unable to preserve secure state after
transitioning to maintenance mode from a secure state, the TSF shall halt
the TOE.

5.5.6.2 Explicit: TOE Maintenance Secure (FPT_MTN_EXP.2)

FPT_MTN_EXP.2.1 When in maintenance mode, the TSF shall reject the request for
any operations that would result in a violation of the TSP.

Application Note: It is acceptable, but not required, to prevent all operations and non-TSF
invoked flows.

5.5.7 Explicit: Principle of Least Privilege (FPT_PLP_EXP)

5.5.7.1 Explicit: TSF Least Privilege (FPT_PLP_EXP.1)

FPT_PLP_EXP.1.1 The TSF shall enforce the TSP such that each internal function
has no more access to TSF data and other internal TSF resources than
that which is required for its assigned functionality.

Application Note: This SFR establishes the behavioral property that the TSF must exhibit with
respect to the maximum set of privileges allocated to the various modules that comprise the
functions specified by the set of SFRs contained in the ST. Refer to ADV_INT_EXP.3.16C for
the assurance evidence that must be provided to substantiate that this required behavioral
property exists in the TSF implementation.

74

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: Achieving least privilege does not require separate domains for each TSF
function.

5.5.8 Explicit: Trusted Recovery (FPT_RCV_EXP)

5.5.8.1 Explicit: Automated Recovery (FPT_RCV_EXP.2)

FPT_RCV_EXP.2.1 When the TSF determines that it is not in a secure state
immediately after completion of TOE initialization or at any time while the
TOE is in operational mode, the TSF shall attempt to recover the TOE to
a secure state without further protection compromise based on the
following: [assignment: list of condition-action pair(s) where each
condition is associated with one of the following action(s) [selection:
initiate and complete recovery action while remaining in operational
mode, initiate recovery action that results in a restart of the TOE without
transitioning to maintenance mode, transition the TOE to maintenance
mode and initiate recovery action while in maintenance mode, halt the
TOE without initiating any recovery action]].

FPT_RCV_EXP.2.2 When the TSF determines that it is unable to initiate or
complete a recovery action that requires the TOE to remain in operational
mode, the TSF shall [selection: attempt to transition the TOE to
maintenance mode, halt the TOE].

FPT_RCV_EXP.2.3 When the TSF determines that it is unable to initiate or
complete a recovery action that requires the TOE to restart without
transitioning to maintenance mode, the TSF shall [selection: attempt to
transition the TOE to maintenance mode, halt the TOE].

FPT_RCV_EXP.2.4 When the TSF determines that it is unable to initiate or
complete a transition to maintenance mode or is unable to complete a
recovery action after transitioning to maintenance mode, the TSF shall
halt the TOE.

FPT_RCV_EXP.2.5 When the TSF determines that it is unable to proceed with any
recovery action, the TSF shall attempt to halt the TOE.

Application Note: The TOE developer is to provide appropriate evidence and the evaluator is to
confirm that secure state results from the recovery action identified.

Application Note: There is no requirement that the TSF alone supports the recovery action to
transition from maintenance mode to a secure state in operational mode.

Application Note: The ST developer should select halting the TOE instead of transitioning the
TOE to a maintenance mode if the TOE implementation cannot meet the requirement defined
in FPT_MTN_EXP.2.

5.5.8.2 Function Recovery (FPT_RCV.4)

FPT_RCV.4.1 The TSF shall ensure that [assignment: list of all failure scenarios, and
for each listed scenario, the affected SFs] have the property that the SF
either completes successfully, or for the indicated failure scenarios,
recovers to a consistent and secure state.

75

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.5.9 Explicit: TOE Restart (FPT_RST_EXP)
5.5.9.1 Explicit: TOE Restart (FPT_RST_EXP.1)

FPT_RST_EXP.1.1 When requested by an authorized subject, the TSF shall restart
the TOE.

FPT_RST_EXP.1.2 The TSF shall preserve secure state during a restart of the TOE.
Application Note: A restart of the TOE will result in the execution of the TOE initialization

mechanism. Therefore, the restart function can serve as the means by which a change in TOE
configuration is executed (see FPT_CFG_EXP.1).

Application Note: The PP authors also recognize that a restart capability can be triggered via the
sequence of HALT and START triggered from the TOE environment. It is not the intent of this
requirement that the TOE have an atomic restart capability, the intent is that should the
capability exist, then there is assurance that it can not be invoked by an unauthorized subject.

5.5.10 Reference Mediation (FPT_RVM)
5.5.10.1 Non-Bypassability of the TSP (FPT_RVM.1)

FPT_RVM.1.1 The TSF shall ensure that TSP enforcement functions are invoked
and succeed before each function within the TSC is allowed to proceed.

5.5.11 Domain Separation (FPT_SEP)
5.5.11.1 Complete Reference Monitor (FPT_SEP.3)

FPT_SEP.3.1 Refinement: The unisolated portion of the TSF shall use hardware
mechanisms to maintain a security domain for its own execution that
protects the code and data of the unisolated portion of the TSF from
interference and tampering by untrusted subjects. 14

Application Note: Examples of hardware mechanisms that might be used to support a protected
security domain for the execution of the TSF include: privilege bits; rings; hardware
mechanisms that support controlled entry points to domains; and a variety of memory
management features.

FPT_SEP.3.2 The TSF shall enforce separation between the security domains of
subjects in the TSC.

FPT_SEP.3.3 Refinement: The TSF shall maintain the part of the TSF that enforces
the information flow control SFPs in a security domain for its own
execution that protects that part of the TSF from interference and
tampering by the remainder of the TSF and by subjects untrusted with
respect to the TSP. 15

Application Note: In this PP, there is no access control SFP, and the Partitioned Information
Flow Policy is the only information flow control SFP.

76

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: For FPT_SEP.3.3, it is not required that hardware mechanisms be used
to separate the unisolated portion of the TSF from the part of the TSF that enforces the
information flow control SFPs. Software separation mechanisms and appropriate
architecture development evidence (see ADV_ARC_EXP.1.4C), supported by penetration
testing (see AVA_VLA_EXP.4) and a justification for using the software separation
mechanisms instead of hardware mechanisms, are sufficient to meet this requirement.

5.5.12 Time Stamps (FPT_STM)

5.5.12.1 Reliable Time Stamp (FPT_STM.1)

FPT_STM.1.1 Refinement: The TSF shall be able to provide reliable time stamps for
its own use that meet [assignment: granularity/precision of time
stamp].16

Application Note: It is the responsibility of the ST developer to provide a definition and metric for
the term “reliable time stamp” and to provide evidence that the implementation meets the
defined definition and metric.

Application Note: It is not required that “time” be maintained or provided as “time of day”. It is
acceptable for the TOE to maintain and provide time as being “relative to” some TOE event
(e.g.,, relative to TOE initialization), such that it is possible to determine the ordering of
events as allowed by the precision of the chosen unit of time. Therefore, the native format in
which the TOE keeps time for internal use is acceptable. For example, a monotonically
increasing counter with a defined metric for each increment of the counter represents one
acceptable implementation of this requirement.

Application Note: The time stamp definition and metric, and means to interpret the chosen time
stamp format are to be documented in the administrative guidance for the TOE. The rationale
in the ST should be used to substantiate the chosen definition and metric.

5.5.13 Explicit: TSF Self Test (FPT_TST_EXP)

5.5.13.1 Explicit: TSF Testing (FPT_TST_EXP.1)

FPT_TST_EXP.1.1 The TSF shall run a suite of self tests during start-up, periodically
during normal operation, during recovery, at the request of an authorized
subject, and [selection: during configuration change, [assignment: other
conditions under which self test occurs]] to demonstrate the correct
operation of the software portion of the TSF implementation.

Application Note: See Annex J of the CC, Part 2, for an explanation of the notion of TSF’s
implementation.

Application Note: The assignment statement is to be completed to express all additional periodic
self-test execution capabilities implemented by the TSF. “During configuration change”
should be selected if the TOE provides that capability.

Application Note: It is intended that TSF seft tests are run as part of all recovery actions identified
in FPT_RCV_EXP.2.

FPT_TST_EXP.1.2 The TSF suite of self tests shall verify the integrity of TSF
configuration data and [assignment: list of additional TSF data upon
which the TSF depends to enforce its security policies correctly].

77

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

FPT_TST_EXP.1.3 The TSF suite of self tests shall verify the integrity of stored TSF
executable code.

FPT_TST_EXP.1.4 The TSF shall provide the results of the self tests to authorized
subjects in a form that allows assessment of the results.

Application Note: TSF self-test results include both results of tests that determine the correct
operation of the software portions of the TSF and the results of integrity tests on TSF data
and TSF executable code.

5.6 Resource Utilization (FRU)
5.6.1 Resource Allocation (FRU_RSA)
5.6.1.1 Minimum and Maximum Quotas (FRU_RSA.2)

FRU_RSA.2.1 Refinement: The TSF shall enforce maximum quotas of the following
resources for each partition, as defined by the configuration data:
• System memory: [assignment: maximum amount of memory that each

partition can use],
• Processing time: [assignment: maximum amount of processing time

allocated to a partition for a specified period of time]. 17

FRU_RSA.2.2 Refinement: The TSF shall ensure the availability to each partition
of minimum quantities of the following resources, as defined by the
configuration data:
• System memory: [assignment: minimum amount of memory that will be

provided to each partition],
• Processing time: [assignment: minimum amount of processing time

provided to a partition for a specified period of time]. 18

Application Note: The enforcement of memory allocation by the TSF is at the granularity of the
partition abstraction. That is, there is a fixed amount of memory, possibly spanning multiple
distinct subject address spaces, allocated to each partition. The TSF is not required to
enforce minimum or maximum quotas at the granularity of subjects.

Application Note: The enforcement of time allocation by the TSF is at the granularity of the
partition abstraction. That is, there is a fixed amount of time over some specified period of
time that is allocated for all subjects bound to a single partition.

Application Note: It is acceptable for the minimum allocation of processing time to be zero,
implying that a there is no guarantee that any subject bound to that partition will be
scheduled during the specified period of time.

78

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

5.6.2 Explicit: Predictable Resource Utilization by the TSF
(FRU_PRU_EXP.1)

5.6.2.1 Explicit: TSF Predictable Resource Utilization (FRU_PRU_EXP.1.1)

FRU_PRU_EXP.1.1 The TSF shall exhibit predictable and bounded execution
behavior with respect to its usage of processor time and memory
resources.

Application Note: The TOE developer is to document the expectations for memory and processor
usage by the TSF in completing ADV_ARC_EXP.1.5C.

End Notes

This section records the functional requirements where deletions of Common Criteria text were
performed.

1 Modifications of CC text were performed in FAU_ARP.1.1. Rationale: 1) To ensure clarity in expressing the

intent of this requirement, the words “least disruptive actions” were replaced by the words “actions to take” and
2) to provide specific information on the types of security violations that are valid for this particular TOE
without extending the scope of the requirement, the words “a potential security violation” were replaced with
“any failure of the tests defined in FPT_AMT.1 and FPT_TST.1”.

FAU_ARP.1.1 Refinement: The TSF shall take [assignment: list of the least disruptive actions to take] upon
detection of a potential security violation any failure of the tests defined in FPT_AMT.1 and
FPT_TST.1.

2 Modifications of CC text were performed in FDP_IFC.2.1. Rationale: The phrase “and all operations that cause
that information to flow to and from subjects covered by the SFP” was replaced by the phrase “for all
possibleoperations that cause information to flow between subjects and exported resources.” The refinement is
intended to emphasis that the choice of abstraction applies to all operations.

FDP_IFC.2.1 Refinement: The TSF shall enforce the Partitioned Information Flow SFP on

• All partitions

• All subjects

• All exported resources

• and all operations that cause that information to flow to and from subjects covered by the SFP for all
possible operations that cause information to flow between subjects and exported resources.

3 Modifications of CC text were performed in FDP_IFC.2.2. Rationale: The phrase “to flow to and from any subject
in the TSC” was reworded as “to flow between any subject and any exported resource” to clarify that the
information flow policy is enforced on all subjects and exported resources. References to the TSC were
removed to eliminate redundancy, i.e., there are no subjects, resources and operations that are outside of the
TSC.

FDP_IFC.2.2 Refinement: The TSF shall ensure that all operations that cause any information in the TSC to
flow to and from between any subject in the TSC and any exported resource are covered by an
information flow control SFP.

4 A modification of the US interpretation I-0407 text was performed in FDP_IFF.1.1. Rationale: 1) the words and
operation “as a [selection: Partition Abstraction, Least Privilege Abstraction]” was added to allow the TOE
developer to specify the granularity at which the TOE is capable of enforcing the PIFP, 2) The words “the

79

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

following types of subject and information security attributes” were changed to require the TSF to make policy
decisions based on both the flows caused by an operation and the partition, subject and exported resource
security attributes associated with that operation.

FDP_IFF.1.1-NIAP-0407 Refinement: The TSF shall enforce the Partitioned Information Flow SFP as a
[selection: Partition Abstraction, Least Privilege Abstraction] based on the following types of subject and
information security attributes the flow(s) caused by an operation, and the following types of partition,
subject, and exported resource security attributes associated with the operation:

5 Modifications of the US interpretation I-0407 text were performed in FDP_IFF.1.2. Rationale: 1) The words “an
information flow between a controlled subject and controlled information via a controlled” were deleted and 2)
the words “the following” were replaced by the words “for each flow associated with the operation, the
following”. The changes are to clarify that an operation is permitted only if all flows associated with that
operation are permitted, and that the rules apply to all partitions.

FDP_IFF.1.2-NIAP-0407 Refinement: The TSF shall permit an information flow between a controlled subject
and controlled information via a controlled an operation if the following, for each flow associated with
the operation, the following rules hold:

6 Modifications of CC text were performed in FDP_RIP.2.1. Rationale: The words “to” and “from” were deleted for
readability and the words “all objects” were deleted because object is not the abstraction used for this PP.

FDP_RIP.2.1 Refinement: The TSF shall ensure that any previous information content of a resource is made
unavailable upon the [selection: allocation of the resource to, deallocation of the resource from] all objects.

7 A modification of CC text was performed in FMT_MOF.1.1(1). Rationale: The words “selection: determine the
behaviour of, disable, enable, modify the behaviour of] the functions” were replaced with a precise statement of
the behavioral requirement.

FMT_MOF.1.1(1) Refinement: The TSF shall restrict the ability to [selection: determine the behaviour of,
disable, enable, modify the behaviour of] the functions invoke a configuration change of the TOE to
authorized subjects.

8 A modification of CC text was performed in FMT_MOF.1.1(2). Rationale: The words “selection: determine the
behaviour of, disable, enable, modify the behaviour of] the functions” were replaced with a precise statement of
the behavioral requirement.

FMT_MOF.1.1(2) Refinement: The TSF shall restrict the ability to [selection: determine the behaviour of,
disable, enable, modify the behaviour of] the functions invoke a restart of the TOE to authorized
subjects.

9 A modification of CC text was performed in FMT_MOF.1.1(3). Rationale: The words “selection: determine the
behaviour of, disable, enable, modify the behaviour of] the functions” were replaced with a precise statement of
the behavioral requirement.

FMT_MOF.1.1(3) Refinement: The TSF shall restrict the ability to [selection: determine the behaviour of,
disable, enable, modify the behaviour of] the functions invoke a halt of the TOE to authorized subjects.

10 A modification of CC text was performed in FMT_MOF.1.1(4). Rationale: The words “selection: determine the
behaviour of, disable, enable, modify the behaviour of] the functions” were replaced with a precise statement of
the behavioral requirement.

FMT_MOF.1.1(4) Refinement: The TSF shall restrict the ability to [selection: determine the behaviour of,
disable, enable, modify the behaviour of] the functions initiate TSF self-tests to authorized subjects.

11 A modification of CC text was performed in FMT_MOF.1.1(5). Rationale: The words “selection: determine the
behaviour of, disable, enable, modify the behaviour of] the functions” were replaced with a precise statement of
the behavioral requirement.

FMT_MOF.1.1(5) Refinement: The TSF shall restrict the ability to [selection: determine the behaviour of,
disable, enable, modify the behaviour of] the functions invoke a transition of the TOE to maintenance mode

80

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

to authorized subjects.

12 A modification of CC text was performed in FMT_MTD.3.1. Rationale: The word “secure” was changed to
“valid” to indicate that this is intended to be a syntax check.

FMT_MTD.3.1 Refinement: The TSF shall ensure that only secure valid values are accepted for TSF data.

13 A modification of CC text was performed in FPT_AMT.1.1. Rationale: The selection “during initial start-up” was
changed to “during start-up” to indicate that the tests are to run every time the TOE is started and the words
“software portions of the” were added for clarity.

FPT_AMT.1.1 Refinement: The TSF shall run a suite of tests during initial start-up, periodically during normal
operation, during recovery, and [assignment: other conditions under which abstract machine testing should
occur] to demonstrate the correct operation of the security assumptions provided by the abstract machine that
underlies the software portions of the TSF.

14 A modification of CC text was performed in FPT_SEP.3.1. Rationale: 1) The words “use hardware mechanisms
to” were added to require the use of hardware mechanisms to maintain a protected security domain for the
unisolated portion of the TSF; 2) The word “it” was replaced by the words “the code and data of the unisolated
portion of the TSF” for clarity.

 FPT_SEP.3.1 Refinement: The unisolated portion of the TSF shall use hardware mechanisms to maintain a
security domain for its own execution that protects it the code and data of the unisolated portion of the TSF
from interference and tampering by untrusted subjects.

15 A modification of CC text was performed in FPT_SEP.3.3. Rationale: The word “them” was replaced by the
words “that part of the TSF” for clarity.

 FPT_SEP.3.3 Refinement: The TSF shall maintain the part of the TSF that enforces the information flow
control SFPs in a security domain for its own execution that protects them that part of the TSF from
interference and tampering by the remainder of the TSF and by subjects untrusted with respect to the TSP.

16 A modification of CC text was performed in FPT_STM.1.1. Rationale: The words “that meet [assignment:
granularity/precision of time stamp]” were added to require the ST author to specify the granularity/precision of
the time stamps.

 FPT_STM.1.1 Refinement: The TSF shall be able to provide reliable time stamps for its own use that meet
[assignment: granularity/precision of time stamp].

17 A modification of CC text was performed in FRU_RSA.2.1. Rationale: 1) The words “for each partition as
defined by the configuration data” were added to make it clear that maximum quotas are assigned at the
partition level; 2) The selection statement for “individual user, defined group of users” was deleted since the
TOE does not support the concept of individual users or groups of users..

 FRU_RSA.2.1 Refinement: The TSF shall enforce maximum quotas of the following resources [assignment:
controlled resources] that [selection: individual user, defined group of users] can use [selection: simultaneously,
over a specified period of time] for each partition, as defined by the configuration data:

• System memory: [assignment: maximum amont of memory that each partition can use],

• Processing time: [assignment: maximum amount of processing time allocated to a partition for a
specified period of time].

18 A modification of CC text was performed in FRU_RSA.2.2. Rationale: 1) The phrase “provision of minimum
quantity of each” was replaced by the words “availability to each partition, the minimum quantities of the
following resources, as defined by the configuration data” to make it clear that minimum quotas are assigned at
the partition level; 2) The selection statement for “individual user, defined group of users, subject” was deleted
since the TOE does not support the concept of invidividual users or groups of users, and the subject is not the
entity to which minimum quotas are assigned.

 FRU_RSA.2.2 Refinement: The TSF shall ensure the provision availability to each partition of minimum
quantity of each [assignment: controlled resource] that is available for [selection: an individual user, defined

81

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

group of users, subjects] to use [selection: simultaneously, over a specified period of time] quantities of the
following resources, as defined by the configuration data:

• System memory: [assignment: minimum amount of memory that will be provided to each
partition],

• Processing time: [assignment: minimum amount of processing time provided to a partition for a
specified period of time].

82

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6. TOE Security Assurance
Requirements

126 This section contains the detailed security assurance requirements for Separation Kernels
supporting systems in environments requiring high robustness. The requirements contained in
this section are either selected from Part 3 of the CC or have been explicitly stated (with short
names ending in “_EXP”). Table 6.1 lists the explicitly stated assurance components.

Table 6.1. Explicit Assurance Requirements

Explicit Component Component Behavior Name

ADO_DEL_EXP.2 Detection of Modification

ADV_ARC_EXP.1 Architectural Design

ADV_CTD_EXP.1 Configuration Tool Design

ADV_FSP_EXP.4 Formal Functional Specification

ADV_HLD_EXP.4 Semiformal High Level Design

ADV_IMP_EXP.3 Verified Implementation of the TSF

ADV_INI_EXP.1 Trusted Initialization

ADV_INT_EXP.3 Minimization of Complexity

ADV_LLD_EXP.2 Semiformal Low Level Design

ADV_LTD_EXP.1 Load Tool Design

AGD_ADM_EXP.1 Administrator Guidance

AMA_AMP_EXP.1 Assurance Maintenance Plan

APT_PDF_EXP.1 Specified Platform Definition

APT_PSP_EXP.1 Complete Platform Specification

APT_PCT_EXP.1 Tested Platform Conformance

APT_PST_EXP.1 Comprehensive Platform Security Testing

APT_PVA_EXP.1 Comprehensive Platform Vulnerability Assessment

AVA_CCA_EXP.2 Systematic Covert Channel Analysis

AVA_VLA_EXP.4 Highly Resistant

127 The intended TOE environment and the value of information processed by this environment
establish the need for the TOE to be evaluated at high robustness, which in terms of CC security
assurance requirements, is higher assurance than that expressed by EAL48. The set of security

8 Refer to the “Mutual Recognition of Common Criteria Certificates” Section 1.3 to read conditions for the CC
certificate to be mutually recognized for PPs with EALs higher than 4.

83

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

assurance requirements that define high robustness are summarized in Table 6.2. Note that flaw
remediation (ALC_FLR) and maintenance of assurance (AMA_AMP_EXP) have also been
chosen even though the CC chose not to assign these components to a specific EAL level.

Table 6.2. SKPP High Robustness Assurance Requirements Relative to EAL6

Assurance Class Assurance Family EAL6 SKPP

ACM_AUT 2 2
ACM_CAP 5 5 Configuration

Management ACM_SCP 3 3
ADO_DEL_EXP 2 (2) Delivery and

Operation ADO_IGS 1 1
ADV_ARC_EXP (1)
ADV_CTD_EXP (1)
ADV_FSP_EXP 3 (4)
ADV_HLD_EXP 4 (4)
ADV_IMP_EXP 3 (3)
ADV_INI_EXP (1)
ADV_INT_EXP 2 (3)
ADV_LLD_EXP 2 (2)
ADV_LTD_EXP (1)
ADV_RCR_EXP 2 3

Development
(TSF)

ADV_SPM_EXP 3 3
AGD_ADM_EXP 1 (1) Guidance

Documents AGD_USR 1 1
ALC_DVS 2 2
ALC_FLR 3
ALC_LCD 2 2

Life cycle
Support

ALC_TAT 3 3
Maintenance of

Assurance AMA_AMP_EXP (1)

APT_PDF_EXP (1)
APT_PSP_EXP (1)
APT_PCT_EXP (1)
APT_PST_EXP (1)

Platform
Assurance

APT_PVA_EXP (1)
ATE_COV 3 3
ATE_DPT 2 3
ATE_FUN 2 2 Tests

ATE_IND 2 3
AVA_CCA_EXP 2 (2)

AVA_MSU 3 3
AVA_SOF 1 1

Vulnerability
Assessment

AVA_VLA_EXP 4 (4)

Parentheses indicate explicit or refined requirements; Bold in a column indicates an increase in
assurance from the preceding EAL (i.e., bold items in the EAL6 column are increases relative to

EAL5, and bold items in the SKPP column are increases relative to EAL6)

84

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.1 Configuration Management (ACM)
6.1.1 CM Automation (ACM_AUT)
6.1.1.1 Complete CM Automation (ACM_AUT.2)

ACM_AUT.2.1D The developer shall use a CM system.

ACM_AUT.2.2D The developer shall provide a CM plan.

ACM_AUT.2.1C The CM system shall provide an automated means by which only
authorized changes are made to the TOE implementation representation,
and to all other configuration items.

ACM_AUT.2.2C The CM system shall provide an automated means to support the
generation of the TOE.

ACM_AUT.2.3C The CM plan shall describe the automated tools used in the CM
system.

ACM_AUT.2.4C The CM plan shall describe how the automated tools are used in the
CM system.

ACM_AUT.2.5C The CM system shall provide an automated means to ascertain the
changes between the TOE and its preceding version.

ACM_AUT.2.6C The CM system shall provide an automated means to identify all
other configuration items that are affected by the modification of a given
configuration item.

ACM_AUT.2.1E The evaluator shall confirm that the information provided meet all
requirements for content and presentation of evidence.

6.1.2 CM Capabilities (ACM_CAP)
6.1.2.1 Advanced Support (ACM_CAP.5)

ACM_CAP.5.1D The developer shall provide a reference for the TOE.

ACM_CAP.5.2D The developer shall use a CM system.

ACM_CAP.5.3D The developer shall provide CM documentation.

ACM_CAP.5.1C The reference for the TOE shall be unique to each version of the
TOE.

ACM_CAP.5.2C The TOE shall be labeled with its reference.

ACM_CAP.5.3C The CM documentation shall include a configuration list, a CM plan,
an acceptance plan, and integration procedures.

ACM_CAP.5.4C The configuration list shall uniquely identify all configuration items
that comprise the TOE.

85

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ACM_CAP.5.5C The configuration list shall describe the configuration items that
comprise the TOE.

ACM_CAP.5.6C The CM documentation shall describe the method used to uniquely
identify the configuration items that comprise the TOE.

ACM_CAP.5.7C The CM system shall uniquely identify all configuration items that
comprise the TOE.

ACM_CAP.5.8C The CM plan shall describe how the CM system is used.

ACM_CAP.5.9C The evidence shall demonstrate that the CM system is operating in
accordance with the CM plan.

ACM_CAP.5.10C The CM documentation shall provide evidence that all
configuration items have been and are being effectively maintained under
the CM system.

ACM_CAP.5.11C The CM system shall provide measures such that only authorized
changes are made to the configuration items.

ACM_CAP.5.12C The CM system shall support the generation of the TOE.

ACM_CAP.5.13C The acceptance plan shall describe the procedures used to accept
modified or newly created configuration items as part of the TOE.

ACM_CAP.5.14C The integration procedures shall describe how the CM system is
applied in the TOE manufacturing process.

ACM_CAP.5.15C The CM system shall require that the person responsible for
accepting a configuration item into CM is not the person who developed
it.

ACM_CAP.5.16C The CM system shall clearly identify the configuration items that
comprise the TSF.

ACM_CAP.5.17C The CM system shall support the audit of all modifications to the
TOE, including as a minimum the originator, date, and time in the audit
trail.

ACM_CAP.5.18C The CM system shall be able to identify the master copy of all
material used to generate the TOE.

ACM_CAP.5.19C The CM documentation shall demonstrate that the use of the CM
system, together with the development security measures, allow only
authorized changes to be made to the TOE.

ACM_CAP.5.20C The CM documentation shall demonstrate that the use of the
integration procedures ensures that the generation of the TOE is correctly
performed in an authorized manner.

ACM_CAP.5.21C The CM documentation shall demonstrate that the CM system is
sufficient to ensure that the person responsible for accepting a
configuration item into CM is not the person who developed it.

86

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ACM_CAP.5.22C The CM documentation shall justify that the acceptance
procedures provide for an adequate and appropriate review of changes to
all configuration items.

ACM_CAP.5.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.1.3 CM Scope (ACM_SCP)
6.1.3.1 Development Tools CM Coverage (ACM_SCP.3)

ACM_SCP.3.1D The developer shall provide a list of configuration items for the TOE.

ACM_SCP.3.1C The list of configuration items shall include the following:
implementation representation; security flaws; development tools and
related information; and the evaluation evidence required by the
assurance components in the ST.

ACM_SCP.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.2 Delivery and Operation (ADO)
6.2.1 Delivery (ADO_DEL)

6.2.1.1 Explicit: Detection of Modification (ADO_DEL_EXP.2)

ADO_DEL_EXP.2.1D The developer shall document procedures for delivery of the
TOE or parts of it to the user.

Application Note: Delivery procedures must be provided for the entire TOE. It is acceptable to
have different procedures that apply to parts of the TOE that are separately delivered. It is
not acceptable for any part of the TOE to be delivered and for which no delivery procedures
apply.

ADO_DEL_EXP.2.2D The developer shall use the delivery procedures.

ADO_DEL_EXP.2.3D The developer shall use [selection: cryptographic signature,
cryptographic keyed-hash message authentication function] technical
measures to verify the integrity of the TOE or parts of it and for source
authentication when delivering the TOE or parts of it to the user.

Application Note: For the case where the TOE is delivered in parts, it is the ST author’s
responsibility to identify the technical measures that apply to the separately delivered parts of
the TOE.

Application Note: The requirements for the two technical measures given in this requirement are
discussed below in ADO_DEL_EXP.2.5D and ADO_DEL_EXP.2.6D. The TOE developer
can decide which of these measures is employed to meet the requirement for trusted delivery –
the TOE developer is not required to employ both.

87

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADO_DEL_EXP.2.4D The developer shall use independent channels to deliver the
TOE and to deliver the cryptographic keying materials used to verify the
delivery of the TOE.

ADO_DEL_EXP.2.5D Technical measures that use cryptographic signature services
shall employ Digital Signature algorithms in accordance with the NIST-
approved [selection: Digital Signature Algorithm (DSA) with a key size
(modulus) of 2048 bits or greater, RSA Digital Signature Algorithm (rDSA
with odd e) with a key size (modulus) of 2048 bits or greater, Elliptic
Curve Digital Signature Algorithm (ECDSA) with a key size of 256 bits or
greater] that meets the following:

a) Case: Digital Signature Algorithm
FIPS PUB 186-29, Digital Signature Standard, for signature
creation and verification processing; and ANSI Standard
X9.42-2001, Public Key Cryptography for the Financial
Services Industry: Agreement of Symmetric Keys Using
Discrete Logarithm Cryptography for generation of the domain
parameters10;

b) Case: RSA Digital Signature Algorithm (with odd e)
ANSI X 9.31-1998 (May 1998), Digital Signatures Using
Reversible Public Key Cryptography For The Financial
Services Industry (rDSA)11;

c) Case: Elliptic Curve Digital Signature Algorithm
ANSI X9.62-1998 (10 Oct 1999), Public Key Cryptography for
the Financial Services Industry: Elliptic Curve Digital Signature
Algorithm (ECDSA)

Application Note: For elliptic curve-based schemes the key size refers to the log2 of the order of
the base point. As the preferred approach for cryptographic signature, elliptic curves will
eventually be required, once all the necessary standards and other supporting information
are fully established.

ADO_DEL_EXP.2.6D Technical measures that use cryptographic keyed-hash
message authentication functions shall employ a NIST-approved hash
implementation of the Secure Hash algorithm and message digest size of
at least 256 bits that meets FIPS PUB 198.

ADO_DEL_EXP.2.1C The delivery documentation shall describe all procedures that
are necessary to maintain security when distributing versions of the TOE
to the user.

9 FIPS PUB 186-3 is under development. It will incorporate the signature creation and verification processing of
FIPS PUB 186-2, and the generation of domain parameters of ANSI X9.42. FIPS PUB 186-3, once finalized and
approved, will become the basis for this requirement.
10 Any pseudorandom RNG used in these schemes for generating private values is to be seeded by a
nondeterministic RNG.

11 See previous footnote.

88

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADO_DEL_EXP.2.2C The delivery documentation shall describe how independent
delivery channels are used to deliver the TOE and to deliver the
cryptographic keying materials used to verify the delivery of the TOE.

ADO_DEL_EXP.2.3C The delivery documentation shall describe how the various
procedures and technical measures provide for the detection of
modifications, or any discrepancy between the developer’s master copy
and the version received at the user site.

Application Note: It is assumed that the “cryptographic seal” of the TOE code will be verified
when the TOE code is received from the TOE developer and protected appropriately at the
user’s site prior to loading into non-volatile memory for inclusion into the hosting hardware.
However, for IT environments that cannot guarantee physical protection, additional
procedures to re-validate the integrity of the TOE code prior to loading should be provided by
the IT environment.

ADO_DEL_EXP.2.4C The delivery documentation shall describe how the various
procedures and technical measures allow detection of attempts to
masquerade as the developer, even in cases in which the developer has
sent nothing to the user’s site.

ADO_DEL_EXP.2.5C The delivery documentation shall contain evidence
demonstrating that each cryptographic signature service and each
cryptographic keyed-hash message authentication function utilized is
NIST approved.

ADO_DEL_EXP.2.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADO_DEL_EXP.2.2E The evaluator shall determine that the various procedures and
technical measures provided result in a trusted delivery.

6.2.2 Installation, Generation and Start-Up (ADO_IGS)
6.2.2.1 Installation, Generation and Start-Up Procedures (ADO_IGS.1)

Application Note: This section is intended to address the requirements for configuring the TOE to
be in a TOE Evaluated Configuration (TEC). Requirements for administrator guidance to
correctly use TOE mechanisms (e.g., boot, initialization) to achieve an initial secure state are
addressed in AGD_ADM.

ADO_IGS.1.1D The developer shall document procedures necessary for the secure
installation, generation, and start-up of the TOE.

ADO_IGS.1.1C The installation, generation and start-up documentation shall
describe all the steps necessary for secure installation, generation, and
start-up of the TOE.

ADO_IGS.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADO_IGS.1.2E The evaluator shall determine that the installation, generation, and
start-up procedures result in a secure configuration.

89

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.3 Development (ADV)
6.3.1 Architectural Design with Domain Separation and Non-

Bypassability (ADV_ARC)
6.3.1.1 Explicit: Architectural Design (ADV_ARC_EXP.1)

Application Note: This component contains two types of requirements for architecture assurance
evidence: 1) requirements for specific properties and characteristics that must be present in
the architecture, and 2) requirements for the evidence provided to demonstrate that the TSF
architecture exhibits the properties and characteristics.

Application Note: The architecture design required by this component is at the level of the
functional specification and high-level design documentation. The TSF internals description
required by the ADV_INT_EXP.3 component is at the level of TSF module documentation.

ADV_ARC_EXP.1.1D The developer shall provide the architectural design of the
TSF.

ADV_ARC_EXP.1.1C The descriptive information contained in the architectural
design shall be at a level of detail commensurate with the description of
the SFR-enforcing abstractions described in the TOE high level design
documentation.

ADV_ARC_EXP.1.2C The architectural design shall demonstrate that the security
domains maintained by the TSF are consistent with the SFRs.

Application Note: Of particular interest are SFRs FDP_IFC.2, FDP_IFF_1, FPT_SEP.3 as stated
in this profile. Should the Security Target include additional relevant SFRs, they also are
candidates for the stated justification.

ADV_ARC_EXP.1.3C The architectural design shall justify that the TSF protects
itself from interference and tampering.

ADV_ARC_EXP.1.4C The architectural design shall justify that the TSF prevents
bypass of the SFR-enforcing functionality.

ADV_ARC_EXP.1.5C The architectural design shall document the resources
required by the TSF for its execution, to include providing the bounds for
TSF usage requirements for processor time and memory.

Application note: Suspending a service request to implement a scheduling policy is not to be
construed as nondeterministic or unpredictable TOE behavior.

ADV_ARC_EXP.1.6C The architectural design shall identify the hardware, firmware,
and software portions of the TSF.

ADV_ARC_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

90

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.3.2 Configuration Tool Design (ADV_CTD)
6.3.2.1 Explicit: Configuration Tool Design (ADV_CTD_EXP.1)

ADV_CTD_EXP.1.1D The developer shall provide a configuration vector generation
and validation capability.

ADV_CTD_EXP.1.2D The developer shall provide configuration vector generation
and validation documentation.

ADV_CTD_EXP.1.3D The configuration vector generation and validation capability
shall present configuration vectors in a human-readable form such that 1)
the semantics of the vectors are clear and understandable, and 2) the
completeness and accuracy of the intended operational configuration can
be validated.

ADV_CTD_EXP.1.4D The configuration vector generation and validation capability
shall be able to convert the configuration vectors from a human-readable
form into a machine-readable form, and vice versa, such that the
semantics of the data are preserved.

ADV_CTD_EXP.1.5D The configuration vector generation and validation capability
shall be able to place an integrity seal on generated configuration vectors.

ADV_CTD_EXP.1.1C The presentation of the descriptive information contained
in the configuration vector generation and validation documentation shall
be in informal style at a level of abstraction and detail as required in the
TOE high level design document.

ADV_CTD_EXP.1.2C The configuration vector generation and validation
documentation shall explain the semantics for the expression of the
human-readable form of a generated configuration vector such that the
completeness and accuracy of a generated configuration vector can be
verified.

ADV_CTD_EXP.1.3C The configuration vector generation and validation
documentation shall define the format of the machine-readable form of a
generated configuration vector, and shall explain how to interpret the
machine-readable form of a generated configuration vector.

ADV_CTD_EXP.1.4C The configuration vector generation and validation
documentation shall provide instructions for placing integrity seal on
generated configuration vectors.

ADV_CTD_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_CTD_EXP.1.2E The evaluator shall determine that configuration vectors
generated by the configuration vector generation and validation tool is
an accurate instantiation of the intent, and shall verify that the
configuration generation validation tool properly places a cryptographic
seal on generated configuration vectors.

91

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.3.3 Functional Specification (ADV_FSP)
6.3.3.1 Explicit: Formal Functional Specification (ADV_FSP_EXP.4)

ADV_FSP_EXP.4.1D The developer shall provide a functional specification.

ADV_FSP_EXP.4.2D The developer shall provide a formal presentation of the
functional specification of the TSF.

Application note: The developer is required to provide two separate documents, a Functional
Specification and a precise expression of the contents of the functional specification, i.e., the
Formal Presentation of the Functional Specification. The formalism of the functional
specification is required to support modeling and verification requirements, i.e., to correlate
the TSFI with the security policy and model.

ADV_FSP_EXP.4.1C The functional specification shall completely represent the
TSF.

ADV_FSP_EXP.4.2C The functional specification shall describe the TSFI using a
semi-formal style.

ADV_FSP_EXP.4.3C The functional specification shall describe the purpose and
method of use for all TSFI.

ADV_FSP_EXP.4.4C The functional specification shall identify and describe all
parameters associated with each TSFI.

ADV_FSP_EXP.4.5C The functional specification shall describe all operations
associated with each TSFI.

ADV_FSP_EXP.4.6C The functional specification shall describe all exceptions, error
messages and effects that may result from an invocation of each TSFI.

ADV_FSP_EXP.4.7C The functional specification shall describe all exceptions, error
messages and effects contained in the TSF implementation that are not
associated with the invocation of any TSFI.

ADV_FSP_EXP.4.8C The formal presentation of the functional specification of the
TSF shall describe the TSFI using a formal style, supported by informal,
explanatory text where appropriate.

ADV_FSP_EXP.4.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_FSP_EXP.4.2E The evaluator shall determine that the functional specification
is an accurate and complete instantiation of the TOE security functional
requirements.

6.3.4 High-Level Design (ADV_HLD)
6.3.4.1 Explicit: Semiformal High-Level Explanation (ADV_HLD_EXP.4)

ADV_HLD_EXP.4.1D The developer shall provide the high-level design of the TOE.

92

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_HLD_EXP.4.1C The presentation of the high-level design of the TSF shall be
in semiformal style, supported by informal, explanatory text where
appropriate.

ADV_HLD_EXP.4.2C The presentation of the high-level design of the runtime non-
TSF portions of the TOE shall be in informal style.

Application Note: “Runtime non-TSF portions of the TOE” refers to the TOE components that are
executable during runtime but are not part of the TSF. These exclude the configuration tool,
the TOE initialization function and the TOE loader.

ADV_HLD_EXP.4.3C The high-level design shall be internally consistent.

ADV_HLD_EXP.4.4C The high-level design shall describe the structure of the TOE
in terms of subsystems.

ADV_HLD_EXP.4.5C The high-level design shall identify all subsystems of the TSF,
and designate them as either SFR-enforcing or SFR-supporting
subsystems.

ADV_HLD_EXP.4.6C The high-level design shall provide a description of each
subsystem of the TSF.

ADV_HLD_EXP.4.7C The high-level design shall provide a description of the
interactions between the subsystems of the TSF.

Application Note: The goal of describing the interactions between the SFR-enforcing components
and other components is to help provide the reader with a better understanding of how the
TSF performs it functions. These interactions do not need to be characterized at the
implementation level (e.g., parameters passed from one routine in a component to a routine in
a different component; global variables; hardware signals (e.g., interrupts) from a hardware
component to an interrupt-handling component), but the data elements identified for a
particular component that are going to be used by another component should be covered in
this discussion. Any control relationships between components (e.g., a component responsible
for configuring a rule base for a firewall system and the component that actually implements
these rules) should also be described.

ADV_HLD_EXP.4.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_HLD_EXP.4.2E The evaluator shall determine that the high-level design is an
accurate and complete instantiation of all TOE security functional
requirements.

6.3.5 Implementation Representation (ADV_IMP)
6.3.5.1 Explicit: Structured Implementation of the TSF (ADV_IMP_EXP.3)

Application Note: Implementation representation refers to source code for software, and Very
High Speed Integrated Circuit Hardware Description Language (VHDL) or its equivalent for
firmware and hardware. Implementation refers to the output of compiled source code and
compiled VHDL (or its equivalent).

ADV_IMP_EXP.3.1D The developer shall make available, the implementation
representation for the entire TSF.

93

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_IMP_EXP.3.2D The developer shall provide the tools and their associated
instructions that are used to transform the implementation representation
into the implementation.

 ADV_IMP_EXP.3.1C The implementation representation shall unambiguously
define the TSF to a level of detail such that the TSF can be generated
without further design decisions.

ADV_IMP_EXP.3.2C The implementation representation shall be identical in form
and content, as that used by the development personnel.

ADV_IMP_EXP.3.1E The evaluator shall confirm that, the information provided
meets all requirements for content and presentation of evidence.

ADV_IMP_EXP.3.2E The evaluator shall determine that the implementation
representation, when transformed to the implementation using the
developer-provided tools and instructions, is identical to the
implementation used in testing activities.

6.3.6 Trusted Initialization (ADV_INI)
6.3.6.1 Explicit: Trusted Initialization (ADV_INI_EXP.1)

ADV_INI_EXP.1.1D The developer shall provide a TOE initialization function.
Application Note: The TOE initialization function brings the software portion of the TSF and TSF
data into the TSF security domain and establishes the TSF in a secure state consistent with the
configuration vector that defines the configuration data. The following “D” elements define the
security-relevant capabilities of the TOE initialization function.

ADV_INI_EXP.1.2D The TOE initialization function shall establish the TSF in a
secure state consistent with the configuration vector that defines the
configuration data.

Application Note: The TOE initialization function is not part of the TSF. Therefore, the
assurances associated with the secure state of the TSF require an assurance argument for both the
initialization function (with focus on that portion that establishes the TSF in a secure state) and
the TSF; either alone is not sufficient. Refer to FPT_ESS_EXP.1 for the requirements levied on the
TSF to verify that it is in a secure state when the initialization function completes.

ADV_INI_EXP.1.3D The TOE initialization function shall verify the integrity of TSF
code and data prior to establishing the TSF in a secure state.

ADV_INI_EXP.1.4D The TOE initialization function shall detect and respond to errors
and failures during initialization such that the TOE either successfully
completes initialization or is halted.

Application Note: This requirement is intended to provide assurance that the initialization code is
capable of detecting and handling anomalies during the boot process, which precedes the
establishment of a secure state.

ADV_INI_EXP.1.5D The TOE initialization function shall not be able to arbitrarily
interact with the TSF after TOE initialization completes.

94

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Application Note: This requirement is intended to provide assurance that the initialization
function, which is not defined as part of the TSF, is not able to interact with the TSF in a
manner inconsistent with the design of the TSF, once initialization completes.

Should the design of the TOE be such that any portion of the initialization function is utilized
during TOE reconfiguration or as part of trusted recovery, then it must be demonstrated
that the initialization function will only execute when commanded by the TSF.

Finally, if due to design decisions, portions of the initialization function are part of the TSF,
then those portions would be subjected to all TSF assurances, in addition to these
initialization assurances. Note, however, that these initialization assurances are
intended to be a subset of the TSF assurances.

ADV_INI_EXP.1.6D The TOE initialization function shall establish the TSF security
domain and shall bring the software portion of the TSF implementation
and TSF data into the TSF security domain.

ADV_INI_EXP.1.7D The TOE initialization function shall be designed and
implemented such that in conjunction with the TSF no other component
executing on the TOE is able to establish the TSF in a secure state
consistent with the configuration vector.

ADV_INI_EXP.1.8D The TOE initialization function shall be designed and
implemented such that it is able to protect itself from tampering by other
components executing on the TOE.

ADV_INI_EXP.1.9D The components of the TOE initialization function shall be
designed and implemented using modular decomposition.

ADV_INI_EXP.1.10D The developer shall provide a functional specification of the
TOE initialization function.

ADV_INI_EXP.1.11D The developer shall provide the design of the TOE initialization
function.

ADV_INI_EXP.1.12D The developer shall test the TOE initialization function and
document the results.

ADV_INI_EXP.1.13D The developer shall provide TOE initialization function test
documentation.

ADV_INI_EXP.1.1C The TOE initialization functional specification shall completely
represent the TOE initialization function.

ADV_INI_EXP.1.2C The TOE initialization functional specification shall describe the
purpose and method of use of all TOE initialization function interfaces.

ADV_INI_EXP.1.3C The TOE initialization functional specification shall describe all
parameters associated with each TOE initialization function interface.

ADV_INI_EXP.1.4C The TOE initialization functional specification shall describe all
operations associated with each TOE initialization function interface.

95

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_INI_EXP.1.5C The TOE initialization functional specification shall describe all
exceptions, error messages and effects associated with each TOE
initialization function interface.

ADV_INI_EXP.1.6C The TOE initialization design shall identify all components of the
TOE initialization function and shall designate each component as relevant
to establishment of the TSF in a secure state or un-related to
establishment of the TSF in a secure state.

ADV_INI_EXP.1.7C The TOE initialization design shall describe the structure of the
TOE initialization function in terms of the identified components.

ADV_INI_EXP.1.8C The TOE initialization design shall identify the hardware,
firmware, and software portions of the TOE initialization components.

ADV_INI_EXP.1.9C The TOE initialization design shall describe how the components
of the TOE initialization function work together to establish the TSF in a
secure state consistent with the configuration vector.

ADV_INI_EXP.1.10C The TOE initialization design shall describe how the TOE
initialization function verifies the integrity of the TSF code and data.

ADV_INI_EXP.1.11C The TOE initialization design shall describe how the TOE
initialization function detects and responds to errors, and shall contain a
definition and description of all errors associated with the TOE initialization
function.

ADV_INI_EXP.1.12C The TOE initialization design shall demonstrate that the TOE
initialization function will not arbitrarily interact with the operation of the
TSF after TOE initialization completes.

ADV_INI_EXP.1.13C The TOE initialization design shall demonstrate that no other
component executing on the TOE is able to establish the TSF in a secure
state consistent with the configuration vector.

ADV_INI_EXP.1.14C The TOE initialization design shall demonstrate how the TOE
initialization function protects itself from tampering by other components
executing on the TOE.

ADV_INI_EXP.1.15C The TOE initialization design shall describe the structure of the
TOE initialization function in terms of component modularization.

ADV_INI_EXP.1.16C The TOE initialization design shall justify the inclusion of
components that do not support initialization of the TOE or the
establishment of the TSF in a secure state.

ADV_INI_EXP.1.17C The presentation of the TOE initialization functional
specification and TOE initialization design shall be in informal style.

ADV_INI_EXP.1.18C The TOE initialization test documentation shall consist of test
procedure descriptions, expected test results and actual test results.

96

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_INI_EXP.1.19C The TOE initialization test procedure descriptions shall identify
the tests to be performed and describe the scenarios for testing the TOE
initialization function.

ADV_INI_EXP.1.20C The TOE initialization test results shall demonstrate that the
TOE initialization function behaves as specified.

ADV_INI_EXP.1.1E The evaluator shall confirm that the information provided meets
all requirements for content and presentation of evidence.

ADV_INI_EXP.1.2E The evaluator shall determine that the TOE initialization function
design is sufficient to ensure that the TOE initialization function: (a)
correctly establishes the TSF in a secure state while preserving the
integrity of TSF data and code, and (b) halts the TOE if anomalies prevent
establishment of the TSF in a secure state.

ADV_INI_EXP.1.3E The evaluator shall execute all tests in the TOE initialization test
documentation to verify the developer test results.

ADV_INI_EXP.1.4E The evaluator shall conduct independent tests of the TOE
initialization function to confirm that the TOE initialization function behaves
as specified.

ADV_INI_EXP.1.5E The evaluator shall determine that other components executing
on the TOE can neither circumvent nor tamper with the TOE initialization
function.

6.3.7 TSF Internals (ADV_INT)
6.3.7.1 Explicit: Minimization of Complexity (ADV_INT_EXP.3)

ADV_INT_EXP.3.1D The developer shall design and implement the TSF using
modular decomposition.

ADV_INT_EXP.3.2D The developer shall use sound software engineering principles
to achieve the modular decomposition of the TSF.

ADV_INT_EXP.3.3D The developer shall design the TSF modules such that they
exhibit good internal structure and are not overly complex, with limited
exceptions.

ADV_INT_EXP.3.4D The developer shall design all TSF modules such that they
exhibit only functional, sequential, communicational, or temporal
cohesion, with limited exceptions.

ADV_INT_EXP.3.5D The developer shall design all TSF modules such that they
exhibit only call or common coupling, with limited exceptions.

ADV_INT_EXP.3.6D The developer shall implement the TSF modules using coding
standards that result in good internal structure that is not overly complex.

ADV_INT_EXP.3.7D The developer shall design and implement the TSF in a layered
fashion that minimizes interactions between the layers of the design.

97

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_INT_EXP.3.8D The developer shall design and implement the TSF such that
interactions between layers are initiated from a higher layer in the
hierarchy down to the next layer in the hierarchy, with limited exceptions.

ADV_INT_EXP.3.9D The developer shall design and implement the modules of the
TSF such that they are simple enough to be analyzed.

ADV_INT_EXP.3.10D The developer shall ensure that functions whose purpose is
not relevant for enforcing or supporting the SFRs are excluded from the
TSF modules.

ADV_INT_EXP.3.11D The developer shall design and implement the TSF in such a
way that the principle of least privilege is achieved with respect to TSF
modules as required by FPT_PLP_EXP.

ADV_INT_EXP.3.12D The developer shall provide a TSF internals description.

ADV_INT_EXP.3.1C The TSF internals description shall describe the process used
for modular decomposition.

ADV_INT_EXP.3.2C The TSF internals description shall identify all the modules of
the TSF.

ADV_INT_EXP.3.3C The TSF internals description shall describe how the TSF
design is a reflection of the modular decomposition process.

ADV_INT_EXP.3.4C The TSF internals description shall provide a justification, on a
per-module basis, of any deviation from the coding standards governing
module internal structure and complexity.

ADV_INT_EXP.3.5C The TSF internals description shall include a coupling analysis
that describes intermodule coupling for all TSF modules.

ADV_INT_EXP.3.6C The TSF internals description shall include a cohesion analysis
that describes the types of cohesion for all TSF modules.

ADV_INT_EXP.3.7C The TSF internals description shall provide a justification, on a
per module basis, for any coupling or cohesion exhibited by modules of
the TSF, other than those permitted.

ADV_INT_EXP.3.8C The TSF internals description shall describe the layering
architecture and shall describe the services that each layer provides.

ADV_INT_EXP.3.9C The TSF internals description shall describe the methodology
used to determine the layering architecture.

ADV_INT_EXP.3.10C The TSF internals description shall identify all modules
associated with each layer of the TSF.

ADV_INT_EXP.3.11C The TSF internals description shall describe all interactions
between layers of the TSF.

ADV_INT_EXP.3.12C The TSF internals description shall provide a justification of
interactions that are initiated from a lower layer to a higher layer.

98

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_INT_EXP.3.13C The TSF internals description shall provide a justification for
all modules of the TSF that contain unused or redundant code.

ADV_INT_EXP.3.14C The TSF internals description shall describe how the entire
TSF has been designed and implemented to minimize complexity.

ADV_INT_EXP.3.15C The TSF internals description shall justify the inclusion of any
non-security relevant modules in the TSF.

ADV_INT_EXP.3.16C The TSF internals description shall describe how the entire
TSF has been designed and implemented to achieve the principle of least
privilege.

ADV_INT_EXP.3.1E The evaluator shall confirm that the information provided meets
all requirements for content and presentation of evidence.

ADV_INT_EXP.3.2E The evaluator shall verify, through direct examination of a
sample of TSF modules, that cohesion and coupling between TSF
modules is consistent with the TSF internals description.

ADV_INT_EXP.3.3E The evaluator shall verify, through direct examination of a
sample of TSF modules, that the design and implementation of the TSF
modules is consistent with the TSF internals description about
minimization of complexity.

ADV_INT_EXP.3.4E The evaluator shall determine that the TSF modules design
and implementation is sufficient to support the principle of least
privilege.

ADV_INT_EXP.3.5E The evaluator shall confirm that the modules of the TSF are
simple enough to be analyzed.

6.3.8 Low-level Design (ADV_LLD)
6.3.8.1 Explicit: Semi-Formal Low-Level Design (ADV_LLD_EXP.2)

ADV_LLD_EXP.2.1D The developer shall provide the low-level design of the TSF.

ADV_LLD_EXP.2.1C The presentation of the low-level design shall be semi-formal
style, supported by informal, explanatory text where appropriate.

ADV_LLD_EXP.2.2C The low-level design shall be internally consistent.

ADV_LLD_EXP.2.3C The low-level design shall describe the TSF in terms of
modules, identifying each TSF module and designating each TSF module
as SFR-enforcing, SFR-supporting, or non-security relevant.

ADV_LLD_EXP.2.4C The low-level design shall identify and describe data that are
common to more than one module.

99

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_LLD_EXP.2.5C The low-level design shall describe each module in terms of its
purpose, method of use, interfaces provided to invoke the module, return
values from those interfaces, and methods used to invoke and
dependencies on other modules.

Application Note: “Methods used to invoke other modules” includes all forms of direct interaction
with other modules. This includes called interfaces, interaction via a message mailbox or
other inter-module communication method, etc.

ADV_LLD_EXP.2.6C The low-level design shall describe each module in terms of all
exceptions, error messages and effects that may result from the
execution of the module.

ADV_LLD_EXP.2.7C The low-level design shall provide an algorithmic description
for each module detailed enough to represent the TSF implementation.

Application Note: An algorithmic description contains sufficient detail such that two different
programmers would produce functionally-equivalent code, although data structures,
programming methods, etc. may differ.

ADV_LLD_EXP.2.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_LLD_EXP.2.2E The evaluator shall determine that the low-level design is an
accurate and complete instantiation of all TOE security functional
requirements.

6.3.9 Load Tool Design (ADV_LTD)
6.3.9.1 Explicit: Load Tool Design (ADV_LTD_EXP.1)

ADV_LTD_EXP.1.1D The developer shall provide a TOE loader design.

ADV_LTD_EXP.1.2D The developer shall provide a TOE loader capability.

ADV_LTD_EXP.1.3D The TOE loader capability shall be able to transfer the
machine-readable software portion of the TSF implementation and
configuration vector set, either together or separately, into a form that is
accessible by the TOE initialization function.

Application note: See Load Function in Glossary of Terms.

ADV_LTD_EXP.1.4D The TOE loader capability shall preserve the integrity of the
software portion of the TSF implementation and configuration vector set
during the transfer process.

ADV_LTD_EXP.1.1C The presentation of the descriptive information contained
in the TOE loader design shall be in informal style at a level of abstraction
and detail as required in the TOE high level design document.

ADV_LTD_EXP.1.2C The TOE loader design shall describe how the TOE loader
capability performs the transfer of the machine-readable software portion
of the TSF implementation and configuration vector set into a form that is
accessible by the TOE initialization function.

100

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

 ADV_LTD_EXP.1.23 The TOE loader design shall describe the protection
mechanisms used by the TOE loader capability such that it is able to
preserve the integrity of the TSF implementation and configuration vector
set during all aspects of the transfer process.

ADV_LTD_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

ADV_LTD_EXP.1.2E The evaluator shall determine that the TOE loader design
provides sufficient evidence to support the conclusion that the TOE
loader capability preserves the integrity of the machine-readable
portions of the TSF implementation and configuration vector set when
they are transferred into a form accessible by the TOE initialization
function.

6.3.10 Representation Correspondence (ADV_RCR)
6.3.10.1 Formal Correspondence Demonstration (ADV_RCR.3)

ADV_RCR.3.1D The developer shall provide an analysis of correspondence between
all adjacent pairs of TSF representations that are provided.

ADV_RCR.3.2D For those corresponding portions of representations that are
formally specified, the developer shall prove that correspondence.

ADV_RCR.3.1C For each adjacent pair of provided TSF representations, the
analysis shall prove or demonstrate that all relevant security functionality
of the more abstract TSF representation is correctly and completely
refined in the less abstract TSF representation.

ADV_RCR.3.2C For each adjacent pair of provided TSF representations, where
portions of one representation are semiformally specified and the other at
least semiformally specified, the demonstration of correspondence
between those portions of the representations shall be semiformal.

ADV_RCR.3.3C For each adjacent pair of provided TSF representations, where
portions of both representations are formally specified, the proof of
correspondence between those portions of the representations shall be
formal.

ADV_RCR.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ADV_RCR.3.2E The evaluator shall determine the accuracy of the proofs of
correspondence by selectively verifying the formal analysis.

6.3.11 Security Policy Modeling (ADV_SPM)
6.3.11.1 Formal TOE Security Policy Model (ADV_SPM.3)

ADV_SPM.3.1D The developer shall provide a TSP model.

101

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_SPM.3.2D Refinement: The developer shall demonstrate correspondence
between the functional specification and the TSP model and shall
prove correspondence between the formal presentation of the
functional specification and the TSP model. 1

ADV_SPM.3.1C The TSP model shall be formal.

ADV_SPM.3.2C The TSP model shall describe the rules and characteristics of all
policies of the TSP that can be modeled.

ADV_SPM.3.3C The TSP model shall include a rationale that demonstrates that it is
consistent and complete with respect to all policies of the TSP that can be
modeled.

ADV_SPM.3.4C The demonstration of correspondence between the TSP model and
the functional specification shall show that all of the security functions in
the functional specification are consistent and complete with respect to
the TSP model.

ADV_SPM.3.5C Refinement: The demonstration of correspondence between the
TSP model and the functional specification shall be semiformal. 2

ADV_SPM.3.6C Refinement: The proof of correspondence between the TSP model
and the formal presentation of the functional specification shall be
formal. 3

ADV_SPM.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.4 Guidance Documents (AGD)
6.4.1 Administrator Guidance (AGD_ADM)
6.4.1.1 Explicit: Administrator Guidance (AGD_ADM_EXP.1)

AGD_ADM_EXP.1.1D The developer shall provide administrator guidance
addressed to system administrative personnel.

AGD_ADM_EXP.1.1C The administrator guidance shall describe the administrative
functions and interfaces available to the administrator of the TOE.

Application Note: Administrators of the TOE are the “authorized administrators” as defined in
the Glossary.

AGD_ADM_EXP.1.2C The administrator guidance shall describe how to administer
the TOE in a secure manner.

AGD_ADM_EXP.1.3C The administrator guidance shall contain warnings about
functions and privileges that should be controlled in a secure processing
environment.

AGD_ADM_EXP.1.4C The administrator guidance shall describe all assumptions
regarding user behavior that are relevant to secure operation of the TOE.

102

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

AGD_ADM_EXP.1.5C The administrator guidance shall describe all security
parameters under the control of the administrator, indicating secure
values as appropriate.

AGD_ADM_EXP.1.6C The administrator guidance shall describe each type of
security-relevant event relative to the administrative functions that need to
be performed, including changing the security characteristics of entities
under the control of the TSF.

AGD_ADM_EXP.1.7C The administrator guidance shall be consistent with all other
documentation supplied for evaluation.

AGD_ADM_EXP.1.8C The administrator guidance shall describe all security
requirements for the IT environment that are relevant to the administrator.

AGD_ADM_EXP.1.9C The administrator guidance shall document procedures
necessary for the correct generation and validation of the TSF
configuration vectors.

AGD_ADM_EXP.1.10C The administrator guidance shall document procedures to
restrict the authorizations and information flows granted to each subject to
be only those required for its assigned functionality.

AGD_ADM_EXP.1.11C The administrator guidance shall describe the Partitioned
Information Flow Policy abstractions supported by the TOE, and shall
document constraints and procedures for assigning the correct
abstractions to partitions, and the allocation of subjects and exported
resources to partitions based upon the abstractions supported by
partitions.

Application Note: The SKPP defines two forms of abstraction for the Partitioned Information
Flow Policy: 1) Partition, 2) Least Privilege. Refer to Section 2 for discussion of “Partitions
and the Partitioned Information Flow Policy (PIFP)”.

AGD_ADM_EXP.1.12C The administrator guidance shall document procedures
necessary to securely load the TSF code and configuration vectors.

Application Note: See Load function in Figure 2-1.

AGD_ADM_EXP.1.13C The administrator guidance shall document procedures
necessary for using the initialization function to bring the TSF into an
initial secure state.

AGD_ADM_EXP.1.14C The administrator guidance shall describe the audit record
structure in sufficient detail such that the audit data can be properly
interpreted.

AGD_ADM_EXP.1.15C The administrator guidance shall document the time stamp
definition and metric, and the means to interpret the chosen time stamp
format.

AGD_ADM_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

103

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.4.2 User Guidance (AGD_USR)
6.4.2.1 User Guidance (AGD_USR.1)

AGD_USR.1.1D The developer shall provide user guidance.

AGD_USR.1.1C The user guidance shall describe the functions and interfaces
available to the non-administrative users of the TOE.

AGD_USR.1.2C The user guidance shall describe the use of user-accessible
security functions provided by the TOE.

AGD_USR.1.3C The user guidance shall contain warnings about user-accessible
functions and privileges that should be controlled in a secure processing
environment.

AGD_USR.1.4C The user guidance shall clearly present all user responsibilities
necessary for secure operation of the TOE, including those related to
assumptions regarding user behavior found in the statement of TOE
security environment.

AGD_USR.1.5C The user guidance shall be consistent with all other documentation
supplied for evaluation.

AGD_USR.1.6C The user guidance shall describe all security requirements for the IT
environment that are relevant to the user.

AGD_USR.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.5 Life Cycle Support (ALC)
6.5.1 Development Security (ALC_DVS)
6.5.1.1 Sufficiency of Security Measures (ALC_DVS.2)

ALC_DVS.2.1D The developer shall produce development security documentation.

ALC_DVS.2.1C The development security documentation shall describe all the
physical, procedural, personnel, and other security measures that are
necessary to protect the confidentiality and integrity of the TOE design
and implementation in its development environment.

Application Note: Protecting “the confidentiality and integrity of the TOE design and
implementation” means that there are confidentiality and integrity rules in place and the
rules are enforced. The level of protection is TOE-specific and it is acceptable to have
confidentiality rules that do not require confidentiality protection, i.e., “negative” rules.

ALC_DVS.2.2C The development security documentation shall provide evidence that
these security measures are followed during the development and
maintenance of the TOE.

104

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ALC_DVS.2.3C The evidence shall justify that the security measures provide the
necessary level of protection to maintain the confidentiality and integrity of
the TOE.

ALC_DVS.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_DVS.2.2E The evaluator shall confirm that the security measures are being
applied.

6.5.2 Flaw Remediation (ALC_FLR)
6.5.2.1 Systematic Flaw Remediation (ALC_FLR.3)

ALC_FLR.3.1D The developer shall provide flaw remediation procedures addressed
to TOE developers.

ALC_FLR.3.2D The developer shall establish a procedure for accepting and acting
upon all reports of security flaws and requests for corrections to those
flaws.

ALC_FLR.3.3D The developer shall provide flaw remediation guidance addressed to
TOE users.

ALC_FLR.3.1C The flaw remediation procedures documentation shall describe the
procedures used to track all reported security flaws in each release of the
TOE.

ALC_FLR.3.2C The flaw remediation procedures shall require that a description of
the nature and effect of each security flaw be provided, as well as the
status of finding a correction to that flaw.

ALC_FLR.3.3C The flaw remediation procedures shall require that corrective actions
be identified for each of the security flaws.

ALC_FLR.3.4C The flaw remediation procedures documentation shall describe the
methods used to provide flaw information, corrections and guidance on
corrective actions to TOE users.

ALC_FLR.3.5C The flaw remediation procedures shall describe a means by which
the developer receives from TOE users reports and enquiries of
suspected security flaws in the TOE.

ALC_FLR.3.6C The procedures for processing reported security flaws shall ensure
that any reported flaws are corrected and the correction issued to TOE
users.

ALC_FLR.3.7C The procedures for processing reported security flaws shall provide
safeguards that any corrections to these security flaws do not introduce
any new flaws.

105

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ALC_FLR.3.8C The flaw remediation guidance shall describe a means by which
TOE users report to the developer any suspected security flaws in the
TOE.

ALC_FLR.3.9C The flaw remediation procedures shall include a procedure requiring
timely responses for the automatic distribution of security flaw reports and
the associated corrections to registered users who might be affected by
the security flaw.

ALC_FLR.3.10C The flaw remediation guidance shall describe a means by which
TOE users may register with the developer, to be eligible to receive
security flaw reports and corrections.

ALC_FLR.3.11C The flaw remediation guidance shall identify the specific points of
contact for all reports and enquiries about security issues involving the
TOE.

ALC_FLR.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.5.3 Life Cycle Definition (ALC_LCD)
6.5.3.1 Standardized Life-Cycle Model (ALC_LCD.2)

ALC_LCD.2.1D The developer shall establish a life-cycle model to be used in the
development and maintenance of the TOE.

ALC_LCD.2.2D The developer shall provide life-cycle definition documentation.

ALC_LCD.2.3D The developer shall use a standardized life-cycle model to develop
and maintain the TOE.

ALC_LCD.2.1C The life-cycle definition documentation shall describe the model
used to develop and maintain the TOE.

ALC_LCD.2.2C The life-cycle model shall provide for the necessary control over the
development and maintenance of the TOE.

ALC_LCD.2.3C The life-cycle definition documentation shall explain why the model
was chosen.

ALC_LCD.2.4C The life-cycle definition documentation shall explain how the model
is used to develop and maintain the TOE.

ALC_LCD.2.5C The life-cycle definition documentation shall demonstrate
compliance with the standardized life-cycle model.

ALC_LCD.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

106

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.5.4 Tools and Techniques (ALC_TAT)
6.5.4.1 Compliance with Implementation Standards – All Parts (ALC_TAT.3)

ALC_TAT.3.1D The developer shall identify the development tools being used for the
TOE.

ALC_TAT.3.2D The developer shall document the selected implementation-
dependent options of the development tools.

ALC_TAT.3.3D The developer shall describe the implementation standards for all
parts of the TOE.

ALC_TAT.3.1C All development tools used for implementation shall be well-defined.
Application Note: The development tools include the compiler and linker used to generate the

TOE.

ALC_TAT.3.2C The documentation of the development tools shall unambiguously
define the meaning of all statements used in the implementation.

ALC_TAT.3.3C The documentation of the development tools shall unambiguously
define the meaning of all implementation-dependent options.

Application Note: This documentation includes the compiler options used during the generation of
the TOE.

ALC_TAT.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ALC_TAT.3.2E The evaluator shall confirm that the implementation standards have
been applied.

6.6 Ratings Maintenance (AMA)
6.6.1 Assurance Maintenance Plan (AMA_AMP)
6.6.1.1 Explicit: Assurance Maintenance Plan (AMA_AMP_EXP.1)

Application Note: Target of Maintenance (TOM) is defined as the subject of the assurance
maintenance process, comprising an evaluated TOE together with any changes to the
associated assurance baseline.

AMA_AMP_EXP.1.1D The developer shall provide an Assurance Maintenance Plan.

AMA_AMP_EXP.1.1C The Assurance Maintenance Plan shall identify the assurance
baseline.

AMA_AMP_EXP.1.2C The Assurance Maintenance Plan shall characterize the
changes to the assurance baseline that are covered by the plan.

AMA_AMP_EXP.1.3C The Assurance Maintenance Plan shall describe the planned
TOM release-cycle.

107

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

AMA_AMP_EXP.1.4C The Assurance Maintenance Plan shall identify the planned
schedule of assurance maintenance audits and the conditions for the end
of maintenance.

Application Note: The end of maintenance occurs when it is no longer feasible or practical to
maintain the TOM under maintenance assurance [8].

AMA_AMP_EXP.1.5C The Assurance Maintenance Plan shall justify the planned
schedule of assurance maintenance audits and the conditions for the end
of maintenance.

AMA_AMP_EXP.1.6C The Assurance Maintenance Plan shall identify the processes
for assigning and ensuring currency of knowledge of individual(s)
assuming the role of security analyst.

AMA_AMP_EXP.1.7C The Assurance Maintenance Plan shall define the
relationship between the security analyst and the development of the
evidence.

AMA_AMP_EXP.1.8C The Assurance Maintenance Plan shall identify the
conceptual, technical, and evaluation qualifications of the individual(s)
identified as the security analyst.

Application Note: In AMA_AMP_EXP.1.8C, conceptual qualification refers to the security
analyst’s understanding of security concepts relevant to the TOM.

AMA_AMP_EXP.1.9C The Assurance Maintenance Plan shall describe the
procedure specifying the method by which changes to the assurance
baseline will be identified.

AMA_AMP_EXP.1.10C The Assurance Maintenance Plan shall describe the
procedures to be applied to the TOM to maintain the assurance
established for the certified TOE.

AMA_AMP_EXP.1.11C The Assurance Maintenance Plan shall describe the
controls and mechanisms implemented to ensure that the procedures
documented in the Assurance Maintenance Plan are followed.

AMA_AMP_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

6.7 Platform Assurance (APT)
Application Note: The requirements in this class are intended to be applied to commercial-off-the-shelf

(COTS), mass-produced, non-specialized, third-party platform components. These requirements
replace a subset of the assurance requirements defined in a number of ADV, ATE and AVA families.
Assurance requirements defined in other classes and families that are not addressed in this APT class
still apply.

108

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.7.1 Platform Definition (APT_PDF)
6.7.1.1 Explicit: Specified Platform Definition (APT_PDF_EXP.1)

APT_PDF_EXP.1.1D The developer shall supply platform definition
documentation.

Application Note: The platform definition documentation does not need to be a single document.
In addition to TOE-specific documentation such as the platform component security analysis,
the platform definition documentation may also include separate vendor documentation for
the different components that comprise the TOE platform. It is the responsibility of the TOE
developer to ensure that vendor documentation, if used, can satisfy the content requirements
defined in this family.

APT_PDF_EXP.1.2D The developer shall provide the platform definition
documentation to potential end-users of the product under terms no more
restrictive than the security target.

APT_PDF_EXP.1.1C The platform definition documentation shall identify the types
of commercial-of-the-shelf, mass-produced, non-specialized, third party
platform components that comprise the platform for the TOE.

APT_PDF_EXP.1.2C The platform definition documentation shall specify the rules
for assembling platform components into a valid platform for the TOE.

APT_PDF_EXP.1.3C The platform definition documentation shall include a
platform component security analysis for each type of platform
component to indicate the capabilities of the component and how the
component capabilities interact with the TOE.

APT_PDF_EXP.1.4C The platform definition documentation shall identify
component interface specifications provided by platform component
manufacturers for the external platform interfaces and the internal
platform interfaces, including interfaces between platform components
that define the interface and behavior of each valid platform component.

APT_PDF_EXP.1.5C The platform component security analysis shall characterize
each platform component type in terms of allowable variations in
functional parameters.

APT_PDF_EXP.1.6C The platform component security analysis shall describe the
effect of the full range of allowed functional parameter variations on the
TOE.

APT_PDF_EXP.1.7C The platform component security analysis shall identify any
platform components that are directly responsible for implementing any
part of any SFR.

APT_PDF_EXP.1.8C The references to each component interface shall be
sufficiently precise to allow the specifications to be obtained by a third
party.

109

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

APT_PDF_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

APT_PDF_EXP.1.2E The evaluator shall verify that the platform definition
identifies all types of platform components that may be required to
construct a valid platform for the TOE.

APT_PDF_EXP.1.3E The evaluator shall verify that the rules for platform assembly
allow construction of valid platforms for the TOE.

APT_PDF_EXP.1.4E The evaluator shall verify that the platform configuration(s)
used for testing are constructed in accordance with the platform definition.

APT_PDF_EXP.1.5E The evaluator shall confirm that all relevant SFRs are
addressed in the platform component security analysis for each platform
component type.

APT_PDF_EXP.1.6E The evaluator shall confirm that all security mechanisms
implemented in platform components that are depended on by the
software portion of the TOE are correctly identified in the applicable
ADV_HLD and ADV_LLD documentation.

APT_PDF_EXP.1.7E The evaluator shall confirm that component interface
specifications are identified for all platform components.

APT_PDF_EXP.1.8E The evaluator shall select a subset of the component
interface specifications and shall verify that they provide adequate
information to support design and testing of component compatibility.

6.7.2 Platform Specification (APT_PSP)
6.7.2.1 Explicit: Complete Platform Specification (APT_PSP_EXP.1)

APT_PSP_EXP.1.1D The developer shall identify the specifications for all external
platform interfaces.

APT_PSP_EXP.1.2D The developer shall supply a complete specification of all
external platform interfaces.

APT_PSP_EXP.1.3D The developer shall supply a complete specification of all
internal platform interfaces.

APT_PSP_EXP.1.4D The developer shall supply a complete specification of all
platform component interfaces that are not external and are not used by
the TOE.

APT_PSP_EXP.1.1C The external platform interface specification shall identify
invocation methods, parameters, expected results, and error conditions
for all external platform interfaces.

APT_PSP_EXP.1.2C The external platform interface specification shall provide an
argument that all external platform interfaces are included in the
specification.

110

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

APT_PSP_EXP.1.3C The internal platform interface specification shall identify
invocation methods, parameters, expected results, and error conditions
for all internal platform interfaces.

APT_PSP_EXP.1.4C The internal platform interface specification shall provide an
argument that all internal platform interfaces are included in the
specification.

APT_PSP_EXP.1.5C The internal platform interface specification shall provide an
argument that all platform component interfaces that are not external and
are not used by the TOE are included in the specification.

APT_PSP_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

6.7.3 Platform Conformance Testing (APT_PCT)
6.7.3.1 Explicit: Tested Platform Conformance (APT_PCT_EXP.1)

APT_PCT_EXP.1.1D For each type of commercial-of-the-shelf, mass-produced,
non-specialized, third party platform component, the developer shall
describe acceptance test procedures that demonstrate that a particular
platform component is compatible with the platform definition.

APT_PCT_EXP.1.1C The acceptance test procedures shall verify that the
particular platform component operates successfully when used as a
component of the TOE.

Application Note: Vendor-provided tests and test procedures may be used to meet this
requirement.

APT_PCT_EXP.1.2C The acceptance test procedures shall explicitly test all
platform security features on which the TSF depends, as identified in the
platform component security analysis.

Application Note: Since the platform component security analysis is TOE-specific, the tests to
verify the platform security features are expected to be developed by the TOE developer.

APT_PCT_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

APT_PCT_EXP.1.2E The evaluator shall verify that the acceptance test procedure
has been successfully followed for the platform components used in the
TOE configuration(s) that are tested.

6.7.4 Platform Security Testing (APT_PST)
6.7.4.1 Explicit: Comprehensive Platform Security Testing (APT_PST_EXP.1)

APT_PST_EXP.1.1D The developer shall supply tests to verify correct operation of
all external platform interfaces, and those internal platform interfaces
used by the TOE.

111

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

APT_PST_EXP.1.1C The platform security tests shall define the test procedures
and expected results for each tested interface.

APT_PST_EXP.1.2C The platform security tests shall include an argument that the
test coverage of applicable platform interfaces is complete.

APT_PST_EXP.1.3C The platform security tests shall verify correct security
operation of at least one instance of each interface and/or interface
parameter that is manipulable by an untrusted subject.

APT_PST_EXP.1.4C The platform security tests for the internal platform interfaces
used by the TOE shall verify correct security operation of the platform
component feature(s) that implement those feature(s).

APT_PST_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

APT_PST_EXP.1.2E The evaluator shall observe execution of the platform
security tests and verify that the correct test results are obtained.

APT_PST_EXP.1.3E The evaluator shall confirm that the claimed test coverage for
internal platform interfaces used by the TOE is complete with respect to
usage of interfaces described in the applicable ADV_HLD and ADV_LLD
documentation.

6.7.5 Platform Vulnerability Assessment (APT_PVA)
6.7.5.1 Explicit: Comprehensive Platform Vulnerability Assessment

(APT_PVA_EXP.1)

APT_PVA_EXP.1.1D The developer shall consider all external platform interfaces,
and those internal platform interfaces used by the TOE in performing the
vulnerability assessment as specified in AVA_VLA_EXP.4.

APT_PVA_EXP.1.2D The developer shall provide platform vulnerability
assessment documentation.

APT_PVA_EXP.1.1C The platform vulnerability assessment documentation shall
describe the disposition of considered vulnerabilities.

APT_PVA_EXP.1.1E The evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

APT_PVA_EXP.1.2E The evaluator shall consider all external platform interfaces,
and those internal platform interfaces used by the TOE in performing the
vulnerability assessment.

112

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6.8 Testing (ATE)
6.8.1 Coverage (ATE_COV)
6.8.1.1 Rigorous Analysis of Coverage (ATE_COV.3)

ATE_COV.3.1D The developer shall provide an analysis of the test coverage.

ATE_COV.3.1C The analysis of the test coverage shall demonstrate the
correspondence between the tests identified in the test documentation
and the TSF as described in the functional specification.

ATE_COV.3.2C The analysis of the test coverage shall demonstrate that the
correspondence between the TSF as described in the functional
specification and the tests identified in the test documentation is
complete.

ATE_COV.3.3C The analysis of the test coverage shall rigorously demonstrate that
all external interfaces of the TSF identified in the functional specification
have been completely tested.

ATE_COV.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.8.2 Depth (ATE_DPT)
6.8.2.1 Testing: Implementation Representation (ATE_DPT.3)

ATE_DPT.3.1D The developer shall provide the analysis of the depth of testing.

ATE_DPT.3.1C The depth analysis shall demonstrate that the tests identified in the
test documentation are sufficient to demonstrate that the TSF operates in
accordance with its high-level design, low-level design and
implementation presentation.

ATE_DPT.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.8.3 Functional Tests (ATE_FUN)
6.8.3.1 Ordered Functional Testing (ATE_FUN.2)

ATE_FUN.2.1D The developer shall test the TSF and document the results.

ATE_FUN.2.2D The developer shall provide test documentation.

ATE_FUN.2.1C The test documentation shall consist of test plans, test procedure
descriptions, expected test results and actual test results.

ATE_FUN.2.2C The test plans shall identify the security functions to be tested and
describe the goal of the tests to be performed.

113

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ATE_FUN.2.3C The test procedure descriptions shall identify the tests to be
performed and describe the scenarios for testing each security function.
These scenarios shall include any ordering dependencies on the results
of other tests.

ATE_FUN.2.4C The expected test results shall show the anticipated outputs from a
successful execution of the tests.

ATE_FUN.2.5C The test results from the developer execution of the tests shall
demonstrate that each tested security function behaved as specified.

ATE_FUN.2.6C The test documentation shall include an analysis of the test
procedure ordering dependencies.

ATE_FUN.2.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

6.8.4 Independent Testing (ATE_IND)
6.8.4.1 Independent Testing – Complete (ATE_IND.3)

ATE_IND.3.1D The developer shall provide the TOE for testing.

ATE_IND.3.1C The TOE shall be suitable for testing.

ATE_IND.3.2C The developer shall provide an equivalent set of resources to those
that were used in the developer's functional testing of the TSF.

ATE_IND.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

ATE_IND.3.2E The evaluator shall test a subset of the TSF as appropriate to confirm
that the TOE operates as specified.

ATE_IND.3.3E The evaluator shall execute all tests in the test documentation to
verify the developer test results.

6.9 Vulnerability Assessment (AVA)
6.9.1 Covert Channel Analysis (AVA_CCA)
6.9.1.1 Explicit: Systematic Covert Channel Analysis (AVA_CCA_EXP.2)

AVA_CCA_EXP.2.1D The developer shall conduct a search for inter-partition covert
channels with respect to the Partitioned Information Flow Policy.

AVA_CCA_EXP.2.2D The developer shall provide covert channel analysis
documentation.

AVA_CCA_EXP.2.1C The analysis documentation shall identify covert channels and
estimate their capacity.

114

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

AVA_CCA_EXP.2.2C The analysis documentation shall describe the procedures
used for determining the existence of covert channels, and the
information needed to carry out the covert channel analysis.

AVA_CCA_EXP.2.3C The analysis documentation shall describe all assumptions
made during the covert channel analysis.

AVA_CCA_EXP.2.4C The analysis documentation shall describe the method used
for estimating channel capacity, based on worst case scenarios.

AVA_CCA_EXP.2.5C The analysis documentation shall describe the worst case
exploitation scenario for each identified covert channel.

AVA_CCA_EXP.2.6C The analysis documentation shall provide evidence that the
method used to identify covert channels is systematic.

AVA_CCA_EXP.2.1E The NSA evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

AVA_CCA_EXP.2.2E The NSA evaluator shall confirm that the results of the covert
channel analysis show that the TOE meets its functional requirements.

AVA_CCA_EXP.2.3E The NSA evaluator shall selectively validate the covert
channel analysis through testing.

6.9.2 Misuse (AVA_MSU)
6.9.2.1 Analysis and Testing for Insecure States (AVA_MSU.3)

AVA_MSU.3.1D The developer shall provide guidance documentation.

AVA_MSU.3.2D The developer shall document an analysis of the guidance
documentation.

AVA_MSU.3.1C The guidance documentation shall identify all possible modes of
operation of the TOE (including operation following failure or operational
error), their consequences and implications for maintaining secure
operation.

AVA_MSU.3.2C The guidance documentation shall be complete, clear, consistent
and reasonable.

AVA_MSU.3.3C The guidance documentation shall list all assumptions about the
intended environment.

AVA_MSU.3.4C The guidance documentation shall list all requirements for external
security measures (including external procedural, physical and personnel
controls).

AVA_MSU.3.5C The analysis documentation shall demonstrate that the guidance
documentation is complete.

AVA_MSU.3.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

115

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

AVA_MSU.3.2E The evaluator shall repeat all configuration and installation
procedures and other procedures selectively, to confirm that the TOE can
be configured and used securely using only the supplied guidance
documentation.

AVA_MSU.3.3E The evaluator shall determine that the use of the guidance
documentation allows all insecure states to be detected.

AVA_MSU.3.4E The evaluator shall confirm that the analysis documentation shows
that guidance is provided for secure operation in all modes of operation of
the TOE.

AVA_MSU.3.5E The evaluator shall perform independent testing to determine that
an administrator or user, with an understanding of the guidance
documentation, would reasonably be able to determine if the TOE is
configured and operating in the manner that is insecure.

6.9.3 Strength of TOE Security Functions (AVA_SOF)

6.9.3.1 Strength of TOE Security Function Evaluation (AVA_SOF.1)
Application Note: This PP contains no security functions for which a strength of function claim is

appropriate. However, should additional security functions for which a strength of function
claim is appropriate be included in a security target claiming conformance to this PP, then
the following AVA_SOF criteria applies.

 AVA_SOF.1.1D The developer shall perform a strength of TOE security function
analysis for each mechanism identified in the ST as having a strength of
TOE security function claim.

AVA_SOF.1.1C For each mechanism with a strength of TOE security function
claim the strength of TOE security function analysis shall show that it
meets or exceeds the minimum strength level defined in the PP/ST.

AVA_SOF.1.2C For each mechanism with a specific strength of TOE security
function claim the strength of TOE security function analysis shall show
that it meets or exceeds the specific strength of function metric defined in
the PP/ST.

AVA_SOF.1.1E The evaluator shall confirm that the information provided meets all
requirements for content and presentation of evidence.

AVA_SOF.1.2E The evaluator shall confirm that the strength claims are correct.

6.9.4 Vulnerability Analysis (AVA_VLA)
6.9.4.1 Explicit: Highly Resistant (AVA_VLA_EXP.4)

AVA_VLA_EXP.4.1D The developer shall perform a vulnerability analysis.

AVA_VLA_EXP.4.2D The developer shall provide vulnerability analysis
documentation.

116

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

AVA_VLA_EXP.4.1C The vulnerability analysis documentation shall describe the
analysis of the TOE evaluation deliverables performed to search for ways
in which a user can violate the TSP.

AVA_VLA_EXP.4.2C The vulnerability analysis documentation shall describe the
disposition of identified vulnerabilities.

AVA_VLA_EXP.4.3C The vulnerability analysis documentation shall show, for all
identified vulnerabilities, that the vulnerability cannot be exploited in the
intended environment of the TOE.

AVA_VLA_EXP.4.4C The vulnerability analysis documentation shall justify that the
TOE, with the identified vulnerabilities, is resistant to obvious penetration
attacks.

AVA_VLA_EXP.4.5C The vulnerability analysis documentation shall show that the
search for vulnerabilities is systematic.

AVA_VLA_EXP.4.6C The vulnerability analysis documentation shall provide a
justification that the analysis completely addresses the TOE evaluation
deliverables.

AVA_VLA_EXP.4.1E The NSA evaluator shall confirm that the information provided
meets all requirements for content and presentation of evidence.

AVA_VLA_EXP.4.2E The NSA evaluator shall perform an independent vulnerability
analysis.

AVA_VLA_EXP.4.3E The NSA evaluator shall perform independent penetration
testing.

AVA_VLA_EXP.4.4E The NSA evaluator shall determine that the TOE is resistant to
penetration attacks performed by an attacker possessing a high attack
potential.

End Notes

This section records the assurance requirements where deletions of Common Criteria text were
performed.

The modifications described in the following End Notes all relate to the functional specification of the
TSF and its formal presentation. Refer to the Application Notes of ADV_FSP_EXP.4.2D for an
explanation of the relationship between these two evaluation artifacts.

1 Modifications of CC text were performed in ADV_SPM.3.2D. Rationale: 1) The words “correspondence between

the functional specification and the TSP model and shall” were added, 2) the words “or prove, as appropriate,”
were changed to “prove” and 3) the words “formal presentation of the” were added. The changes are to clarify
that two separate correspondences are required between the functional specification and the TSP model, and
between the formal presentation of the functional specification and the TSP model.

117

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

ADV_SPM.3.2D Refinement: The developer shall demonstrate correspondence between the functional
specification and the TSP model and shall or prove, as appropriate, correspondence between the formal
presentation of the functional specification and the TSP model.

2 Modifications of CC text were performed in ADV_SPM.3.5C. Rationale: The words “Where the functional
specification is semiformal,” were deleted for readability since ADV_FSP_EXP.4.2C requires that the
functional specification be written in a semi-formal style.

ADV_SPM.3.5C Refinement: Where the functional specification is semiformal, The demonstration of
correspondence between the TSP model and the functional specification shall be semiformal.

3 Modifications of CC text were performed in ADV_SPM.3.6C. Rationale: The words “Where the functional
specification is formal,” were deleted and 2) the words “formal presentation of the” were added. The changes
are for readability since ADV_FSP_EXP.4.2D and ADV_FSP_EXP.4.9C require a formal presentation of the
functional specification.

ADV_SPM.3.6C Refinement: Where the functional specification is formal, The proof of correspondence
between the TSP model and the formal presentation of the functional specification shall be formal.

118

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

7. Rationale
128 This section provides the rationale for the selection, creation, and use of security objectives and

requirements as defined in sections 4 and 5, respectively.

7.1 Security Objectives derived from Threats
129 Each of the identified threats to security is addressed by one or more security objectives. Table

7.1 below provides the mapping from security objectives to threats, as well as a rationale that
discusses how the threat is addressed. Definitions are provided (in italics) below each threat and
security objective so the PP reader can reference these without having to go back to sections 3
and 4.

Table 7.1. Mapping of Security Objectives to Threats

Threat Objectives Addressing Threat Rationale

T.ADMIN_ERROR
An administrator may
incorrectly install or configure
the TOE (including the
misapplication of the
protections afforded by the
PIFP), or install a corrupted
TOE resulting in ineffective
security mechanisms.

O.ADMIN_GUIDANCE
The TOE will provide administrators with the
necessary information for secure management
of the TOE.
O.INSTALL_GUIDANCE
The TOE will be delivered with the appropriate
installation guidance to establish and maintain
TOE security.

To mitigate this threat, administrative
personnel must have available to them correct
guidance governing the installation and use of
the TOE.
O.ADMIN_GUIDANCE requires that the
necessary information to securely manage the
TOE be provided to administrators of the TOE.
O.INSTALL_GUIDANCE requires that the
appropriate information to securely install and
maintain TOE security be provided as part of
the delivered TOE.
This threat is about TOE misconfiguration by a
qualified admininstrator. TOE
misconfiguration by an unqualified
administrator is addressed separately by the
environmental assumption
A.SUBJECT_ALLOCATION (see Section
7.3).

T.ALTERED_DELIVE
RY
The TOE may be corrupted or
otherwise modified during
delivery such that the on-site
version does not match the
master distribution version.

O.TRUSTED_DELIVERY
The integrity of the TOE must be protected
during the initial delivery and subsequent
updates, and verified to ensure that the on-site
version matches the master distribution version.

To mitigate this threat,
O.TRUSTED_DELIVERY requires integrity
protection of the TOE. Checking the integrity
of the TOE during initial delivery and
subsequent updates is sufficient to determine if
the TOE is corrupted or modified.

119

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.CONFIGURATION_
CHANGE
The lack of TSF-enforced
constraints on the ability of an
authorized subject to invoke or
dictate how the TOE is
reconfigured may result in the
TOE transitioning to an
insecure (unknown,
inconsistent, etc) state.

O.CONFIGURATION_CHANGE
The TOE will support the capability to perform a
static configuration change. The TOE may also
provide the capability for an authorized subject
to select or redefine the configuration vector to
be used upon TOE startup, TOE restart or TOE
reconfiguration.
O.MANAGE
The TOE will provide all the functions necessary
to support the administrative users and
authorized subjects in their management of the
TOE security functions and configuration data,
and restrict these functions from use by
unauthorized subjects.

This threat exists in relation to an
organizational security policy for configuration
change (see
P.CONFIGURATION_CHANGE). For a TOE
that supports online configuration change
capability, there must be protections in place to
ensure that the change in configuration results
in the configuration specified, and that secure
state is maintained for the duration of the
configuration change process.
O.CONFIGURATION_CHANGE mitigates
this threat by requiring the TOE to provide
specific means for authorized subjects to select
or redefine the TOE configuration.
O.MANAGE mitigates this threat by requiring
the TOE to provide management functions
accessible to authorized subjects and restricted
from access by unauthorized subjects.

T.CONFIGURATION_I
NTEGRITY
The TOE may be placed in a
configuration that is not
consistent with that of the
configuration vector due to the
improper loading of the
configuration vector or
incorrect use of the
configuration vector during
TOE initialization.

O.CORRECT_INIT
The TOE will provide mechanisms to correctly
transfer the software portion of the TSF
implementation and TSF data into the TSF’s
security domain and to correctly establish the
TOE in an operational configuration consistent
with the configuration vector that defines the
configuration data.
O.CORRECT_LOAD
The TOE will provide procedures and
mechanisms to correctly convert the software
portion of the TSF implementation and/or
configuration vectors into a TOE-usable form.

The failure to establish the TSF in the intended
configuration that is consistent with the intent
may occur if the TOE load and initialization
functions do not have sufficient checks-and-
balances to maintain the integrity of the
configuration vector during the TOE load
process and during TOE initialization. In
addition, it is necessary to ensure correct
interpretation and use of the configuration
vector during the initialization of the TOE.
O.CORRECT_INIT mitigates this threat by
requiring the TOE to provide an initialization
function that correctly transfers the software
portion of the TSF implementation and TSF
data into the TSF’s security domain and to
correctly establish the TOE in an operational
configuration consistent with the configuration
vector that defines the configuration data.
O.CORRECT_LOAD mitigates this threat by
ensuring that the load function accurately
prepares the software portion of the TSF
implementation and TOE configuration vectors
for use by the TOE initialization function.

120

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.COVERT_CHANNEL
_EXPLOIT
An unauthorized information
flow may occur between
partitions as a result of covert
channel exploitation.

O.COVERT_CHANNEL_ANALYSIS
The TOE will undergo appropriate covert
channel analysis by NSA to demonstrate that the
TOE satisfies covert channel mitigation metrics.
 OE.COVERT_CHANNELS
If the TOE has covert storage and/or timing
channels, then all subjects executing on that
TOE will, relative to the IT assets to which they
have access, have assurance sufficient to
outweigh the risk that they will violate the
security policy of the TOE by using those covert
channels.

Unauthorized information flow may occur
between partitions as a result of covert channel
exploitation.
O.COVERT_CHANNEL_ANALYSIS
mitigates this threat by validating the vendor’s
covert channel analysis through testing and
analysis.
OE.COVERT_CHANNELS mitigates this
threat by requiring that subjects capable of
exploiting covert channels are trusted not to do
so. See rationale for
A.COVERT_CHANNELS.

T.DENIAL_OF_SERVICE
A malicious subject may block
others from system resources
(e.g., system memory,
persistent storage, and
processing time) via a
resource exhaustion attack.

O.RESOURCE_ALLOCATION
The TOE will provide mechanisms that enforce
constraints on the allocation of exported TOE
resources.
O.BOUNDED_EXECUTION
The TOE will exhibit predictable and worst-case
bounded execution behavior.

The need to share resources (e.g., system
memory, and processing time) between
subjects introduces the potential for one subject
to not be able to obtain the number of resources
it requires to perform its function. Additionally,
the TSF internally may contribute to a denial-
of-service, observable at the TSFI, due to its
unbounded use of resources.
O.RESOURCE_ALLOCATION contributes to
mitigation of this threat by requiring the TOE
to enforce the allocation of system resources to
partitions according to the constraints in the
configuration data. These constraints include
the allocation of minimum and maximum
quotas for consumable resources.
O.BOUNDED_EXECUTION contributes to
mitigation of this threat by requiring that the
TSF has predictable execution properties to
include a worst-case execution property that
remains within defined bounds.

T.INCORRECT_CONFIG
The configuration vectors are
not an accurate and complete
description of the operational
configuration of the TOE as
used by an organization.

O.CORRECT_CONFIG
The TOE will provide procedures and
mechanisms to generate the configuration
vectors such that they accurately describe the
operational configuration of the TOE as used by
an organization.

Since the policy enforcement functions of the
TSF depend on the correctness of the TSF data,
and the TOE’s initialization mechanism
generates the TSF data from the configuration
vector used during initialization of the TOE, it
is important that the mechanisms used to
generate the configuration vectors are subjected
to analysis and testing with developmental
assurance commensurate with the rest of the
TOE.
O.CORRECT_CONFIG mitigates this threat
by requiring the mechanisms used to generate
the configuration vector (e.g., a configuration
vectors generation tool) be included as part of
the TOE and within the scope of the TOE
evaluation.

121

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.INCORRECT_LOAD
The software portion of the
TSF implementation and/or
configuration vectors are not
correctly converted into a
TOE-useable form.

O.CORRECT_LOAD
The TOE will provide procedures and
mechanisms to correctly convert the software
portion of the TSF implementation and/or
configuration vectors into a TOE-useable form.

O.CORRECT_LOAD mitigates this threat by
requiring the mechanisms used to convert the
software portion of the TSF implementation
and/or configuration vectors into a form that is
usable by the TOE initialization mechanism be
included as part of the TOE and within the
scope of the TOE evaluation.

122

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.INSECURE_STATE
The TOE may be placed in an
insecure state as a result of an
erroneous initialization, halt,
reconfiguration or restart,
transition to maintenance
mode, or as a result of an
unsuccessful recovery from a
system failure or discontinuity.

O.INIT_SECURE_STATE
The TOE will provide mechanisms to transition
the TSF to an initial secure state without
protection compromise.
O.RECOVERY_SECURE_STATE
The TOE will provide procedures and/or
mechanisms, which can be used in the event of
failure, faults, or discontinuity, to preserve
secure state and to transition the TSF back to a
secure state without protection compromise.
O.CORRECT_TSF_OPERATION
The TOE will provide a runtime self-test
capability.
The TOE will provide the means for an
authorized subject to invoke and obtain the
results of the self-test.
The TOE will take action in response to any
failure of a runtime self-test capability.
O.TRANSITION
The TOE will provide the capabilities for an
authorized subject to restart the TOE, halt the
TOE and transition the TOE into maintenance
mode.
O.TSF_INTEGRITY
The TOE will verify the integrity of the TSF code
and data.
O.SECURE_STATE
The TOE will preserve secure state during an
execution session.

Any change in TOE state or change in TOE
mode of operation presents the possibility for
the TOE to be placed in an insecure state. To
mitigate this threat, it is necessary to ensure
that the notion of secure state exists and is
preserved throughout all TOE transitions
between states and between modes. The
combination of the following objectives
mitigate this threat:
O.INIT_SECURE_STATE requires the TOE to
provide the mechanisms to initialize the TSF
into an initial secure state during TOE
initialization.
O.SECURE_STATE requires the TOE to
ensure that secure state is preserved during an
execution session.
O.RECOVERY_SECURE_STATE requires
the TOE to provide procedures and/or
mechanisms to ensure recovery without further
protection compromise. The TOE developer is
required to list the specific recovery
condition(s) that the TOE may be placed in an
insecure state and, for each condition, the
associated recovery action to be taken by the
TSF. The TSF is required to attempt to halt the
TOE if it is unable to proceed with any
recovery action.
O.CORRECT_TSF_OPERATION requires
runtime self-tests to be performed to
demonstrate the correct operation of the TSF’s
implementation (hardware and software). This
includes providing the means for an authorized
subject to invoke the execution of self-tests at
its discretion and for such an authorized subject
to obtain the results of the self-test for analysis
and possible response action. This objective
also requires the TOE to take action upon the
detection of any self-test failure. The action to
be taken is ST-specific.
O.TRANSITION requires the TOE to provide
an authorized subject the ability to perform the
following operations to facilitate trusted
recovery: restart the TOE, halt the TOE and
transition the TOE into maintenance mode.
O.TSF_INTEGRITY requires the TOE to
verify the integrity of the TSF code and data
during normal operation.

123

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.LEAST_PRIVILEGE
The design and
implementation of the TSF
internals may not suffice to
limit the damage resulting from
accident, error or unauthorized
use.

O.INTERNAL_LEAST_PRIVILEGE
The entire TSF will be structured to achieve the
principle of least privilege among TSF modules.

The application of the principle of least
privilege to the TSF internal design and
implementation minimizes the damage posed
by any threat that results in erroneous behavior
within the TSF.
O.INTERNAL_LEAST_PRIVILEGE requires
that the TSF be structured such that the
principle of least privilege is applied to the
internal software architecture and
implementation of the TSF. Supporting the
principle of least privilege in the internals of
the TSF limits the damage that can result from
accident, error or unauthorized use.

T.POOR_DESIGN
Unintentional or intentional
errors in requirements
specification or design of the
TOE may occur, leading to
flaws that may be exploited by
a malicious subject.

O.CHANGE_MANAGEMENT
The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled by trusted
individuals throughout the TOE’s development.
O.SOUND_DESIGN
The TOE will be designed using sound design
principles and techniques which will be
accurately documented.
The TOE design will be completely and
accurately documented.
O.VULNERABILITY_ANALYSIS_TEST
The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

Intentional or unintentional errors may occur in
the requirements specification, design or
development of the TOE. To address this
threat, O.SOUND_DESIGN requires sound
design principles and techniques that help
prevent flaws in the TOE’s design by
eliminating errors in the logic, and for the
design to be completely and accurately
documented. This provides the evaluation
team with the means to independently reach the
same conclusions as the development team
with regard to the ability of the TSF to
adequately mitigate defined threats and enforce
defined policies while meeting its security
functional requirements.
In addition, O.CHANGE_MANAGEMENT
addresses this threat by requiring all changes to
the TOE and its development evidence be
analyzed, tracked and controlled by trusted
individuals throughout the development cycle.
To verify that there are no intentional or
unintentional errors introduced in the design,
O.VULNERABILITY_ANALYSIS_TEST
demonstrates that the design of the TOE is
resistant to attacks that exercise these design
flaws and development errors.

124

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.POOR
_IMPLEMENTATION
Unintentional or intentional
errors in implementation of the
TOE design may occur,
leading to flaws that may be
exploited by a malicious
subject.

O.CHANGE_MANAGEMENT
The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled by trusted
individuals throughout the TOE’s development.
O.FUNCTIONAL_TESTING
The TOE will undergo independent security
functional testing that demonstrates the TSF
satisfies the security functional requirements.
O.SOUND_IMPLEMENTATION
The implementation of the TOE will be an
accurate instantiation of its design.
O.VULNERABILITY_ANALYSIS_TEST
The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

Intentional or unintentional errors may occur
when implementing the design of the TOE. To
address this threat,
O.SOUND_IMPLEMENTATION ensures that
the implementation is an accurate
representation of the design.
To ensure that an accurate representation of the
design is maintained,
O.CHANGE_MANAGEMENT ensures that all
changes to the TOE and its development
evidence are analyzed, tracked and controlled
by trusted individuals throughout the
development cycle.
To ensure that errors have not been introduced,
O.FUNCTIONAL_TESTING validates that the
TSF satisfies the security functional
requirements.
To further demonstrate that vulnerabilities are
not present,
O.VULNERABILITY_ANALYSIS_TEST
adds confidence that the TOE is not susceptible
to attack despite being an accurate and
complete instantiation of the design.

125

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.POOR_TEST
Lack of or insufficient
evaluation and runtime tests to
demonstrate that all TOE
security functions operate
correctly (including in a fielded
TOE) may result in incorrect
TOE behavior being
undiscovered.

O.CORRECT_TSF_OPERATION
The TOE will provide a runtime self-test
capability.
The TOE will provide the means for an
authorized subject to invoke and obtain the
results of the self-test.
The TOE will take action in response to any
failure of a runtime self-test capability.
O.FUNCTIONAL_TESTING
The TOE will undergo independent security
functional testing that demonstrates the TSF
satisfies the security functional requirements.
O.VULNERABILITY_ANALYSIS_T
EST
The TOE will undergo independent vulnerability
analysis and penetration testing by NSA to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

Design analysis determines that documented
design of the TOE satisfies its security
functional requirements. In order to ensure the
TOE’s design is correctly realized in its
implementation, the appropriate level of
functional testing of the TOE’s security
mechanisms must be performed during the
evaluation of the TOE. TOE testing also
includes the ability of the TOE to execute a
suite of tests as necessary during runtime to
ensure that the TSF continuously operates
correctly.
O.FUNCTIONAL_TESTING ensures that
independent functional testing is performed to
demonstrate the TSF satisfies the security
functional requirements and the TOE’s security
mechanisms operate as documented.
While functional testing serves an important
purpose, it does not ensure the TSFI cannot be
used in unintended ways to circumvent the
TOE’s security policies.
O.VULNERABILITY_ANALYSIS_TEST
addresses this concern by requiring that
vulnerability analysis and penetration testing be
performed. This objective provides a measure
of confidence that the TOE does not contain
security flaws that may not be identified
through functional testing.
While these testing activities are a necessary
activity for successful completion of an
evaluation, this testing activity does not address
the concern that the TOE continues to operate
correctly and enforce its security policies
during normal operation. Some level of testing
must be available to ensure the TOE’s security
mechanisms continue to operate correctly once
the TOE is fielded.
O.CORRECT_TSF_OPERATION ensures that
once the TOE is installed at a customer’s
location, a TSF self-testing capability exists to
provide end users the confidence that the
TOE’s security policies continue to be
enforced. The ability for an authorized subject
to obtain the results of TSF self-tests allows
recovery action to be initiated from outside of
the TSF. This objective also ensures that the
TOE takes action upon the detection of any
self-test failure. The action to be taken is ST-
specific.

126

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Threat Objectives Addressing Threat Rationale

T.TSF_COMPROMISE
A malicious subject may cause
TSF data or executable code
to be inappropriately accessed
(viewed, modified, or deleted).

O.REFERENCE_MONITOR
The TOE will provide a reference validation
mechanism responsible for the enforcement of
the TSP.
The reference validation mechanism will execute
in its own security domain.
The reference validation mechanism must be
tamper proof, its enforcement functions must be
always invoked, and its design and
implementation must be of size and complexity
small enough to be subject to analysis and tests,
the completeness of which can be assured.

O.REFERENCE_MONITOR addresses the
threat of tampering with or destruction of TSF
software and TSF data (when the TSF is
executing). It ensures that the TSF maintains a
security domain for its own execution that
protects it from interference and tampering.

T.UNAUTHORIZED
_ACCESS
A subject may gain access to
resources or TOE security
management functions for
which it is not authorized
according to the TOE security
policy.

OE.PHYSICAL
Physical security will be provided for the TOE by
the non- IT environment commensurate with the
value of the IT assets protected by the TOE.
O.ACCESS
The TOE will ensure that subjects gain only
authorized access to exported resources.
O.AUTHORIZED_SUBJECT
The TOE will ensure that only authorized
subjects are allowed to access restricted
services.
O.RESIDUAL_INFORMATION
The TOE will ensure that any information
contained in a protected resource is not released
to subjects when the resource is reallocated.
O.SUBJECT_ISOLATION
The TOE will provide mechanisms to protect
each subject from unauthorized interference by
other subjects.
O.MANAGE
The TOE will provide all the functions necessary
to support the administrative users and
authorized subjects in their management of the
TOE security functions and configuration data,
and restrict these functions from use by
unauthorized subjects.
O.TRANSITION
The TOE will provide the capabilities for an
authorized subject to restart the TOE, halt the
TOE and transition the TOE into maintenance
mode.

Unauthorized users may physically tamper with
the TOE hardware to gain unauthorized access
to TOE resources. To mitigate this threat,
OE.PHYSICAL establishes physical controls
that restrict physical access to the TOE to only
authorized personnel.
Within the computing environment,
O.ACCESS only allows that subjects can gain
access only to those exported resources for
which they are authorized, and
O.AUTHORIZED_SUBJECT only allows
subjects to gain access to restricted services for
which they are authorized.
The potential for unauthorized access via an
information flow in violation of the TOE
security policy occurs when hardware
resources are deallocated from one subject and
allocated to another.
 O.RESIDUAL_INFORMATION mitigates
this aspect of the threat by requiring the TOE to
ensure that unauthorized access to the residual
information contained in a resource, once
disassociated with one subject, is not accessible
when the resource is allocated to another
subject.
At the same time, O.SUBJECT_ISOLATION
provides mechanisms to enforce domain
separation to protect each subject from
unauthorized interference by other subjects.
To counter the threat that unauthorized subjects
could gain access to TOE security management
functions, O.MANAGE and O.TRANSITION
together require the TOE to restrict access to
these management functions to authorized
subjects only.

127

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

7.2 Objectives derived from Security Policies
130 Each of the identified security policies is addressed by one or more security objectives. Table

7.2 below provides the mapping from security objectives to security policies, as well as a
rationale that discusses how the policy is addressed. Definitions are provided (in italics) below
each policy and security objective so the PP reader can reference these without having to go back
to sections 3 and 4.

Table 7.2. Mapping of Security Objectives to Security Policies

Security Policy Objectives Addressing Policy Rationale

P.ACCOUNTABILITY
The TOE shall provide the capability to
make available information regarding
the occurrence of security relevant
events.

O.AUDIT_GENERATION
The TOE will provide the capability to detect,
generate and export audit records for
security relevant auditable events.

This policy requires the TOE to detect and
make available information associated with
security relevant events. Such information
can aid the analysis/debugging of security-
related errors, and provides the means for
authorized subjects to take action in response
of security relevant events.
O.AUDIT_GENERATION enforces this
policy by requiring the TOE to detect the
occurrence of security relevant events and to
generate audit data associated with those
events.

P.CONFIGURATION_CHANG
E
The TOE shall support the capability to
perform a static configuration change.
The TOE may also provide the capability
for an authorized subject to select or
redefine the configuration vector to be
used upon TOE startup, TOE restart or
TOE reconfiguration.

O.CONFIGURATION_CHANGE
The TOE will support the capability to
perform a static configuration change. The
TOE may also provide the capability for an
authorized subject to select or redefine the
configuration vector to be used upon TOE
startup, TOE restart or TOE reconfiguration.

This policy is driven by operational needs to
change the configuration of the TOE. It
requires the TOE to support a static
configuration change capability.
Additionally, this policy allows the TOE to
provide the means to perform a configuration
change of the TOE whereby an authorized
subject is able to select or redefine the
configuration vector to be used when the TOE
is started, restarted, or reconfigured in the
absence of a start or restart.
A TOE that implements any variation of an
on-line configuration change capability in
accordance with this policy introduces a
configuration-change-related threat. Refer to
T.CONFIGURATION_CHANGE for the
mapping and rationale for this threat.
O.CONFIGURATION_CHANGE enforces
this policy by requiring the TOE to support a
static configuration change capability, and
makes provisions for the TOE to provide
support for a configuration change capability
invoked by an authorized subject.

128

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Security Policy Objectives Addressing Policy Rationale

P.CRYPTOGRAPHY
The TOE shall use NSA approved
cryptographic mechanisms.

O.CRYPTOGRAPHY
The TOE will use NIST FIPS-validated
cryptography as a baseline with additional
NSA-approved methods for key
management (i.e., generation, access,
distribution, destruction, handling, and
storage of keys) and for cryptographic
operations (i.e., encryption, decryption,
signature, hashing, key exchange, and
random number generation services).

The use of cryptographic mechanisms for
which their correctness and/or strength are not
fully understood presents a vulnerability that,
if exploited, could undermine all aspects of
the TOE’s ability to meet its objectives.
To mitigate this threat, O.CRYPTOGRAPHY
enforces this policy by requiring that the TOE
employ cryptographic solutions that at a
minimum have been validated by NIST FIPS
processes and which employ NSA approved
methods for key management and for
cryptographic operations.

P.INDEPENDENT_TESTING
The TOE shall undergo independent
testing.

O.FUNCTIONAL_TESTING
The TOE will undergo independent security
functional testing that demonstrates the TSF
satisfies the security functional
requirements.
O.VULNERABILITY_ANALYSIS_
TEST
The TOE will undergo independent
vulnerability analysis and penetration testing
by NSA to demonstrate the design and
implementation of the TOE does not allow
attackers with high attack potential to violate
the TOE’s security policies.

This policy requires the TOE to undergo
independent testing to verify that the
implementation is an accurate instantiation of
the requirements and to provide additional
confidence that in meeting its requirements,
the TOE is sufficiently resistant to the
capabilities of attackers with high attack
potential, motivation, expertise and resources.
O.FUNCTIONAL_TESTING demonstrates
the TSF satisfies the appropriate security
functional requirements.
O.VULNERABILITY_ANALYSIS_TEST
requires the TOE to undergo vulnerability
analysis and penetration testing to
demonstrate the design and implementation of
the TOE does not allow attackers with high
attack potential to violate the TOE’s security
policies.

P.RATINGS_MAINTENANCE
A plan for procedures and processes to
maintain the TOE’s rating shall be in
place to maintain the TOE’s rating once
it is evaluated.

O.RATINGS_MAINTENANCE
Procedures and processes to maintain the
TOE’s rating will be documented.

This policy requires the TOE developer to
provide a plan that documents the procedures
and processes to maintain the evaluated rating
that is ultimately awarded to the TOE.
O.RATINGS_MAINTENANCE satisfies this
policy by requiring the TOE developer to
provide the required rating maintenance plan.

129

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Security Policy Objectives Addressing Policy Rationale

P.SYSTEM_INTEGRITY
The TOE shall provide the ability to
periodically validate its correct
operation.

O.CORRECT_TSF_OPERATION
The TOE will provide a runtime self-test
capability.
The TOE will provide the means for an
authorized subject to invoke and obtain the
results of the self-test.
The TOE will take action in response to any
failure of a runtime self-test capability.

This policy requires the TOE to periodically
test itself to provide some measure of
confidence that the TOE is operating in
accordance with its security policies.
O.CORRECT_TSF_OPERATION supports
this policy by requiring the TOE to provide a
capability to test the TSF to demonstrate the
correct operation of the TSF in its operational
environment. The ability for an authorized
subject to obtain the results of TSF self-tests
enables validation of TOE correct operation
from outside of the TSF. This objective
further supports this policy by requiring the
TOE to take action upon the detection of any
self-test failure. The action to be taken is ST-
specific.

P.USER_GUIDANCE
The TOE shall provide documentation
regarding the correct use of the TOE
security features.

O.USER_GUIDANCE
The TOE shall provide users with the
necessary information for secure use of the
TOE.

This policy requires that the TOE
documentation provide adequate information
for the secure use and operation of the TOE.
O.USER_GUIDANCE satisfies this policy by
requiring that the necessary user information
be provided.

P.VULNERABILITY
_ANALYSIS_AND_TEST
The TOE shall undergo independent
vulnerability analysis and penetration
testing by NSA to demonstrate that the
TOE is resistant to an attacker
possessing a high attack potential.

O.VULNERABILITY_ANALYSIS_
TEST
The TOE will undergo independent
vulnerability analysis and penetration testing
by NSA to demonstrate the design and
implementation of the TOE does not allow
attackers with high attack potential to violate
the TOE’s security policies.

O.VULNERABILITY_ANALYSIS_TEST
satisfies this policy by ensuring that an
independent vulnerability analysis is
performed on the TOE and penetration testing
based on that analysis is performed. Having
an independent party perform the analysis
helps ensure objectivity and eliminates
preconceived notions of the TOE’s design and
implementation that may otherwise affect the
thoroughness of the analysis. The level of
analysis and testing requires that an attacker
with a high attack potential cannot
compromise the TOE’s ability to enforce its
security policies.

7.3 Objectives derived from Assumptions
131 Each of the identified security assumptions is addressed by one or more security objectives.

Table 7.3 below provides the mapping from security objectives to security assumptions, as well
as a rationale that discusses how the assumption is addressed. Definitions are provided (in
italics) below each assumption and security objective so the PP reader can reference these
without having to go back to sections 3 and 4.

130

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table 7.3. Mapping of Security Objectives to Assumptions

Assumption Objectives Addressing

Assumption

Rationale

A.PHYSICAL
It is assumed that the non-IT environment
provides the TOE with appropriate
physical security commensurate with the
value of the IT assets protected by the
TOE.

OE.PHYSICAL
Physical security will be provided for the
TOE by the non-IT environment
commensurate with the value of the IT
assets protected by the TOE.

OE.PHYSICAL addresses this assumption
by requiring the non-IT environment to
provide physical security for the TOE that is
commensurate with the value of the IT assets
protected by the TOE.

A.SUBJECT_ALLOCATION
It is assumed that a properly trained
trusted individual will create configuration
vectors such that, for those partitions to
which subjects are allocated, each
partition is allocated one or more subjects
(i.e., subjects with homogeneous access
requirements, or subjects with
heterogeneous access requirements) that
are appropriate for the policy abstraction
supported by the TOE.

OE.SUBJECT_ALLOCATION
A properly trained trusted individual will
create configuration vectors such that, for
those partitions to which subjects are
allocated, each partition is allocated one or
more subjects (i.e., subjects with
homogeneous access requirements, or
subjects with heterogeneous access
requirements) that are appropriate for the
policy abstraction supported by the TOE.

OE.SUBJECT_ALLOCATION addresses
this assumption by requiring a trusted
individual to allocate subjects to partitions
such that each partition’s configuration is
appropriate for the policy abstraction
supported by the TOE.
Having trust in an individual requires proper
training to ensure they fully understand the
consequences of their actions and can be
relied upon to take correct action in
performing their duties..

A.COVERT_CHANNELS
If the TOE has covert storage and/or
timing channels, then for all subjects
executing on that TOE, it is assumed that
relative to the IT assets to which they have
access, those subjects will have
assurance sufficient to outweigh the risk
that they will violate the security policy of
the TOE by using those channels.

OE.COVERT_CHANNELS
If the TOE has covert storage and/or
timing channels, then all subjects
executing on that TOE will, relative to the
IT assets to which they have access, have
assurance sufficient to outweigh the risk
that they will violate the security policy of
the TOE by using those covert channels.

The purpose of the assumption is to provide
insight to the risk associated with “system-
level” use of the TOE, and to identify the
assurance action that should be taken to
ensure that the risk is properly understood
and mitigated.
The SKPP allows storage and timing covert
channels to exist in the TOE
implementation. These channels allow any
subject (e.g., application program) to violate
the TSP. Therefore, if a TOE has covert
channels, and it is deployed in an
environment which cannot tolerate the risk to
the IT assets associated with those channels,
then the applications configured to run on the
TOE should be of sufficient assurance (e.g.,
through CC evaluation or some other means)
that they can be trusted to not exercise the
covert channels. The assurance should be
commensurate with the value of the IT
assets, at least, and in the case of the threat
environment targeted by this PP, would be
the same as the TOE (viz., EAL6+).

A.TRUSTED_FLOWS
For any subject configured to have
unrestricted access in multiple policy
equivalence classes, it is assumed that the
subject is trusted at least with assurance
commensurate with the value of the IT
assets in all equivalence classes to which

OE.TRUSTED_FLOWS
For each configuration of the TOE, a
partial order of the flows that are allowed
between policy equivalence classes will be
identified. Any subject allowed by the
configuration data to cause information
flow that is contrary to the partial order will

The purpose of the assumption is to provide
insight to the risk associated with “system-
level” use of the TOE, and to identify the
assurance action that should be taken to
ensure that the risk is properly understood
and mitigated.

131

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Assumption Objectives Addressing Rationale

Assumption
it has access. be trusted at least with assurance

commensurate with the value of the IT
assets in all equivalence classes to which
it has access.

Denning [9] has shown that all security
policies that restrict information flow can be
represented as a lattice policy. The SKPP
describes a class of products for managing
information flow (in addition to least
privilege) in its applications. Therefore,
requirements in the SKPP based on an
assumption of a lattice-bounded application-
level policy are not restrictive to its general
interpretation. A significant property of
lattice flow policies is that they do not allow
two-way flows between equivalence classes.

OE.TRUSTED_FLOWS addresses this
assumption by requiring that a subject
capable of causing information flow in
violation of the partial ordering of
information flows between partitions be
trusted with assurance commensurate with
the value of the IT assets in all partitions to
which it has access.
The “partial ordering” requirement addresses
a significant characteristic of the class of
systems represented by this protection
profile.
Partitions between which flows occur in
violation of the partial ordering result in a
logical equivalence class of information in
those partitions, since all information can be
shared between the partitions. In some cases,
flows between partitions in violation of the
partial ordering are useful when constructing
an application, if it can be assured that only
certain information is permitted to flow in
violation of the partial ordering. If a subject
has insufficient assurance, then it may be
assumed to cause unintended flows between
the partitions.
While the subject-to-resource flow controls
can be used to prevent inter-partition flows
otherwise allowed by the partition-to-
partition flow rules, it is generally intractable
to determine which information in a partition
will be (e.g., transitively) allowed to flow
into another partition once the flow is
allowed by a partition-to-partition flow rule
and a subject-to-resource flow rule (e.g., to
support a guard or downgrader application).
Therefore, if such an inter-partition flow
were allowed, a requirement of the

132

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Assumption Objectives Addressing Rationale

Assumption
environment is that the subject (e.g.,
application) have a level of trust that is
adequate to protect the information in both
the source and the destination partitions.

A.TRUSTED_INDIVIDUAL
It is assumed that any individual allowed to
perform procedures upon which the
security of the TOE may depend is trusted
with assurance commensurate with the
value of the IT assets.

OE.TRUSTED_INDIVIDUAL
Any individual allowed to perform
procedures upon which the security of the
TOE may depend must be trusted with
assurance commensurate with the value
of the IT assets.

OE.TRUSTED_INDIVIDUAL addresses
this assumption by requiring that any
individual who is allowed to perform
procedures that affect the security of the
TOE be trusted with assurance
commensurate with the value of the IT
assets. This requirement is allocated to the
non-IT environment because there are no
Identification & Authentication requirements
for the TOE.

7.4 Requirements Rationale
132 Each of the TOE security objectives identified in section 4 is addressed by one or more security

requirements. Table 7.4 below provides the mapping from security requirements to security
objectives, as well as a rationale that discusses how the security objective is met. Definitions are
provided (in italics) below each security objective so the PP reader can reference these without
having to go back to section 4.

Table 7.4. Mapping of Security Requirements to Objective

Objectives from

Policies/Threats

Requirements

Meeting Objectives

Rationale

O.ACCESS
The TOE will ensure that
subjects gain only authorized
access to exported resources.

FDP_IFC.2
FDP_IFF.1
FPT_RVM.1

This objective requires the TOE to manage resources that it
controls such that subjects can only gain access to those
resources that they are permitted to use. The combination of
FDP_IFC.2, FDP_IFF.1 and FPT_RVM.1 satisfies this objective.
FDP_IFC.2 requires the TSF to enforce the Partition Information
Flow Control policy on all partitions, subjects and exported
resources and all operations that cause information to flow
between partitions and to and from all subjects.
FDP_IFF.1 specifies the policy rules for the selected PIFP
abstraction to be enforced by the TSF and the security attributes
used by the enforcement rules. For the Partition Abstraction, the
Partition Information Flow Control policy rule requires the TSF
to permit an information flow between partitions only if the mode
of the flow associated with the requested operation is explicitly
authorized by the configuration data. For the Least Privilege
Abstraction, the Partition Information Flow Control policy rule
requires the TSF to permit an information flow between a subject

133

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
and an exported resource if the mode of that flow is explicitly
authorized by the configuration data. The PIFP rules apply to all
partitions and resources for a given execution session. There is
no need to support a heterogeneous configuration of PIFP
abstractions for a given execution session because the Least
Privilege Abstraction is a superset of the Partition Abstraction.
FPT_RVM.1 requires that the TSF makes policy decisions on all
attempts to access the TOE resources. Without assurance that this
non-bypassability requirement is being met, the TSF could not be
relied upon to completely and continuously enforce the
Partitioned Information Flow policy.

O.ADMIN_GUIDANCE
The TOE will provide
administrators with the
necessary information for
secure management of the
TOE.

ADO_IGS.1
AGD_ADM_EXP.1

ADO_IGS.1 requires the developer to provide the procedures
necessary to securely install and start-up an instance of the exact
evaluated configuration of the TOE.
AGD_ADM_EXP.1 requires the developer to provide
administrative guidance to configure and administer the TOE
securely for the IT environment within which it is intended to
operate. The necessary information for secure management of
the TOE includes instructions on proper use of the administrative
functions, warnings about functions and privileges that should be
controlled, assumptions regarding user behavior, correct settings
of security parameters, and security requirements for the IT
environment.

O.AUDIT_GENERATION
The TOE will provide the
capability to detect, generate
and export audit records for
security relevant auditable
events.

FAU_ARP.1
FAU_GEN.1
FAU_SAR_EXP.1
FAU_SEL_EXP.1
FPT_STM.1

The FAU_ARP.1 requirement is intended to ensure that some
action is taken upon the failure of the tests associated with either
FTP_AMT.1or FTP_TST.1. The ST author is required to specify
the action to be taken.
FAU_GEN.1 defines the set of auditable events for which the
TOE must be capable of generating audit records. For each
specified auditable event, this requirement defines the minimum
amount of data associated with that event that must also be
recorded. This requirement establishes the minimum level of
data that must be recorded for any additional audit events that are
specified in the ST by the TOE developer.
FAU_SAR_EXP.1 requires the TSF to export audit data in a
form that supports audit data analysis by an authorized subject.
FAU_SEL_EXP.1 requires the TSF to generate audit records for
those auditable events that have actually been selected to be
audited, based on attributes associated with each audit event.
This provides flexibility in detecting only those events that are
deemed necessary by site policy, thus reducing the amount of
resources consumed by the audit mechanism.
To support the post-runtime analysis of audit data the
FAU_GEN.1 requirement associates a time attribute with each
recorded event. FPT_STM.1 requires the TSF to provide a
reliable time stamps such that there is confidence in the integrity
of the sequencing and time relationships between audit events

134

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
based upon the time attribute recorded with each event.

O.AUTHORIZED_SUBJE
CT
The TOE will ensure that only
authorized subjects are allowed
to access restricted services.

FMT_MOF.1
FMT_MSA_EXP.1
FMT_MTD.1
FMT_MCD_EXP.1

Multiple iterations of the base FMT_MOF.1 component requires
the TSF to prevent unauthorized subjects from invoking specific
TSF functions that control TOE behavior, result in TOE state
changes, and that provide access to TSF data.
FMT_MSA_EXP.1 requires the TSF to assign authorizations to
subjects as specified by the configuration data.
Multiple iterations of FMT_MTD.1 require the TSF to restrict
access to specified TSF data.
FMT_MCD_EXP.1 requires the TSF to prevent any modification
to the configuration data
The combination of FMT_MOF.1, FMT_MTD.1,
FMT_MCD_EXP.1 and FMT_MSA_EXP.1 ensures that only
authorized subjects, where that authorization is explicitly defined
by the configuration data, are able to access restricted TOE
services.

O.BOUNDED_EXECUT
ION
The TOE will exhibit predictable
and worst-case bounded
execution behavior.

FRU_PRU_EXP.1
ADV_ARC_EXP.1

FRU_PRU_EXP.1 establishes metrics defining the behavior of
the TSF, in terms of its predictable use of processor resources
and its maximum use of memory resources. These metrics
provide the basis for the analysis required by ADV_ARC_EXP.1
ADV_ARC_EXP.1 requires the developer to present the
architecture design in a manner that demonstrates the metrics for
use of processor and memory resources are being met.

O.CHANGE_MANAGE
MENT
The configuration of, and all
changes to, the TOE and its
development evidence will be
analyzed, tracked, and
controlled by trusted individuals
throughout the TOE’s
development.

ACM_AUT.2
ACM_CAP.5
ACM_SCP.3
ALC_DVS.2
ALC_FLR.3
ALC_LCD.2
ALC_TAT.3

This objective is satisfied by the following Configuration
Management (CM) and Life Cycle (LC) requirements.
ACM_AUT.2 requires the TOE developer to have a CM plan and
use a CM system that provides an automated means to enforce
controls on changes made to all configuration items that comprise
the TOE, and that supports the generation of the TOE. This
requirement also requires the developer to describe in the CM
plan the automated tools used in the CM system and how those
tools are used in the CM system. Thus, ACM_AUT.2 aids in
understanding how the CM system enforces the control over
changes made to the TOE.
ACM_CAP.5 requires the developer to describe in the CM plan
how changes to the TOE and its evaluation deliverables are
managed by the CM system. The CM system is required to
operate in accordance with the CM plan and provide the
capability to control who on the development staff can make
changes to the TOE and its developed evidence. Furthermore, the
CM system is required to enforce separation of duties (e.g.,
developers cannot be part of the CM staff), clearly identify the
configuration items that comprise the TSF, and support the audit
of modifications to the TOE.
In addition to the CM plan and CM system, the developer is also
required to provide a list of uniquely identified configuration

135

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
items that comprise the TOE, an acceptance plan and integration
procedures. The configuration list is used by the CM system to
control unauthorized modification, addition, or deletion of the
TOE configuration items, and by the integration procedures to
ensure that the TOE is generated correctly. The acceptance plan
describes how modified or newly created configuration items are
reviewed and accepted as part of the TOE. The developer is
required to justify that the acceptance procedures provide for an
adequate and appropriate review of all changes to the TOE. This
requirement satisfies the “analyzed” aspect of this objective.
ACM_SCP.3 is necessary to define what items must be under the
control of the CM system. This requirement ensures that the TOE
implementation representation, design documentation, test
documentation (including the executable test suite), user and
administrator guidance, CM documentation, security flaws, and
development tools (and related information) are tracked by the
CM system.
ALC_DVS.2 requires the developer to describe the security
measures used in the development environment to ensure the
integrity and confidentiality of the TOE. Furthermore, the
developer must also provide evidence that these security
measures are followed by the development team, and justify that
these measures provide the necessary level of protection. The
physical, procedural, and personnel security measures the
developer uses provides an added level of control over who and
how changes are made to the TOE and its associated evidence.
ALC_FLR.3 requires the developer to track and correct flaws in
the TOE that have been discovered either through developer
actions (e.g., developer testing) or by others. In addition to
correcting discovered flaws, the flaw remediation process used
by the developer must also ensure that new flaws are not created
while fixing the discovered flaws. The developer is also
required to support timely automatic distribution of security flaw
reports and associated corrections, and to inform users who might
be affected by the discovered flaws in a timely manner.
ALC_LCD.2 requires the developer to use a standardized life-
cycle model that describes the procedures, tools and techniques
used in the development and maintenance of the TOE.
Procedural aspects such as design methods, code or
documentation reviews, how changes to the TOE are reviewed
and accepted or rejected will add assurance for the TOE at the
time of the initial evaluation and during its maintenance phases.
The developer is required to explain why the particular life cycle
model was chosen and how it is used, and to demonstrate that the
life cycle documentation is compliant with the life cycle model.
ALC_TAT.3 ensures that all the tools and techniques used during
the development and maintenance of the TOE are well defined
including the selected implementation-dependent options of the
development tools. It also requires the developer to establish

136

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
implementation standards for all parts of the TOE. This will
mitigate the risk of using ill-defined, inconsistent or incorrect
development tools and techniques.

O.CONFIGURATION_C
HANGE
The TOE will support the
capability to perform a static
configuration change. The TOE
may also provide the capability
for an authorized subject to
select or redefine the
configuration vector to be used
upon TOE startup, TOE restart
or TOE reconfiguration.

FMT_MOF.1
FMT_MSA_EXP.1
FMT_SMF.1
FPT_CFG_EXP.1
FPT_ESS_EXP.1
FPT_RST_EXP.1

This objective requires the TOE to support a static configuration
change capability. It also requires that, should the TOE provide
an on-line configuration change capability, then the TOE is to
allow only authorized subjects to make the selection or
redefinition of the next configuration vector.
This objective is met through combination of the following SFRs:
FMT_MOF.1 requires the TSF to restrict the access to the TOE
configuration change function to those subjects that are explicitly
authorized.
FMT_MSA_EXP.1 requires the TSF to base the assignment of
subjects authorizations for TOE configuration change on
attributes contained in the configuration data.
FMT_SMF.1 requires the TSF to implement TOE security
management capability to change the TOE configuration.
FPT_CFG_EXP.1 provides the option for the TOE to support
dynamic total, dynamic-constrained and dynamic-unconstrained
reconfiguration capabilities. Each of these options has unique
semantics with regards to the manner in which a new TSF
internal vector can be selected or changed by an authorized
subject.
FPT_ESS_EXP.1 requires that the TOE be established in a
secure state based on the configuration vector that is referenced
during initialization. If the configuration vector is changed by
some offline process, the TOE utilizes that changed configuration
vector to initialize the TOE.
FPT_RST_EXP.1 requires the TOE to have the capability for an
authorized subject to restart the TOE which will result in a
configuration change if a new configuration vector was selected
prior to the restart.

O.CORRECT_CONFIG
The TOE will provide
procedures and mechanisms to
generate the configuration
vectors such that they
accurately describe the
operational configuration of the
TOE as used by an
organization.

ADV_CTD_EXP.1
AGD_ADM_EXP.1

ADV_CTD_EXP.1 requires the TOE developer to provide a
configuration tool that generates configuration vectors that can be
verified as being an accurate description of the intended TOE
operational configuration as used by an organization.
AGD_ADM_EXP.1 requires the developer to provide
administrator guidance for the correct use of the configuration
vector generation tool.

O.CORRECT_INIT
The TOE will provide
mechanisms to correctly
transfer the software portion of
the TSF implementation and
TSF data into the TSF’s security
domain and to correctly

FPT_ESS_EXP.1
ADV_INI_EXP.1
AGD_ADM_EXP.1

This objective requires capabilities and assurances in regards to
the integrity of the initialization mechanism. This objective is
addressed by the combination of implemented capability and
procedural controls.
FPT_ESS_EXP.1 requires that the TSF be able to determine that
it is in a secure state prior to allowing any information flows as

137

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
establish the TOE in an
operational configuration
consistent with the configuration
vector that defines the
configuration data.

authorized by the Partitioned Information Flow Policy.
ADV_INI_EXP.1 requires the TOE developer to provide an
initialization mechanism that establishes a security domain for
the TSF, and to provide an initialization design that demonstrates
how the software portion of the TSF implementation and TSF
data are correctly transferred into the TSF security domain.
Furthermore, it requires the TOE to be established in an
operational configuration consistent with the configuration vector
that defines the configuration data.
AGD_ADM_EXP.1 requires the developer to provide
administrator guidance for the proper use of the initialization
mechanism.

O.CORRECT_LOAD
The TOE will provide
procedures and mechanisms to
correctly convert the software
portion of the TSF
implementation and/or
configuration vectors into a
TOE-useable form.

ADV_LTD_EXP.1
AGD_ADM_EXP.1

ADV_LTD_EXP.1 requires the developer to provide a TOE load
capability and a description of its design. The TOE load
capability ensures that the software portion of the TSF
implementation and data are correctly converted into a form that
is accessible by the TOE initialization mechanism.
AGD_ADM_EXP.1 requires the developer to provide
administrator guidance for the proper use of the load mechanism.

O.CORRECT_TSF_OPE
RATION
The TOE will provide a runtime
self-test capability.
The TOE will provide the means
for an authorized subject to
invoke and obtain the results of
the self-test.
The TOE will take action in
response to any failure of a
runtime self-test capability.

FAU_ARP.1
FMT_MOF.1
FMT_MSA_EXP.1
FMT_SMF.1
FPT_AMT.1
FPT_TST_EXP.1

This objective requires capabilities to periodically test the TSF
and the abstract machine that underlies the TSF, to interpret the
results of such tests, and to manage the use of those tests.
FAU_ARP.1 ensures that the TOE takes action upon the
detection of any failure of the tests associated with FPT_AMT.1
and FPT_TST1.
FMT_MOF.1 requires the TSF to prevent a subject from
invoking TSF self-test unless that subject has been granted
authorization to do so.
FMT_MSA_EXP.1 requires the TSF to assign the authorization
for running self-tests to subjects as specified by the configuration
data.
FMT_SMF.1 requires the TSF to implement TOE security
management capability for an authorized subject to invoke the
self-test and to obtain the results of the self-test.
FPT_AMT.1 provides the means to discover any failures in the
hardware security mechanisms upon which the TSF is dependent,
and therefore, could render the TSF ineffective in enforcing its
security policies. This requirement requires the TSF to test the
hardware security mechanisms during the initial start-up and also
periodically during normal operation.
FPT_TST_EXP.1 requires the TSF to run a suite of self-tests to
verify the software portions of the TSF. This requirement
explicitly specifies that the TSF self tests be run during the initial
start-up, but leaves the conditions under which the self tests
should occur during normal operation to be specified by the ST
author. This allows the ST author to tailor the testing
requirements to be appropriate to conditions of the TSF’s normal

138

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
operation. Subjects with the appropriate authorization can invoke
the TSF self-test and can obtain the results of the self-test.
The tests required by FPT_AMT.1 and FPT_TST_EXP.1
collectively verify the correct operation and integrity of all three
parts of the TSF, i.e., the TSF’s underlying abstract machine, the
TSF’s implementation and the TSF’s data.

O.COVERT_CHANNEL
_ANALYSIS
The TOE will undergo
appropriate covert channel
analysis by NSA to demonstrate
that the TOE satisfies covert
channel mitigation metrics.

FDP_IFF.3
AVA_CCA_EXP.2

The scope for elimination of covert channels is defined by
FDP_IFF.3 and the objectives of the covert channel analysis are
defined by AVA_CCA_EXP.2.
FDP_IFF.3 requires an upper bound on the bandwidth associated
with any identified covert storage and timing channels.
AVA_CCA_EXP.2 requires the developer to perform a
systematic search for inter-partition covert channels. It also
requires the developer to document the covert channel analysis
and provide the documentation as evaluation evidence. Since all
subjects assigned to a partition are of the same equivalence class,
a search for intra-partition covert channels is not needed.
A systematic search, as opposed to an informal search, is
necessary because it is important that the covert channels be
identified in a structured and repeatable way to aid the validation
of the covert channel analysis.
AVA_CCA_EXP.2 also requires the NSA evaluator to confirm
the results of the covert channel analysis and to selectively
validate the covert channel analysis through testing. This will
afford additional assurance evidence to support a high robustness
evaluation.

O.CRYPTOGRAPHY
The TOE will use NIST FIPS-
validated cryptography as a
baseline with additional NSA-
approved methods for key
management (i.e., generation,
access, distribution, destruction,
handling, and storage of keys)
and for cryptographic operations
(i.e., encryption, decryption,
signature, hashing, key
exchange, and random number
generation services).

ADO_DEL_EXP.2 ADO_DEL_EXP.2 requires the TOE developer to select from a
specific list of validated cryptographic mechanisms when
determining how to implement the means to ensure the integrity
of the TOE when it is transmitted from the TOE development
facility to the end user.

O.FUNCTIONAL_TESTI
NG
The TOE will undergo
independent security functional
testing that demonstrates the
TSF satisfies the security
functional requirements.

APT_PCT_EXP.1
APT_PST_EXP.1
ATE_COV.3
ATE_DPT.3
ATE_FUN.2
ATE_IND.3

Rationales for APT explicit requirements are described in
Appendix F.
ATE_COV.3, ATE_DPT.3 and ATE_FUN.2 impose testing
requirements on the developer to create and document the
security test suite. ATE_IND.3 levies requirements on the
evaluation team to independently verify the testing results. The
combination of these requirements satisfies this objective.
ATE_COV.3 requires the developer to provide an analysis of the
test coverage to demonstrate that the TSF and TSF interfaces are

139

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
completely addressed by the developer’s test suite. While this
requirement does not require exhaustive testing of the TSF, it
does impose rigorous testing of the TSF interfaces to ensure that
the TSF interfaces meet their security functional requirements.
This component also requires an independent confirmation of the
completeness of the test suite.
ATE_DPT.3 requires the developer to provide an analysis of the
depth of the functional testing to demonstrate that the TSF is
implemented and operates as specified by its high-level design
and low-level design. This component complements
ATE_COV.3 by ensuring that the developer takes into account
the high-level and low-level design when developing their test
suite.
ATE_FUN.2 requires the developer to test the TSF and to
provide documentation of the results. The ordering of execution
of independent functional tests is required to be loop-free. The
developer’s test documentation must include an analysis of the
test procedure ordering dependencies to demonstrate the testing
is not circular. The developer must provide sufficient test
documentation, i.e., the test plan, test procedures, and test results,
to support independent verification of the test results and test
coverage analysis.
ATE_IND.3 requires the developer to provide the evaluator with
the TOE and testing materials for independent testing. The
developer must provide the same testing materials that were used
by the developer to perform the developer’s functional testing.
These must include, minimally, test suite executables and source
code, and machine-readable test documentation. ATE_IND.3
also levies testing requirements on the evaluator to verify the
developer’s test results by re-testing all tests performed by the
developer, and to develop and run additional evaluator-developed
tests that exercise the TOE in areas that are not well
demonstrated by the developer’s test suite. By repeating all of
the developer’s tests and running the evaluator-developed test
suite, the evaluator can demonstrate that the TSF satisfies all
security functional requirements as required by this objective.

O.INIT_SECURE_STAT
E
The TOE will provide
mechanisms to transition the
TSF to an initial secure state
without protection compromise.

FIA_ATD_EXP.1
FIA_USB_EXP.1
FPT_ESS_EXP.1
ADV_INI_EXP.1

Abstractly, the TOE consists of two distinct sets of functions:
initialization functions and runtime functions.
Initialization functions only execute during start-up and are not
relied upon for security enforcement after the TOE is fully
initialized. This protection profile defines the initialization
functions as being outside the TSF because they are not relied
upon for the enforcement of the TSP. Runtime functions, on the
other hand, are relied upon, either directly or indirectly, to
correctly enforce the TSP once the TSF is established in a secure
state.
FIA_ATD_EXP.1 defines the set of attributes to be contained in
the configuration data that fully describe the configuration and

140

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
behavior of the TSF.
FIA_USB_EXP.1 requires that the TSF properly translate and
associate (bind) the attributes described in the configuration data
to the runtime resources to which they are allocated.
FPT_ESS_EXP.1 requires that the TSF be established in a secure
state as defined by the attributes in the configuration data, that
the TSF enforces the Partitioned Information Flow Policy as
defined by the configuration data, and that no information flows
are allowed to occur until the TSF determines that the above
conditions have been met.
ADV_INI_EXP.1 requires the TOE developer to provide an
initialization mechanism that 1) brings the TSF to the secure state
defined by the configuration data such that there is no protection
comprise, 2) either completes successfully or halts due to
unrecoverable errors, and 3) can not subvert the TSF after it
completes and the TSF is in operational mode and enforcing the
TSP.

O.INSTALL_GUIDANC
E
The TOE will be delivered with
the appropriate installation
guidance to establish and
maintain TOE security.

ADO_DEL_EXP.2
ADO_IGS.1

This objective is satisfied by the documentation requirements of
the trusted delivery and secure installation and start-up functions.
ADO_DEL_EXP.2 requires the developer to describe the
procedures and technical measures that the developer put in place
to: 1) detect modifications during transit, 2) detect any
discrepancy between the developer’s master version and the
delivered version, and 3) detect any attempts to masquerade as
the developer. ADO_DEL_EXP.2 requires the developer to
provide cryptographic mechanisms to protect the integrity of the
TOE during delivery. ADO_DEL_EXP.2 also requires the
developer to follow the developer-prescribed delivery
procedures.
After verifying that the TOE delivery from the developer is the
right version and tamper-free, the user is responsible to configure
and install the TOE in accordance with the TOE’s intended use
before running it. ADO_IGS.1 requires the developer to provide
the guidance on how to use the installation and start-up
procedures to install and start-up an instance of the TOE that was
evaluated.
ADO_IGS.1 further requires the evaluator to verify that if the
procedures are used as described, they will result a secure
installation and start-up of the TOE.

O.INTERNAL_LEAST_
PRIVILEGE
The entire TSF will be
structured to achieve the
principle of least privilege
among TSF modules.

FPT_PLP_EXP.1
ADV_INT_EXP.3

FPT_PLP_EXP.1 establishes the requirement for TSF functions
to be allocated the minimum required access to TSF data and
TSF resources.
The requirement for assurances associated with support for the
principle of least privilege within the TSF was added as part of
the explicit ADV_INT_EXP.3 component because the existing
ADV_INT.3 component does not address the need to apply the
principle of least privilege to the design and structure of the TSF.

141

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
ADV_INT_EXP.3 expanded the scope of ADV_INT.3 by
requiring the developer to design and structure the TSF such that
the principle of least privilege can be achieved. Together with
layering and minimization, least privilege imposes modularity on
the implementation, thus making it more understandable. In
combination, these provide a greater level of confidence in the
analysis of the correctness of the implementation.
ADV_INT_EXP.3 also requires the evaluator to confirm that the
TSF has been internally structured to achieve least privilege
among TSF modules.

O.MANAGE
The TOE will provide all the
functions necessary to support
the administrative users and
authorized subjects in their
management of the TOE
security functions and
configuration data, and restrict
these functions from use by
unauthorized subjects.

FMT_MOF.1
FMT_MSA_EXP.1
FMT_MSA_EXP.3
FMT_MTD.1
FMT_MTD.3
FMT_MCD_EXP.1
FMT_SMF.1

This objective requires the TOE to provide adequate functions to
securely manage the TSF, its behavior, and TSF data satisfies this
objective. These functional requirements specifically support
this objective by requiring the TSF to implement appropriate and
sufficient TOE security management functions.
FMT_MOF.1 requires the TSF to ensure that only authorized
subjects are able to invoke the management functions.
FMT_MSA_EXP.1 requires the TSF to assign authorizations to
subjects, where the configuration data is the only source that can
specify those authorizations.
FMT_MSA_EXP.3 requires the TSF to use restrictive default
values for the attributes contained in configuration data, and,
requires that only the configuration is able to change the defaults.
FMT_MTD.3 requires the TSF to perform syntax check on all
TSF data. For example, the values that are accepted as valid
must fall within the defined range.
FMT_MCD_EXP.1 disallows modification of configuration data.
FMT_MTD.1 places restrictions such that only authorized
subjects are able to access specified TSF data.
FMT_SMF.1 requires the TSF to implement TOE security
management capabilities that are accessible to authorized
subjects. The management capabilities include changing the
TOE configuration if the TOE provides a configuration change
capability, halting the TOE, restarting the TOE, invoking TSF
self-test, and transitioning the TOE to maintenance mode.

O.RATING_MAINTENA
NCE
Procedures and processes to
maintain the TOE’s rating will be
documented.

AMA_AMP_EXP.1 The AMA family of requirements is incorporated into this PP to
ensure the TOE developer has procedures and mechanisms in
place to maintain the evaluated rating that is ultimately awarded
the TOE. These requirements are somewhat related to the ACM
family of requirements in that changes to the TOE and its
evidence must be managed, but the AMA requirements ensure
the appropriate level of analysis is performed on any changes
made to the TOE to ensure the changes do not affect the TOE’s
ability to enforce its security policies.
AMA_AMP_EXP.1 requires the developer to develop an
assurance maintenance plan that describes how the assurance
gained from an evaluation will be maintained, and that any

142

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
changes to the TOE will be analyzed to determine the security
impact, if any, of the changes that are made. This requirement
mandates the developer assign personnel to fulfill the role of a
security analyst that is responsible for ensuring the changes made
to the TOE will not adversely impact the TOE and that it will
continue to maintain its evaluation rating.

O.RECOVERY_SECUR
E_STATE
The TOE will provide
procedures and/or mechanisms
that can be used in the event of
failure, faults, or discontinuity, to
preserve secure state and to
transition the TSF back to a
secure state without protection
compromise.

FPT_FLS.1
FPT_MTN_EXP.1
FPT_MTN_EXP.2
FPT_RCV.4
FPT_RCV_EXP.2

This objective requires the TSF to maintain secure state despite
the presence of faults or failures and to prevent operations that
constitute a violation of the TSP during the periods of recovery
from specific faults or failures. The objective applies to both
operational and maintenance mode. The following SFRs, in
combination, enable the TSF to meet this objective:
FPT_FLS.1 requires that by design, the TSF is able to fail
securely, i.e., to preserve a secure state, when a specific set of
failures are detected by TSF self-test.
FPT_MTN_EXP.1 requires the TSF to be able to transition to
maintenance mode when directed to do so by an authorized
subject and to preserve secure state when the transition to
maintenance mode is from a secure state. The TSF is further
required to halt the TOE if the TSF is unable to preserve secure
state after transitioning to maintenance mode from a secure state.
FPT_MTN_EXP.2 requires that while in maintenance mode, the
TSF prevents controlled operations from occurring if the TSF is
unable to assure that a protection compromise will not occur by
allowing the controlled operation to occur.
FPT_RCV.4 requires the TSF to ensure that all security functions
that are affected by the ST-defined failure scenarios can recover
to a consistent and secure state if a ST-defined failure scenario is
encountered during their execution. The ST author is required to
specify the affected security functions and the list of failure
scenarios from which the TSF is required to complete a full
security function recovery.
FPT_RCV_EXP.2 requires the TSF, in all cases where it detects
an insecure state while the TOE is in operational mode, to take
some action to recover the TOE to a secure state without further
protection compromise. The TSF is also required to initiate
recovery for the case where it detects an insecure state after the
completion of the TOE initialization function. The ST author is
required to list the specific recovery conditions that can be
detected and to specify the associated recovery action for each
condition taken by the TSF. Transistion to maintenance mode
may be an acceptable recovery action – depending on the
condition in the context of a specific TOE – and this transition
can occur directly as part of the execution session or can be a
mode that the TSF transitions to during initialization of the TOE.
The TSF is required to attempt to halt the TOE if it is unable to
proceed with any recovery action.

O.REFERENCE_MONIT FPT_FLS.1 This objective requires the TSF to implement a reference

143

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
OR
The TOE will provide a
reference validation mechanism
responsible for enforcement of
the TSP.
The reference validation
mechanism will execute in its
own security domain.
The reference validation
mechanism must be tamper
proof, its enforcement functions
must be always invoked, and its
design and implementation
must be of size and complexity
small enough to be subject to
analysis and tests, the
completeness of which can be
assured.

FPT_MTN_EXP.1
FPT_MTN_EXP.2
FPT_RCV_EXP.2
FPT_RVM.1
FPT_SEP.3
ADV_ARC_EXP.1
ADV_INT_EXP.3

validation mechanism (RVM).
This objective is met by a set of SFRs and two SARs.
FPT_FLS.1 requires the TSF to preserve secure state, when
possible, in the event of a limited set of failures or service
discontinuities. This property of the TSF ensures that the
reference validation mechanism continues to function in a
manner consistent with the information flow policy requirements.
FPT_MTN_EXP.1 requires the TSF to preserve secure state
when the transition to maintenance mode is from a secure state.
FPT_MTN_EXP.2 requires that while in maintenance mode, the
TSF prevents controlled operations from occurring if the TSF is
unable to assure that a protection compromise will not occur by
allowing the controlled operation to occur.
FPT_RCV_EXP.2 requires the TSF to attempt to recover the
TOE to a secure state when the TSF determines that it is not in a
secure state immediately after completion of TOE initialization
or at any time while the TOE is in operational mode. The TOE
developer is to state the specific recovery action to take for each
specified recovery condition. This ensures that the reference
validation mechanism cannot be bypassed even in the event of
non-recoverable failures.

FPT_RVM.1 requires the TSF to enforce the TSP on all services
and exported resources such that the enforcement functions are
always invoked; it is not possible to bypass the enforcement
mechanism to gain access to services and exported resources.

FPT_SEP.3 requires the TSF to maintain three different types of
security domains during runtime: 1) a separate domain for
partition information flow control enforcement functions, 2) one
or more separate domains for the remainder of the TSF that does
not enforce the flow control SFPs, and 3) one or more separate
domains for the non-TSF portions of the TOE, i.e., the subjects in
the TSC.
The SFP enforcement functions are the most important functions
provided by the TSF, thus it is necessary to separate them from
the less-critical portion of the TSF. The separation between the
TSF and the non-TSF portion of the TOE is also necessary so
that the non-TSF portion cannot interfere with the operation of
the TSF.
ADV_ARC_EXP.1 requires evidence to be provided that
describes how the TSF protects itself from interference and
tampering and how the TSF prevents bypass of the security
enforcement functions.
ADV_INT_EXP.3 requires the TSF be implemented such that its
size and complexity is suitable for rigorous analysis methods that
yield conclusive results.

O.RESIDUAL_INFORM FDP_RIP.2 FDP_RIP.2 satisfies this objective by requiring that when an
exported resource is reallocated, the TSF must ensure that no

144

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
ATION
The TOE will ensure that any
information contained in a
protected resource is not
released to subjects when the
resource is reallocated.

unauthorized access to the residual information from the previous
allocation is possible. Removal of residual information must
occur at the point of deallocation or allocation. The ST author is
to complete the selection to reflect the behavior of the
implementation.

O.RESOURCE_ALLOC
ATION
The TOE will provide
mechanisms that enforce
constraints on the allocation of
exported TOE resources.

FRU_RSA.2 FRU_RSA.2 mandates that allocation limits be enforced for the
minimum and maximum amount of memory and processing time
available to a partition.
Allocation requirements for system memory are based on the
minimum and maximum simultaneous memory usage by each
individual partition at any given time. Allocation limits on
processing time are based on the minimum and maximum CPU
usage by each individual partition over a specific time interval.
A refinement to the wording of the choices provided by the CC in
the selection operation was made. The allocation is made to the
partition, which is inclusive of subjects and exported resources
(there are no ‘users’ in the context of the SK allocation of
resources).

O.SECURE_STATE
The TOE will preserve secure
state during an execution
session.

FPT_CFG_EXP.1
FPT_ESS_EXP.1
FPT_FLS.1
FPT_HLT_EXP.1
FPT_MTN_EXP.1
FPT_MTN_EXP.2
FPT_RCV.4
FPT_RCV_EXP.2
FPT_RST_EXP.1

An execution session is the set of states from initialization to
shutdown or restart of the TOE, and includes both operational
and maintenance mode. This objective is met by the set of SFRs
that require preservation of secure state.
FPT_CFG_EXP.1 requires the TSF to preserve secure state
during any change to the TOE configuration.
FPT_ESS_EXP.1 requires the TSF to determine that it is
established in a secure state prior to authorizing any information
flows governed by the implemented Partitioned Information Flow
Policy abstractions. Since no information flows are allowed to
occur until after initialization completes, the TSF remains in a
secure state throughout the TOE initialization process.
FPT_FLS.1 requires the TSF to fail securely, i.e., to preserve a
secure state, when failures are detected by the TSF self-tests and
ST-specific conditions, if any.
FPT_HLT_EXP.1 requires the TSF to preserve secure state
during the transition from runtime to the halt state.
FPT_MTN_EXP.1 requires the TSF to preserve secure state
when the transition to maintenance mode is from a secure state.
FPT_MTN_EXP.2 requires that while in maintenance mode, the
TSF prevents controlled operations from occurring if the TSF is
unable to assure that a protection compromise will not occur by
allowing the controlled operation to occur.
FPT_RCV.4 requires the TSF to ensure that all security functions
that are affected by a ST-defined failure scenario either complete
successfully or if a ST-defined failure scenario is encountered
during their execution can recover to a consistent and secure
state. Failure scenarios and the affected security functions are

145

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
ST-specific; therefore specification of the failure scenarios and
the affected functions is left as an open assignment for the ST
author.
FPT_RCV_EXP.2 requires the TSF to attempt to recover the
TOE to a secure state after the TSF detects that it is not in a
secure state. The ST author is required to specify the detectable
recovery conditions and associated recovery action to be taken by
the TSF. The ST author is also required to specify the action that
the TSF will take if a specified recovery action is not completed.
One of the possible actions is for the TSF to take is to enter a
maintenance mode that allows the TOE to return to a secure state.
It is assumed that the IT environment provides adequate
protection against unauthorized access to the maintenance mode.
The TSF is required to attempt to halt the TOE if the TSF is
unable to proceed with any recovery action.
FPT_RST_EXP.1 requires the TSF to preserve secure state
during a TOE restart, which may or may not include a halt state.

O.SOUND_DESIGN
The TOE will be designed using
sound design principles and
techniques which will be
accurately documented.
The TOE design will be
completely and accurately
documented.

ADV_ARC_EXP.1
ADV_FSP_EXP.4
ADV_HLD_EXP.4
ADV_INI_EXP.1
ADV_INT_EXP.3
ADV_LLD_EXP.2
ADV_RCR.3
ADV_SPM.3
APT_PDF_EXP.1
APT_PSP_EXP.1
AVA_SOF.1

This objective is achieved by imposing developmental
requirements on the design of the TSF and non-TSF components
of the TOE, and on the analysis of the security functions for
which strength of function claims are made.
Rationales for ADV explicit requirements are described in
Section 7.6.
Rationales for APT explicit requirements are described in
Appendix F.
Since there are no strength-of-function claims associated with the
security functions contained in this PP, the AVA_SOF.1
requirement only applies to the ST-specific security functions for
which a strength-of-function claim is appropriate. For these
security functions, this requirement ensures that the TOE
developer has performed a strength-of-function analysis to ensure
that these security functions meet or exceed the following: the
overall minimum strength level defined in this PP (see Section
7.7) and the specific strength of function metric defined the ST.

O.SOUND_IMPLEMEN
TATION
The implementation of the TOE
will be an accurate instantiation
of its design.

ADV_HLD_EXP.4
ADV_IMP_EXP.3
ADV_INT_EXP.3
ADV_LLD_EXP.2
ADV_RCR.3
ALC_DVS.2
ALC_FLR.3
APT_PDF_EXP.1
APT_PCT_EXP.1
APT_PSP_EXP.1
APT_PST_EXP.1

This objective is achieved by imposing developmental
requirements on the implementation of the TSF and non-TSF
components of the TOE to ensure that the TOE implementation is
correctly created as specified by the TOE design.
Rationales for ADV explicit requirements are described in
Section 7.6.
ALC_DVS.2 requires the developer to describe all security
measures they employ to ensure the integrity and confidentiality
of the TOE are maintained. In addition to showing the evidence
that these security measures are followed during the development
and maintenance of the TOE, the developer is also required to
justify that these security measures provide the necessary level of
protection. Although confidentiality may not be an issue for

146

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
APT_PVA_EXP.1
ATE_COV.3
ATE_DPT.3
ATE_FUN.2
ATE_IND.3
AVA_CCA_EXP.2
AVA_VLA_EXP.4

some TOE implementations, the physical, procedural, and
personnel security measures the developer uses provides an
added level of assurance that the integrity of the TOE
implementation is appropriately maintained.
ALC_FLR.3 supports this objective by requiring the developer to
track and correct flaws in the TOE, and to provide safeguards
that new flaws are not created while fixing the discovered flaws.
Rationales for APT explicit requirements are described in
Appendix F.
ATE_COV.3, ATE_DPT.3 and ATE_FUN.2 require the
developer to test the TSF and analyze the test coverage as well as
the depth of testing. These requirements provide the assurance
that the TOE security functional requirements are correctly
implemented and that the TOE implementation is a correct
instantiation of both high-level design and low-level design.
ATE_IND.3 provides added assurance on the rigor of the testing
by requiring the evaluator to develop and run separate test suite
in addition to re-testing all tests performed by the developer. The
correctness of the TOE implementation can be demonstrated by a
successful execution of these tests by the evaluator.
Requiring the TOE to be assessed for the existence of exploitable
covert channels and vulnerabilities also satisfies this objective.
AVA_CCA_EXP.2 requires the developer to perform a
systematic search for inter-partition covert channels. The NSA
evaluator is required to confirm the results of the covert channel
analysis and to selectively validate the analysis through testing.
See O.COVERT_CHANNEL_ANALYSIS for the rationale on
why a thorough inter-partition covert channel analysis is
important.
AVA_VLA_EXP.4 component is intended to provide the
necessary level of confidence that vulnerabilities do not exist in
the TOE that could cause the security policies to be violated.
AVA_VLA_EXP.4 requires the developer to perform a
systematic search for potential vulnerabilities in all the TOE
deliverables, and to provide a justification that the analysis
completely addresses the TOE deliverables. AVA_VLA_EXP.4
was refined to require that, in addition to the independent
penetration testing and analysis performed by the evaluator, a
second set of penetration testing and analysis be independently
performed by the NSA evaluator. The two levels of independent
testing and analysis helps to ensure that the TOE is resistant to
penetration attacks performed by an attacker possessing a high
attack potential.

O.SUBJECT_ISOLATIO
N
The TOE will provide
mechanisms to protect each
subject from unauthorized

FDP_IFC.2
FDP_IFF.1
FPT_SEP.3

This objective requires the TOE to establish security domains for
subjects where each subject is completely isolated from every
other subject. This complete isolation is the default configuration
that is established by the TSF. Where flows between subjects
are specified by the configuration data and mediated by the TSF

147

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
interference by other subjects. throughout the execution session, the scope of this objective

expands and must also ensure that no unauthorized information
flows can occur, which may result in one subject interfering with
another.
FDP_IFC.2 and FDP_IFF.1 combine to define the scope of the
partitioned information flow policy to be enforced by the TSF,
and the rules implemented by the TSF to enforce the policy. This
enforcement capability of the TSF ensures that strict isolation of
a subject is preserved where no flows to/from the subject are
allowed, and ensures that only authorized information flows as
specified by the configuration data are allowed.
FPT_SEP.3 satisfies this objective by requiring the TSF to
enforce separation between the security domains of all subjects in
the TSC, thus ensuring that subjects cannot access or manipulate
other subject’s services and resources in violation of the TSP.
The security domain of a subject includes the services and
exported resources that the particular subject is allowed to use.

O.TRANSITION
The TOE will provide the
capabilities for an authorized
subject to restart the TOE, halt
the TOE and transition the TOE
into maintenance mode.

FMT_MOF.1
FMT_MSA_EXP.1
FMT_SMF.1
FPT_CFG_EXP.1
FPT_HLT_EXP.1
FPT_RST_EXP.1
FPT_MTN_EXP.1
FPT_MTN_EXP.2

FMT_MOF.1 requires the TSF to restrict the access to the TOE
halt, TOE restart, and TOE transition to maintenance mode
functions to those subjects that are explicitly authorized to invoke
those functions.
FMT_MSA_EXP.1 requires the TSF to base the assignment of
subject’s authorizations for TOE halt, TOE restart, and the TOE
transition to maintenance mode on attributes contained in the
configuration data.
FMT_SMF.1 requires the TSF to implement TOE security
management capabilities that include TOE halt, TOE restart and
transition of the TOE to maintenance mode.
FPT_CFG_EXP.1 requires an authorized subject to invoke a
change in TOE configuration should the TOE provide a
configuration change capability.
FPT_HLT_EXP.1 requires the TOE to have the capability for an
authorized subject to halt the TOE.
FPT_RST_EXP.1 requires the TOE to have the capability for an
authorized subject to restart the TOE.
FPT_MTN_EXP.1 requires the TSF to preserve secure state
when the transition to maintenance mode is from a secure state.
FPT_MTN_EXP.2 requires that while in maintenance mode, the
TSF prevents controlled operations from occurring if the TSF is
unable to assure that a protection compromise will not occur by
allowing the controlled operation to occur.

O.TRUSTED_DELIVER
Y
The integrity of the TOE must
be protected during the initial
delivery and subsequent
updates, and verified to ensure

ADO_DEL_EXP.2 ADO_DEL_EXP.2 requires the developer to provide
cryptographic signature services and cryptographic hashing
functions to protect the integrity of the TOE when distributing
versions of the TOE to a user’s site. ADO_DEL_EXP.2 also
requires the developer to use independent channels to deliver the
TOE code and to deliver the cryptographic keying materials used

148

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
that the on-site version matches
the master distribution version.

to verify the distribution of the code.
Cryptographic integrity check mechanisms increase assurance,
i.e., prevents forging the checksum.

O.TSF_INTEGRITY
The TOE will verify the integrity
of the TSF code and data.

FMT_MOF.1
FMT_MSA_EXP.1
FPT_TST_EXP.1

FMT_MOF.1 requires the TSF to prevent a subject from being
able to invoke TSF self-test unless that subject has been granted
authorization to do so.
FMT_MSA_EXP.1 requires the TSF to assign authorizations to
subjects for the purpose of invoking TSF self-test and obtaining
the results of those self-tests as specified by the configuration
data.
FPT_TST_EXP.1 requires the TSF to verify the integrity of TSF
configuration data and TSF executable code loaded in memory.
If the TSF software or TSF configuration data is corrupted, the
TSF may not correctly enforce its security policies. In addition
to the TSF configuration data, the ST author is required to
specify the testing of other TSF data that the TSF depends on to
enforce its security policies.

O.USER_GUIDANCE
The TOE will provide users with
the necessary information for
secure use of the TOE.

AGD_USR.1 AGD_USR.1 satisfies this objective by requiring the developer to
document the functions, interfaces and warnings available to non-
administrative users of the TOE. AGD_USR.1 further requires
the developer to describe all user responsibilities and
assumptions necessary for secure use of the TOE.

O.VULNERABILITY_A
NALYSIS_TEST
The TOE will undergo
independent vulnerability
analysis and penetration testing
by NSA to demonstrate the
design and implementation of
the TOE does not allow
attackers with high attack
potential to violate the TOE’s
security policies.

APT_PVA_EXP.1
AVA_CCA_EXP.2
AVA_MSU.3
AVA_SOF.1
AVA_VLA_EXP.4

Rationales for APT explicit requirements are described in
Appendix F.
AVA_CCA_EXP.2 requires both the developer and evaluator to
perform a systematic search for inter-partition covert channels.
See O.COVERT_CHANNEL_ANALYSIS for the rationale on
why it is important to perform a thorough search for these covert
channels.
AVA_MSU.3 satisfies this objective by requiring the developer
to provide complete, clear, consistent and reasonable
administrator and user guidance documents, and to perform an
analysis for any vulnerability that might be caused by unclear
documentation. AVA_MSU.3 further requires the evaluator to
perform independent testing to check if the provided guidance
document would enable an administrator or user, with proper
training, to determine if the TOE is configured correctly or
incorrectly.
AVA_SOF.1 requires the developer to perform an analysis of the
strength of the functions on the ST-specific security functions for
which a strength-of-function claim is appropriate. Security
functions are implemented by security mechanisms and thus, the
strength-of-function analysis is to be performed at the level of the
security mechanisms. The results of the analysis can be used to
determine if these ST-specific security functions have the ability
to counter the anticipated threats in DoD high robustness
environments. See O.SOUND_DESIGN for additional

149

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Rationale

Policies/Threats Meeting Objectives
information on the required analysis.
AVA_VLA_EXP.4 requires the developer 1) to perform a
systematic search for vulnerabilities, 2) to document the
disposition of the identified vulnerabilities, 3) and to show
evidence that the identified vulnerabilities cannot be exploited in
the intended environment for the TOE and that the TOE is
resistant to obvious penetration attacks.
AVA_VLA_EXP.4 requires the NSA evaluator to conduct
independent penetration testing and an independent vulnerability
analysis to ensure that the TOE is resistant to penetration attacks
performed by an attacker possessing a high attack potential.

7.5 TOE Environment Requirements Rationale
133 Each of the environment security objectives identified in section 4 are addressed by one or more

security requirements. Table 7.5 below provides the mapping from security requirements to
security objectives, as well as a rationale that discusses how the security objective is met.
Definitions are provided (in italics) below each security objective so the PP reader can reference
these without having to go back to section 4.

 Table 7.5. Mapping of Security Requirements for TOE Environment to Objectives

Objectives from

Policies/Threats

Requirements Meeting

Objectives

Rationale

OE_PHYSICAL
Physical security will be provided for
the TOE by the non-IT environment
commensurate with the value of the
IT assets protected by the TOE.

N/A TOE environment requirements that address this objective
are outside the scope of this PP. A TOE built to conform
to this PP may be vulnerable to physical attack such that
the TOE is unable to protect the IT assets.

OE.SUBJECT_ALLOCATIO
N
A properly trained trusted individual
will create configuration vectors such
that, for those partitions to which
subjects are allocated, each partition
is allocated one or more subjects
(i.e., subjects with homogeneous
access requirements, or subjects with
heterogeneous access requirements)
that are appropriate for the policy
abstraction supported by the TOE.

N/A TOE environment requirements that address this objective
are outside the scope of this PP. The trusted individual
responsible for configuring the TOE must be trained to
fully understand the policy abstraction(s) to be enforced by
the TOE in order to correctly create the configuration
vectors.

150

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Objectives from Requirements Meeting Rationale

Policies/Threats Objectives

OE.COVERT_CHANNELS
If the TOE has covert storage and/or
timing channels, then all subjects
executing on that TOE will, relative to
the IT assets to which they have
access, have assurance sufficient to
outweigh the risk that they will violate
the security policy of the TOE by
using those covert channels.

N/A TOE environment requirements that address this objective
are outside the scope of this PP. Covert storage and timing
channels allowed to exist on a system are a threat to the
assets to which the subjects able to exercise the covert
channels and thus violate the security policy of the TOE
have access. Assurance must be provided that Trojan
horses and other application malware cannot attack IT
assets via these covert channels.

OE.TRUSTED_FLOWS
For each configuration of the TOE, a
partial order of the flows that are
allowed between policy equivalence
classes will be identified. Any subject
allowed by the configuration data to
cause information flow that is contrary
to the partial order will be trusted at
least with assurance commensurate
with the value of the IT assets in all
equivalence classes to which it has
access.

N/A TOE environment requirements that address this objective
are outside the scope of this PP. See rationale for
A.TRUSTED_FLOWS.

OE.TRUSTED_INDIVIDUAL
Any individual allowed to perform
procedures upon which the security
of the TOE may depend must be
trusted with assurance
commensurate with the value of the
IT assets.

N/A TOE environment requirements that address this objective
are outside the scope of this PP. See rationale for
A.TRUSTED_INDIVIDUAL.

7.6 Explicit Requirements Rationale
134 Explicit components have been included in this protection profile because the Common Criteria

requirements were found to be insufficient as stated. This section includes the rationale for using
explicit requirements for both the TOE and the IT environment.

7.6.1 Explicit TOE Functional Requirements
Table 7.6. Rationale for Explicit TOE Functional Requirements

Explicit Component Rationale

FAU_SAR_EXP.1 The CC component FAU_SAR.1 was written with the expectation that
authorized administrators will interact directly with the TSF to review and

151

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
to respond to audited events. Considering that the separation kernel
provides no means for direct interaction with any users, the explicit
component FAU_SAR_EXP.1, derived from FAU_SAR.1, requires that
recorded audit events be made available to authorized subjects.
FAU_SAR_EXP.1 requires the TSF to export audit records such that audit
data analysis on the information contained in the audit records can be
conducted by subjects authorized to access the recorded audit information.
Note that explicit assurance component AGD_ADM_EXP.1 requires the
TOE developer to provide documentation of the structure of recorded audit
events to aid development of analysis capabilities.

FAU_SEL_EXP.1 The CC component FAU_SEL.1 provides a selection for specifying the
user identity, subject identity, object identity, host identify or event type
attributes to be used to determine the auditable events that are actually
audited during an execution session. Considering that the separation
kernel mediates information flows between subjects and resources, the
base CC FAU_SEL.1 component was modified to replace the attribute
selection statement with an explicit list of attributes used by the TSF to
generate audit events (subject identity, resource identity, event type, event
success, event failure).

FIA_ATD_EXP.1 The base CC FIA_ATD.1 component addresses the definition of security
attributes associated with individual users, where those attributes are used
to enforce the TSP. The security attributes used by the separation kernel
to enforce the TSP are associated with partitions and exported resources.
These security attributes are contained in the configuration vector which is
transformed into configuration data once the TSF has been initialized. The
explicit component (FIA_ATD_EXP.1) is based on the CC FIA_ATD.1
component. It is iterated to define the specific set of security attributes
that must be maintained in the configuration data for partitions, subjects,
and exported resources.

FIA_USB_EXP.1 The base CC FIA_USB.1 component addresses the binding of an
individual user’s security attributes (as defined by FIA_ATD.1) to a
subject acting on behalf of that user. The security attributes used by the
separation kernel are not defined for users and are not bound to users. The
explicit component (FIA_USB_EXP.1) is based on the CC FIA_USB.1
component. It is iterated to require the TSF to associate security attributes
maintained in the configuration data to partitions, to subjects, and to
exported resources. It also requires the TSF to apply specific rules that
govern which and how configuration data security attributes are associated
to partitions, subjects, and exported resources.

FMT_MSA_EXP.1 The CC FMT_MSA.1 component requires the TSF to have the ability to
assign authorizations to the roles that are bound to individual users, and to
enable those roles to perform security-relevant functions associated with
access control and information flow control security policies. The
separation kernel does not support the concept of users and roles. The
separation kernel allows authorized subjects to interact with the TSF via
the TSFI, based upon the subject authorizations defined by the
configuration data. The explicit component (FMT_MSA_EXP.1) is based
on the CC FMT_MSA.1 component and requires the TSF to assign
authorizations to subjects as specified by the configuration data, and to

152

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
provide no other means by which authorizations can be assigned to
subjects.

FMT_MSA_EXP.3 The CC FMT_MSA.3 component requires the TSF to assign a restrictive
default value for each attribute for which a value was not assigned by the
configuration data. The function of ensuring that appropriate restrictive
values are used to configure the TSF is a function normally performed at
runtime by an authorized administrator. Given that the TSF must be able
operate without such interaction, it is necessary for the TSF to have this
ability to take appropriate action in the event of an unassigned security-
relevant attribute.

The separation kernel obtains attributes for all aspects of secure operation
of the TOE (e.g., self test execution, audit parameters, configuration
parameters) from the configuration data. The explicit component
(FMT_MSA_EXP.3) is based on the portion of the CC FMT_MSA.3.1
element that addresses capability to assign restrictive default values.
However, the 3.2 element is not required for this PP, as this TOE has no
notion of authorization for the purpose of over-riding default values.

FMT_MCD_EXP.1 The common criteria FMT_MTD.1 component provides for the TSF to
restrict the ability of authorized roles to perform operations on TSF data; it
allows some operations on TSF data subject to restrictions specified.
The separation kernel relies on the configuration data to define the initial
secure state of the TSF for an execution session, and to define the
behavioral properties of the TSF with respect to Partitioned Information
Flow Policy enforcement and other security relevant operations that occur
during an execution session. The TSFs sole dependency on the
configuration data requires that modification of the configuration data be
prevented to ensure that secure state be maintained throughout and
between execution sessions.
The explicit component FMT_MCD_EXP.1 is introduced to require the
TSF to prevent modification to the configuration data.
Note that authorized modification of the configuration data by the TSF, in
response to input from authorized subjects, can occur. This is
accomplished by the initialization and configuration change functions.
The mechanism for such modifications is the alteration of the TSF internal
vector set, and is an operation restricted to authorized subjects via use of
designed TSFI. Furthermore, the degree to which configuration data can
be changed is a function of the configuration change capability
implemented by the TOE. This can range from a relatively simple
capability to select one of many predefined static configurations to a more
complex capability with an interface having a number of functions and
parameters for a dynamic unconstrained configuration change. Refer to
FPT_CFG_EXP.1 for requirements governing the authorized modification
of the TSF internal vector set.

FPT_CFG_EXP.1 The requirement for the TOE to be reconfigurable is not a security
requirement. As a result, the CC does not provide components that
address the capability to change the TOE configuration. However, once
the decision is made to implement a configuration change capability, then
it becomes necessary to ensure that the TSF preserves secure state

153

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
throughout the execution of the configuration change operation.
It is envisioned that the separation kernel will be used in environments
where changing the configuration of the TOE will be required. The
explicit component, FPT_CFG_EXP.1, establishes one mandatory
requirement and several optional requirements that govern “by design”
changes to the TOE configuration through the interaction of authorized
subjects with the TSF. As a mandatory requirement, the TOE is to provide
support for the static configuration change (Note that this capability
requires no support from the TSF as the configuration vector used to
define the TSF internal vector can be changed off-line. Reference Section
3 for a discussion of this capability). As optional requirements, the TOE
developer may specify the requirements for dynamic total, dynamic-
constrained and dynamic-unconstrained on-line configuration change
capabilities.
Additionally, FPT_CFG_EXP.1 defines the requirements for the ways in
which an authorized subject can select and change TSF internal vectors,
and requires the TSF to preserve secure state throughout the execution of
each of the configuration change capabilities implemented.

FPT_ESS_EXP.1 Since the initialization of the TOE and the establishment of the TSF in its
initial secure state is not a requirement levied on the TSF, the CC does not
provide components that establish requirements for secure initialization Of
the TOE. The autonomous nature of the separation kernel requires trust in
the initialization of the TOE and the establishment of the TSF into an
initial secure state as defined by the configuration vector. Additionally,
the trusted initialization mechanism must be relied on to establish the
execution environment for the TSF and to transform the configuration
vector into configuration data useable by the TSF. It is necessary that trust
in the initialization function be established (Refer to ADV_INI_EXP.1 for
those requirements) and that the TSF be able to determine that it has been
properly placed in an initial secure state, per the configuration vector used
during initialization, prior to allowing any information flows to occur.
The explicit component FPT_ESS_EXP.1 defines the requirements for the
TSF to be established in an initial secure state as defined by the
configuration vector used during the initialization of the TOE; requires the
TSF to determine that it is in a secure state once initialization completes;
and requires that the TSF will not authorize any information flows until it
has determined that it is in an initial secure state.

FPT_HLT_EXP.1 The CC does not provide components addressing the capability for an
authorized subject to halt the TOE. It is envisioned that the separation
kernel will be used in environments where an authorized subject can
command the TOE to halt.
The explicit component FPT_HLT_EXP.1 requires the TSF to halt the
TOE when directed to do so by an authorized subject, and for the TSF to
preserve secure state throughout the process of halting the TOE.

FPT_MTN_EXP.1 Since the TOE could transition to maintenance mode from either a secure
halted state or a secure operational state, or from a non-secure operational
state (as a result of the failure to complete recovery from a failure or
service discontinuity), it was necessary to introduce this explicit
component to address security issues related to transitioning to the

154

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
maintenance mode.
The explicit component FPT_MTN_EXP.1 requires the TSF to provide the
capability for an authorized subject to request the TOE be transitioned into
maintenance mode, and, requires the TSF to preserve secure state during
the transition to maintenance mode if the TOE was in a secure state when
the transition was requested. FPT_MTN_EXP.1.3 requires the TSF to halt
the TOE if the TSF is unable to preserve secure state after transitioning to
maintenance mode from a secure state.

FPT_MTN_EXP.2 FMT_MTN_EXP.1.1 requires that the TOE be able to transition to
maintenance mode for the purpose of conducting and completing
maintenance action on the TSF. In addition the ST author can specify in
FPT_RCV_EXP.2 that the TOE is to transition to maintenance mode as a
recovery action. The transition to maintenance mode can occur from
either a secure or insecure state. It is necessary to ensure that, once in
maintenance mode, no TSF-mediated action takes place unless the TSF is
able to properly mediate that request. The explicit component
FPT_MNT_EXP.2 requires the TSF to be capable of rejecting requests for
controlled operations that would result in violations of the TSP while the
TSF is undergoing maintenance, thereby preventing any violation of the
TSP while the TSF is in a potentially insecure state.

FPT_PLP_EXP.1 The CC does not provide components addressing the capability for the
TSF to execute in such a manner that the TSF internally supports the
principle of least privilege. Additionally, it is inappropriate to address this
requirement solely as an assurance requirement (which is the approach
taken by the CC for many behavioral/property requirements, which when
implemented, do not result in a TSFI). Assurance requirements exist to
dictate that which must be done to provide confidence that the TOE meets
some set of properties. It is therefore necessary to both define a functional
property of the TSF that governs how it is expected to behave and to
define corresponding assurance requirements that govern the evidence
produced and the activities performed to acquire confidence that the
specified functional behavior is obtained.
The explicit component FPT_PLP_EXP.1 requires the TSF to have the
property that each TSF function requires no more access to TSF data and
other internal TSF resources than the minimum required.
It should be noted that FPT_PLP_EXP.1 is considered by the authors as
being the same type of requirement as Domain Separation (FPT_SEP) and
Non-bypassability of the TSF (FPT_RVM). Both FPT_SEP and
FPT_RVM are appropriately requirements that express functional
properties to be exhibited by the TOE during execution, and existence and
correctness of those properties must be demonstrated.

FPT_RCV_EXP.2 The CC component FPT_RCV_EXP.2 requires the TSF to take specific
recovery action when the TSF detects that it is not in a secure state.
FPT_RCV_EXP.2 also requires the TSF to attempt to halt the TOE if the
TSF is unable to proceed with any recovery action..
Considering this requirement in the context of the separation kernel, it was
recognized that the transition to maintenance mode could occur from the
operational state or from the halt state. Additionally, it was recognized
that an appropriate response to the failure to complete a recovery operation

155

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
(e.g., simply to halt the TOE or to restart the TOE in the same or a
different configuration) is best left as an implementation option for the
TOE developer.
The explicit component FPT_RCV_EXP.2, based on FPT_RCV.2,
requires the TSF to attempt to recover the TOE to a secure state without
further protection comprise when the TSF determines that it is not in a
secure state after TOE initialization or at any time while the TOE is in
operational mode. The TOE developer is required to specify a list of
recovery conditions and their associated recovery actions. The TOE
developer must also specify the recovery action to be taken by the TSF in
the event the TSF is unable to initiate or complete a recovery that requires
the TOE to remain in operational mode or to restart without transitioning
to maintenance mode.
Refer to the explicit component FPT_MTN_EXP.1 which addresses the
transition to maintenance mode when directed to do so by an authorized
subject.

FPT_RST_EXP.1 The CC does not provide components addressing the capability for an
authorized subject to restart the TOE. It is envisioned that the separation
kernel will be used in environments where an authorized subject can
command the TSF to restart the TOE, either as a means to clear fault
indications or for the purpose of changing the TOE configuration.
The explicit component FPT_RST_EXP.1 requires the TSF to restart the
TOE when directed to do so by an authorized subject, and for the TSF to
preserve secure state throughout the process of restarting the TOE.

FPT_TST_EXP.1

The CC component FPT_TST.1 is written in terms of authorized user
interaction with the TSF for conducting TSF self-tests and in verifying the
integrity of the stored TSF code and TSF data.
Invocation of self tests by an authorized entity, whether a user or a subject,
external to the TSF, provides no guarantee that such self-tests will occur.
Because the separation kernel is expected to be used in embedded as well
as more typical systems, it was recognized that the TSF must have the
capability to independently determine when to conduct a self-test and to
carry out such self-tests. In addition, the TSF provides the means for an
authorized subject to request that a TSF self-test be executed. The results
generated by TSF self-tests should be made available to authorized
subjects in a form that allows the subjects to assess and respond to the
results.
The explicit component FPT_TST_EXP.1 requires the TSF to run a suite
of TSF self-tests to verify the correct operation of the software portions of
the TSF implementation. Additionally, the TSF is required to provide the
results of the TSF self-test to authorized subjects in a form that allows the
authorized subject to assess the results.

FRU_PRU_EXP.1 The separation kernel is the foundational component upon which other
executing resource-constrained processes will be dependent. Just as it was
necessary to require the TSF internals to execute while supporting the
Principle of Least Privilege for purposes of damage limitation, it was
recognized that the TSF must meet its SFRs while executing in a
predictable manner with respect to its use of internal resources. By doing
so, the TSF is better able to mitigate erroneous behavior that results in

156

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
unbounded use of memory or processor resources, regardless of whether
such behavior is intentionally triggered by attack against the TSF, or the
result of device failure. In effect, the TSF is better able to mitigate denial
of service with respect to TSF internal execution.
The CC does not provide components addressing the capability for the
TSF to execute in a predictable manner with respect to its use of memory
and processor resources. Additionally, it is inappropriate to address this
requirement solely as an assurance requirement (which is the approach
taken by the CC for many behavioral/property requirements, which when
implemented, do not result in a TSFI). Assurance requirements exist to
dictate that which must be done to provide confidence that the TOE meets
some set of properties. It is therefore necessary to both define a functional
property of the TSF that governs how it is expected to behave and to
define corresponding assurance requirements that govern the evidence
produced and the activities performed to acquire confidence that the
specified functional behavior is obtained.
The explicit component FPT_PRU_EXP.1 requires the TSF to execute
within the bounds of a worst-case usage of memory scenario, and to
execute within the bounds of a normal and worst-case processor-use
scenario.

7.6.2 Explicit TOE Assurance Requirements
Table 7.7. Rationale for Explicit TOE Assurance Requirements

Explicit Component Rationale

ADO_DEL_EXP.2 The CC ADO_DEL.2 component did not specify the use of NIST-
approved cryptographic signature algorithms and keyed-hash message
authentication functions to support trusted delivery of the TOE.
ADO_DEL_EXP.2 was created based on the base CC component
ADV_DEL.2. Elements .3D through .6D, and .2C through .4C were
added to require the developer to provide documentation for trusted
delivery and to demonstrate the use of NIST-validated cryptographic
mechanisms in support of their trusted delivery processes. The
requirement for independent delivery channels for the TOE and for keying
materials provides additional assurance against undetected tampering.
Element .2E was added to require the evaluator to determine that the
procedures asserted as constituting a trusted delivery mechanism are
sufficiently strong security mechanisms for distributing the TOE.

ADV_ARC_EXP.1 The CC does not contain a consolidated set of requirements for assurance
evidence to address the TOE architecture and the manner in which it
contributes to the ability of the TSF to enforce the TSP and to protect itself
from tampering. The CC addresses architecture issues in the form of SFRs
(FPT_SEP, FPT_RVM) and SARs (ADV_INT). For high robustness, it
was recognized that new assurance criteria was necessary to require

157

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
assurance evidence specific to the TSF architecture and its ability to
protect itself, to support the principle of least privilege for the purpose of
damage limitation, and to prevent TSF-internal denial of service by
executing in a predictable manner. ADV_ARC_EXP.1 was created as a
new ADV family to require specific evidence for establishing assurance in
the TSF architecture.
ADV_ARC_EXP.1 requires the developer to provide an architecture
design of the TSF. Additionally ADV_ARC_EXP.1 requires evidence
that the TSF is able to execute within defined bounds for its internal use of
processor and memory resources as a means to reduce or eliminate the
potential for a successful denial of service originating from within the
TSF, and to enable system integrators to know the amount of system
resources that have to be allocated to the TOE when they develop the
configuration data. Several assurance elements in ADV_ARC_EXP.1 are
related to SFRs. This is intentional; it is appropriate to precisely define the
testable desired behavior of the TOE in terms of functional requirements
and to then precisely define the assurances required (combination of
evidence, analysis, and third-party IV&V) to determine that the desired
behavior is achieved by the implementation.

ADV_CTD_EXP.1 During the initialization of the TOE, a configuration vector is used to
determine the initial secure state of the TSF. Once the TSF has been
established in its initial secure state, the TSF enforces maintains secure
state by enforcing the TSP for the duration of the execution session.
Therefore, it is the configuration vector that defines secure state for all
TSP states during the execution session. The configuration vector is
critical to the ability of the TSF to properly enforce the organizational
security policy governing inter-partition information flows.
The configuration vector is generated by a configuration vector generation
and validation capability, i.e., the configuration tool. The configuration
tool is part of the TOE but not part of the TSF, and therefore not subject to
most of the ADV documentation SARs. Additionally, there is no CC
assurance family that addresses the assurances for generating the
configuration vector and for establishing the correctness of the
configuration vector.
ADV_CTD_EXP.1 requires the following:

a) The configuration tool must have the ability to generate both
human-readable and machine-readable forms of configuration
vectors, and to be able to convert between the two.

b) The tool must be able to place a cryptographic seal on a generated
configuration vector,

c) The TOE developer must produce documentation for the tool that
describes how to interpret the various forms in which the
configuration vector is produced and provides instructions for the
use of the tool to include placing a cryptographic seal on a
generated configuration vector.

ADV_FSP_EXP.4 For high robustness, the evaluator requires a detailed understanding of the
security relevance of each TSFI in terms of its intended use and behavior;
an understanding of all the parameters associated with the use of a TSFI;
and an understanding of all error/exception messages that would be

158

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
observed at the TSFI. ADV_FSP_EXP.4, which is derived from
ADV_FSP.4, was created to capture these requirements.
ADV_FSP.4.2D clearly states that the developer is to provide a formal
presentation of the TSFI functional specification. Such was implied in
CC v2.3
ADV_FSP_EXP.4.1C is a restatement of ADV_FSP.4.4C.
ADV_FSP_EXP.4.2C requires a semi-formal description of the TSFI. The
semi-formal description is in the form of a consistent presentation
structure using a set of defined and consistently used terms. The semi-
formal description is independent of, but must be consistent with, the
formal presentation of the TSFI required by ADV_FSP_EXP.4.2D and
ADV_FSP_EXP.4.9C, whose purpose is to provide a mathematically
provable correct and consistent statement of the TSFI.
ADV_FSP_EXP.4.3C, .4C, .5C, .6C, .7C, .8C combine to require
descriptive information about all parameters associated with each TSFI,
the operations provided by each TSFI, and all exceptions, error messages,
and effects associated with each TSFI (both those associated with the
invocation of the TSFI and those that originate within the TSF and utilize
a TSFI to provide error, exception or effects information to an authorized
subject), such that the evaluator has the basis to completely understand all
aspects of each TSFI.
ADV_FSP_EXP.4.9C requires a formal presentation of the TSFI which
provides mathematically provable assurance that the TSFI is complete and
correct. This aids in establishing assurance that given a proper
implementation of the security functions, the TSP will not be violated by
use of the TSFI.

ADV_HLD_EXP.4 For high robustness, the evaluator requires sufficient information to
acquire an understanding of the high-level design of the TSF, in the
context of the TOE, such that the security-relevance of each subsystem
could be ascertained, the support provided to the TSF by the IT
environment is understood, and to understand how the behavior seen at the
external TSFI maps into the subsystems that make up the TSF.
ADV_HLD_EXP.4, which is derived from ADV_HLD.4, was created to
capture these requirements.
ADV_HLD_EXP.4.1C requires the semi-formal presentation of the high-
level design of the TSF to be supported by informal explanatory text to
enable a more complete comprehension of the design by the evaluator.
ADV_HLD_EXP.4.2C requires an informal presentation of the high-level
design of the runtime non-TSF components of the TOE. This requirement
is necessary to establish a design context in which the TSF can be
assessed.
ADV_HLD_EXP.4.3C is no change from CC v2.3.
ADV_HLD_EXP.4.4C, .4.5C combine to provide the subsystem structure
of the TOE, and within that, identification of the TOE subsystem
components that comprise the TSF and designation of the TSF subsystems
that serve in TSP-enforcing and non-TSP enforcing capacities.
ADV_HLD_EXP.4.6C, .4.7C combine to provide a description of each
TSF subsystem and the interactions between the TSF subsystems. This
allows the evaluator to understand the structure of the TSF in context of

159

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
the entire TOE and to understand how TSF functionality is structured
across the TSF.
The documentation of subsystem interfaces, effects and exceptions (CC
v2.3 ADV_HLD.4.6C, .4.7C, .4.8C) is captured in the documentation of
the low-level design of the modules that comprise each subsystem.
The justification of the means of obtaining separation, and the
identification of hardware, firmware and software portions of the TSF is
contained in ADV_ARC_EXP.1.2C and ADV_ARC_EXP.1.6C.

ADV_IMP_EXP.3 For high robustness, the evaluator requires access to all forms of software
and firmware implementation representations, to include having detailed
documentation that aids in understanding how to transform the
implementation representation into the executable implementation.
ADV_IMP_EXP.3, which is derived from ADV_IMP.3, was created to
capture these requirements.
ADV_IMP_EXP.3.1D, .3.2D require the implementation representation to
be made available to the evaluator and with it, the necessary tools and
instructions. These support ADV_IMP_EXP.3.2E and allow the evaluator
to establish confidence in the transformation process by conducting an
independent transformation of the implementation representation into the
implementation, and verifying that the results of the transformation are
identical to the implementation provided by the TOE developer.
ADV_IMP_EXP.3.1C is no change from ADV_IMP.3.1C.
ADV_IMP_EXP.3.2C requires that the implementation representation
made available to the evaluator is no different in form and content used by
the TOE developer. This makes it possible for the evaluator to establish
equivalence between the implementation provided by the TOE developer
and the implementation created by an evaluator-invoked transformation of
the implementation representation.

ADV_INI_EXP.1 The CC SFRs and SARs assume that authorized administrators interacting
with the TOE during an execution session contribute to establishing
assurance that the TOE is properly initialized and is correctly configured
to enforce the organizational security policies. The SKPP does not make
this assumption. Therefore the TOE must be able to initialize and
establish a secure state autonomously, without any intervention by
authorized administrators. The initialization function is responsible for
trusted initialization of the TOE which includes establishing the execution
environment for the TSF and establishing the TSF in a secure state
consistent with the configuration vector that defines the configuration data.
Since the initialization function is part of the TOE but not part of the TSF,
it is not subject to most of the ADV documentation SARs. Additionally,
there is no CC assurance family that requires assurances for trusted
initialization of the TOE when that initialization is accomplished without
the aid of authorized administrators.
ADV_INI_EXP.1.1D through 1.5D require the TOE developer to provide
an initialization function that maintains the integrity of the TOE while
establishing the TSF in a secure state consistent with the selected
configuration vector, that is able to detect and respond to faults during
initialization of the TOE, and once the TOE initialization completes, the
initialization function will not arbitrarily interact with the operation of the

160

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
TSF during the execution session.
ADV_INI_EXP.1.6D requires the initialization function to establish the
TSF security domain and to bring the TSF software and data into that
domain.
ADV_INI_EXP.1.7D and .1.8D require the TOE developer to design and
implement the initialization function such that other components executing
on the TOE can neither circumvent nor tamper with the initialization
function.
ADV_INI_EXP.1.9D through .1.11D require the TOE developer to apply
modular decomposition to the design and implementation of the
initialization function and to provide both a functional specification and a
design document for the initialization function.
ADV_INI_EXP.1.12D and 1.13D require the TOE developer to test the
initialization function and to provide test documentation of the test results.
ADV_INI_EXP.1.1C through 1.5C levy content requirements on the
functional specification of the initialization function such that the
evaluator is able to acquire an understanding of the intended behavior of
the initialization function at its interfaces (to include behavior in the event
of errors)
ADV_INI_EXP.1.6C through .1.8C require an architectural description of
the components that comprise the initialization function, to include
identification of those components implemented by hardware, firmware or
software means, and the designation of each component as either relevant
or unrelated to the establishment of a secure state that is consistent with
the selected configuration vector. This information provides the evaluator
with insight into the structure of the initialization function.
ADV_INI_EXP.1.9C requires the developer to describe how the internals
of the initialization function work together to establish the TOE in a secure
state. This is necessary because the TSF can only determine that it is in
“a” secure state – the combination of the configuration tool, load function,
initialization function, and the TSF determine that the TSF is in the
“intended” secure state.
ADV_INI_EXP.1.10C requires a description of the means and methods
used by the initialization function to verify that the TSF code and TSF data
have not been modified subsequent to being loaded.
ADV_INI_EXP.1.11C requires a description of the fault management
(detection of faults/errors, error/exception handling) capabilities of the
initialization function, to include identification of all faults/errors that are
addressed by the initialization function.
ADV_INI_EXP.1.12C requires an argument for assurance that the
initialization function will not arbitrarily interact with the TSF after TOE
initialization completes.
ADV_INI_EXP.13C and .1.14C require an analysis of the initialization
design to demonstrate that no other component executing on the TOE can
“spoof” or tamper with the initialization function.
ADV_INI_EXP.1.15C and 1.16C levy modularity and minimization
requirements on the internal structure of the initialization function. Any
inclusion of components that do not support TOE initialization must be

161

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
justified.
ADV_INI_EXP.1.17C requires that both the initialization design and the
functional specification of the initialization function are presented in
informal style.
ADV_INI_EXP.1.18C and .1.19C state the requirements for the scope of
the testing to be performed and test documentation to be provided by the
TOE developer.
Since FPT_ESS_EXP.1 requires that the TSF not begin to enforce the
partitioned information flow policy until after it has determined that it is in
a secure state, it is necessary for the above assurance to be in place so that
the evaluator is able to establish confidence in the integrity of the
initialization process. ADV_INI_EXP.1.1E through 1.5E require the
evaluator to determine that the initialization function does in fact achieve
this objective.

ADV_INT_EXP.3 For high robustness, the evaluator is required to understand TSF module
behavior and to understand how the TSF modules interact and couple with
each other. To enable the evaluator to apply rigorous evaluation
techniques in meeting their requirements, the TOE developer must
minimize the size and complexity of TSF modules; must ensure TSF
modules contain no unusable code that complicates the analysis or that
poses a vulnerability with respect to the execution of the TSF; must apply
accepted software engineering techniques to implement modularization,
layering and coupling concepts at the level of TSF modules; and must
ensure the TSF modules support the principle of least privilege when
executing. ADV_INT_EXP.3, derived from ADV_INT.3, was created to
express these requirements.
The following elements state the requirements for the measures to be taken
by the developer while designing and implementing the TSF at the module
level, and the evidence developed to support the evaluator in performing
their required verification and analysis:
ADV_INT_EXP.3.1D, .1.2D, 3.1C, .3.2C, 3.3C requires the application of
software engineering principles in achieving modular decomposition of the
TSF, requires documentation of the process followed by the developer to
determine how the TSF is to be decomposed into modules, requires the
identification of each TSF module resulting from application of the
decomposition process, and requires evidence that correlates the TSF as it
was decomposed, back to the decomposition process that supposedly
drove the decomposition decisions made by the developer.
ADV_INT_EXP.3.3D, .3.6D, .3.9D, .3.4C, .3.13C, .3.14C requires that
TSF modules be designed and implemented for good internal structure,
minimization of complexity, to be simple enough to be analyzed; required
a description of the design as it serves to minimize complexity, requires a
justification for any TSF module that deviates from internal structure and
complexity coding standards, and requires a justification for any unused
code or redundant code that remains in the TSF.
ADV_INT_EXP.3.4D, .3.5D, .3.5C, .3.6C, .3.7C requires the design of the
TSF modules to exhibit specific coupling and cohesion properties, for the
developer to conduct coupling and cohesion analysis on all TSF modules,
and for the developer to provide justification any each TSF module that

162

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
does not conform to the permitted types of module coupling and module
cohesion.
ADV_INT_EXP.3.7D, .3.8D, .3.8C-.3.12C requires a layered design and
implementation of TSF modules where interactions between layers are
minimized; requires description of the layering architecture and the
methodology used to determine that architecture, requires a description of
the modules allocated to each layer and a description of the services
provided by each layer, and a description of the flow of interactions
between layers to include a justification for any layering interactions that
proceed from a lower layer to a higher layer in the architecture.
ADV_INT_EXP.3.10D, .3.11D, .3.15C, .3.16C require that TSF modules
be designed and implemented such that the TSF itself supports the
principle of least privilege, that non-policy-enforcement or supporting
functionality is included in the TSF modules, requires a justification for
any non-policy enforcing or supporting functionality included in the TSF,
and a description of how the TSF design and implementation supports the
principle of least privilege.
ADV_INT_EXP.3.2E requires the evaluator to perform their own coupling
and cohesion analysis on a subset of TSF modules to substantiate claims
made by the TOE developer.
ADV_INT_EXP.3.3E requires the evaluator to examine a subset of TSF
modules to determine if their design and implementation is consistent with
the coding standards used for minimization of complexity.
ADV_INT_EXP.3.4E requires the evaluator to determine if the TSF
design and implementation sufficiently supports the principle of least
privilege.
ADV_INT_EXP.3.5E requires the evaluator to confirm that the design and
implementation of the TSF modules is simple enough to support the
various analysis required of the evaluator.

ADV_LLD_EXP.2 For high robustness, the evaluator requires detailed TSF module design
evidence focused on the functionality provided by the TSF modules. This
evidence differs from that required by ADV_INT_EXP, where its focus is
on minimization of complexity, and the interactions between TSF
modules. The TSF module design evidence includes discussion of the
TSF module interfaces and the manner in which the TSF modules can be
invoked, the data used by the TSF module and data coupling between TSF
module, and an algorithmic description of the module.
ADV_LLD_EXP.2, derived from ADV_LLD.2, was created to express
these requirements.
To provide the evaluator with the evidence to acquire a complete
understanding of TSF module design and its use of data:
ADV_LLD_EXP.2.3C requires each TSF module to be designated as
SFR-enforcing, SFR-supporting, or non-security relevant.
ADV_LLD_EXP.2.4C requires discussion of common data that are
common to TSF modules.
ADV_LLD_EXP2.5C requires a description of each TSF module’s
purpose, its interfaces, and methods for invoking the TSF module, values
returned by the module, and calls made by the module to other TSF

163

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
modules.
ADV_LLD_EXP2.6C requires discussion of exceptions, errors and effects
of each module.
ADV_LLD_EXP2.7C requires a detailed algorithmic description of each
TSF module.
To ensure that the implementation representation is not provided as a
substitute for the low-level design of TSF modules:
The following are renumbering of elements contained in the base
ADV_LLD.2 component:
ADV_LLD_EXP2.1D is a restatement of CC v2.3 ADV_LLD.2.1D.
ADV_LLD_EXP.2.1C is a restatement of CC v2.3 ADV_LLD.2.1C with
the additional requirement of supporting informal text to explain the semi-
formal presentation of the low-level design.
ADV_LLD_EXP2.2C is a restatement of CC v2.3 ADV_LLD.2.2C.
ADV_LLD_EXP2.1E, 2.2E are restatements of CC v2.3 ADV_LLD.2.1E,
2.2E.

ADV_LTD_EXP.1 The TOE requires integration with other IT components. That integration
will include packaging of the TOE in various forms that are appropriate
for the intended execution environment. It is the load function that
provides the means to transfer the TOE into a form and onto media that
allows its subsequent use in the execution environment. The load function
includes the processes and mechanisms to convert the software portion of
the TSF implementation and/or configuration vector set into a TOE-
useable form. For high robustness, it is required to have at least the same
level of detail in the load function design as that provided in the TOE high
level design. The load function is part of the TOE but not part of the TSF,
and therefore not subject to most of the ADV documentation SARs.
Additionally, there is no CC assurance family that addresses the
assurances that are appropriate for the load function. ADV_LTD_EXP.1
was created as a new ADV family to express these requirements.
ADV_LTD_EXP.1.1D, 1.2D, 1.3D, 1.4D require a TOE loader design that
loads the machine-readable software portion of the TSF implementation,
including the configuration vector set, in a form that is accessible by the
TOE initialization mechanism, and to do so while preserving the integrity
of the implementation and configuration vectors. Additionally, this design
is to be implemented as a capability available to the TOE user.
ADV_LTD_EXP.1.1C requires the information to be provided at the same
level of detail abstraction as the high-level design.
ADV_LTD_EXP.1.2C requires a description to explain how the
requirements of ADV_LTD_EXP.1.3D, 1.4D are met by the design and
the implementation of the design.
ADV_LTD_EXP.1.1E, 1.2E require the evaluator to determine that all
requirements are met in terms of content and presentation, and that the
TOE loader design and TOE loader capability each meet their specific
requirements.

AGD_ADM_EXP.1 The creation of numerous explicit functional and assurance requirements
has impact on the contents of the guidance provided for use by the
administrators of the TOE. AGD_ADM_EXP.1 was created to describe

164

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale
the additional guidance required.
Requirements AGD_ADM_EXP.1.9C and .1.11C require that the
developer provide guidance on how to use the configuration vector
generation tool to create configuration vectors that accurately reflects the
operational configuration of the TOE as used by an organization.
FDP_IFF and FDP_IFC require that access to resources be controlled by
the TSF at the granularity to which those resources are made available
(viz., exported) to subjects. Thus, the TSF provides the ability to enforce
least privilege. Requirements AGD_ADM_EXP.1.10C and .1.11C require
the developer provide guidance for creating TSF configuration that
conforms to the principle of least privilege, and that the configuration data,
in fact, enforces least privilege.
Requirement AGD_ADM_EXP.1.12C requires the developer to describe
the various considerations associated with the types of subjects that are to
run in partitions provided by the TOE, and the considerations to be made,
based on those subject types, to determine which of the Partitioned
Information Flow Policy abstraction(s) are appropriate.
Requirement AGD_ADM_EXP.1.13C requires the procedures for use of
the load function be documented.
Requirement AGD_ADM_EXP.1.14C requires the developer to document
how to use the initialization function to bring the TSF to the initial secure
state.
Requirement AGD_ADM_EXP.1.15C requires the developer to describe
the audit record structure in sufficient detail to allow the audit data to be
properly interpreted.
Requirement AGD_ADM_EXP.1.2E requires the evaluator to determine
that the information provided in the administrator guidance is sufficient to
meet the requirements specified by AGD_ADM_EXP.1.1C through
1.12C.

AMA_AMP_EXP.1 CC v2.3 provides no assurance class to address continuity of assurance for
an evaluated TOE. For high robustness it is required that the TOE
developer have a plan in place, at the time of evaluation, for the
maintenance of the assurances established by the TOE evaluation. The
explicit component AMA_AMP_EXP.1 was written to define the
requirements for the assurance maintenance plan, and is captured in its
entirety as defined by the CCIMB-2003-02-001 document “Supplement:
AMA – Assurance Maintenance”, dated February 2003 [8]. For
AMA_AMP_EXP.1.8C, conceptual qualification refers to the security
analyst’s understanding of security concepts relevant to the TOM.

APT_PDF_EXP.1 See Appendix F.

APT_PSP_EXP.1 See Appendix F.

APT_PCT_EXP.1 See Appendix F.

APT_PST_EXP.1 See Appendix F.

165

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Explicit Component Rationale

APT_PVA_EXP.1 See Appendix F.

AVA_CCA_EXP.2 The scope of AVA_CCA was reduced in AVA_CCA_EXP.2.1D to reflect
the semantics of the two rules of the partitioned information flow SFP. In
that SFP, the partition rule enforces restrictions on flows between
partitions independent of the subject-resource pair involved in the
information flow; the subject-exported resource rule provides the ability
to further restrict those flows to be specific to each subject-resource pair.
Each partition defines an equivalence class of resources, such as would be
used in the TSF’s application domain to instantiate programs and files at a
given DoD sensitivity level. Covert channel analysis is concerned with
“leaks” (i.e., unintended flows) that might occur between the equivalence
classes (e.g., sensitivity levels) separated by the partitioning capabilities of
the TOE. However, since least privilege policies are orthogonal to flow
policies, they are outside of the scope of covert channel analysis, and so
AVA_CCA_EXP.2.1D was modified to only apply to the partition
abstraction policy.

AVA_VLA_EXP.4 For high robustness, NSA policy requires that evaluator actions for
independent vulnerability assessment and independent penetration testing
be conducted by NSA personnel. The evaluator actions of AVA_VLA.4
were changed to require the NSA evaluator to perform independent
vulnerability analysis and for the NSA evaluator to conduct independent
penetration testing. The requirements for the Common Criteria Test Lab
(CCTL) evaluator to perform and independent vulnerability assessment to
and conduct independent penetration testing have been deleted.

7.7 Rationale for Strength of Function
135 The overall TOE minimum strength of function for SFRs contained in this PP and contained in a

ST which claims conformance to this PP is SOF-HIGH. The evaluated TOE is intended to
operate in DoD high robustness environments and the SOF-HIGH level is consistent with the
level of the anticipated threat.

136 The minimum SOF does not apply to any cryptographic mechanisms with respect to a CC
evaluation (to include those contained as part of the TOE but not part of the TSF). The
assessment of strength of cryptographic algorithms is outside the scope of the CC. The strength
of the cryptographic mechanisms will be determined by NIST FIPS 140-2 certified modules and
requirements specified in this PP; the validation of these cryptographic mechanisms will be
performed by the NSA.

137 Strength of function rationale for single SFRs contained in this PP is not provided as there are no
strength of function claims made for any individual SFR contained in this PP.

7.8 Rationale for Non-Applicable Dependencies
138 This section provides rationale for all component dependency conditions specified by the CC but

166

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

not satisfied by the set of components contained in this PP.

167

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Table 7.8. Rationale for Non-Applicable Component Dependencies

Component with Non-

Applicable Dependency

CC-Required

Dependency

Rationale

FAU_ARP.1 FAU_SAA.1 FAU_ARP.1 was refined to require specific action be
taken by the TSF based solely upon specified failures of
TSF self-tests. As a result of this refinement, there is no
basis for requiring the TSF to satisfy FAU_SAA.1, i.e., to
conduct analysis on audited events to identify potential
TSP violation conditions. Furthermore, the TSF is not
required to maintain audit information and thus it is not
possible for the TSF to perform the audit analysis as
required by FAU_SAA.1.

7.9 Rationale for Assurance Rating
139 This protection profile has been developed for U.S. Government high robustness environments.

The TOE environment and the value of information processed within this environment (i.e.,
highly sensitive) establishes the basis for the set of CC-based and explicit security assurance
requirements that are contained in this protection profile. As such, no EAL claim is made by this
protection profile.

168

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

8. References

[1] Common Criteria for Information Technology Security Evaluation, Part 1: Introduction
and General Model, CCIMB-2005-08-001, Version 2.3, August 2005.

[2] Common Criteria for Information Technology Security Evaluation, Part 2: Security
Functional Requirements, CCIMB-2005-08-002, Version 2.3, August 2005.

[3] Common Criteria for Information Technology Security Evaluation, Part 3: Security
Assurance Requirements, CCIMB-2005-08-003, Version 2.3, August 2005.

[4] Common Methodology for Information Technology Security Evaluation, Evaluation
Methodology, CCIMB-2005-08-004, Version 2.3, August 2005.

[5] National Computer Security Center, Department of Defense Trusted Computer System
Evaluation Criteria DoD 5200.28-STD, December 1985.

[6] National Security Telecommunications and Information Systems Security Committee,
National Information Systems Security (INFOSEC) Glossary, NSTISSI No. 4009,
September 2000.

[7] Harrison, M., Ruzzo, W. and Ullman, J., “On Protection in Operating Systems,”
Communications of the ACM, vol. 19, no. 8, August 1976, pp. 461-471.

[8] Common Criteria for Information Technology Security Evaluation, Supplement: AMA –
Assurance Maintenance, CCIMB-2003-02-001, Version 0.9, February 2003, DRAFT.

[9] Denning, D. E., “A Lattice Model of Secure Information Flow,” Communications of the
ACM, vol. 19, no. 5, May 1976, pp. 236-243.

[10] Rushby, J., “Design and Verification of Secure Systems,” ACM Operating Systems
Review, vol.15, no.5, December 1981, p.12.

[11] UK IT Security Evaluation and Certification Scheme, UK CC Interpretation –
UK/2.2/008, “Treatment of commercial hardware that is part of a TOE,” 25 February
2005.

[12] Saltzer, J. H. and Schroeder, M. D., “The Protection of Information in Operating
Systems,” Proceedings of the IEEE. 63(9):1278-1308. 1975.

169

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix A - Acronyms
ANSI American National Standards Institute

CC Common Criteria for Information Technology Security Evaluation Version 2.3

COTS Commercial-Off-The-Shelf

CVS Configuration Vector Set

DoD Department of Defense

EAL Evaluation Assurance Level

FIPS Federal Information Processing Standard

IA Information Assurance

IT Information Technology

NIST National Institute of Standards and Technology

PA Partition-to-partition Authorizations

PIFP Partitioned Information Flow Policy

PoLP Principle of Least Privilege

PP Protection Profile

RIP Residual Information Protection

RNG Random Number Generator

SA Subject-exported resource Authorizations

SF Security Function

SFP Security Function Policy

SFR Security Function Requirement

SK Separation Kernel

SKPP U.S. Government Protection Profile for Separation Kernels in Environments Requiring
High Robustness

ST Security Target

TOE Target of Evaluation

TOM Target of Maintenance

TSC TSF Scope of Control

TSF TOE Security Functions

TSFI TSF Interface

TSP TOE Security Policy

170

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix B - Cryptographic Standards,
Policies, and Other Publications

Standards

ANSI X9.31-1998 American National Standards Institute (ANSI) X9.31-1998 (May 1998), Digital
Signatures Using Reversible Public Key Cryptography for the Financial Services
Industry (rDSA), [http://webstore.ansi.org/ansidocstore].

ANSI X9.42-2001 American National Standards Institute (ANSI) X9.42-2001 (2001), Public Key
Cryptography for the Financial Services Industry: Agreement of Symmetric Keys
Using Discrete Logarithm Cryptography, (http://webstore.ansi.org/ansidocstore).

ANSI X9.62-1998 American National Standards Institute (ANSI) X9.62-1-1998 (10 Oct 1999), Public
Key Cryptography for the Financial Services Industry: the Elliptic Curve Digital
Signature Algorithm (ECDSA), (http://webstore.ansi.org/ansidocstore).

FIPS PUB 180-2 National Institute of Standards and Technology, Secure Hash Standard, Federal
Information Processing Standard Publication (FIPS-PUB) 180-2, dated 1 August
2002, [http://cs-www.ncsl.nist.gov/publications/fips/fips180-2/fips180-2.pdf].

FIPS PUB 186-2 National Institute of Standards and Technology, Digital Signature Standard,
Federal Information Processing Standard Publication (FIPS-PUB) 186-2, dated
2000 January 27, [http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-
change1.pdf].

FIPS PUB 198 National Institute of Standards and Technology, The Keyed-Hash Message
Authentication Code (HMAC), Federal Information Processing Standard
Publication (FIPS-PUB) 198, dated March 6, 2002,
[http://csrc.nist.gov/publications/fips/fips198/fips-198a.pdf].

171

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix C – Rationale for Two-Level
Policy

This Appendix provides a discussion for the dual-level Least Privilege Abstraction of the
Partitioned Information Flow Policy, in which FDP_IFC and FDP_IFF explicitly define both
partition and subject-exported resource rules.

The Partition Policy Must Be Explicit

140 It is possible to formulate the subject-exported resource rules such that the partition rules could
be derived by examination of the former, making the latter redundant. However, since the SKPP
is intended to support partitioned information policy semantics at the product configuration
interface, a partition policy is explicit.

141 Additionally, one of the primary intended uses of the SKPP is to evaluate products that provide
separation of resource equivalence classes that may be mapped to, for example, MLS sensitivity
levels. Covert channels between such equivalence classes are a significant concern. Therefore it
is necessary for covert channel requirements to be stated at the level of partition rules. If
FDP_IFC and FDP_IFF were written without concern for partitions, then it would be
inconsistent to state covert channel requirements at the partition level.

The Subject-Exported Resource Policy Must Be Explicit

142 If a system cannot restrict individual subjects to have only the access authorizations that they
require to complete their functions, the accountability mechanism (viz., audit) will be less able to
accurately capture the source of various actions, e.g., individual modifications within a file.
Thus, the ability of a secure system to realize the goals of accountability, as well as the
confinement of damage, is limited by the level of granularity with which the system is able to
invoke the principle of least privilege. To provide high assurance, SKPP requirements for least
privilege apply at the same granularity as the resources that are exported, i.e., at both the
partition and subject-exported resource levels of abstraction.

143 Even if there is only one subject in a partition, the TSF must still ensure that the subject can only
access those resources in its address space: it is the premise of separation that the TSF controls
what resources the subject accesses. It would be circular to say that, since separation is
provided, the TSF need not be able to control a subject’s access to individual resources.
Similarly, least privilege regarding exported resources should not be difficult for an
implementation of a separation kernel, since the kernel will need to control the composition of
each subject’s address space to achieve the required separation properties.

144 For example, suppose there is one subject in a given partition, and the partition includes several
exported resources. Then to avoid all-or-nothing security, the subject should be given only the
modes of access to each of those resources that it requires, as opposed to a blanket (e.g.,
maximal) access to all of the resources in the partition. This is why “super-user” privileges are
not allowed in secure systems. However, this restriction may be difficult to express or

172

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

understand if FDP_IFC and FDP_IFF do not articulate requirements at the subject-exported
resource level.

173

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix D – Rationale for Secure State
145 The definition of “secure state” for this TOE is based on two separate properties: (A) that the

TSF is capable of enforcing the security policy (i.e., its own data and mechanisms are intact);
and (B) that exported resources are correctly separated (e.g., application data, and related
descendants and copies, are associated with the correct partition according to the configuration
data).

146 For example, if a TOE security function “breaks,” so that the TOE can no longer enforce the
security policy, then the TOE is not in a secure state. Conceivably, upon detection of the
problem the TOE could enter maintenance mode and repair the function, and then return to
normal mode in a secure state;12 or the TOE could be shut down, repaired offline, and then
started again to return to a secure state. In either case, item 1 in the definition of “secure state” is
achieved, corresponding to property A. However, if before entering maintenance mode (or
shutting down) this service failure resulted in the “pollution” of a partition with data from
another partition that is not allowed to flow there by the security policy,13 then repair of the
broken function is (necessary but) not sufficient to return the TOE to a secure state.

147 Item 2 in the definition of “secure state” addresses property B. Continuing with the above
example, item 2b reflects the possibility that the TOE is designed so that the individual effects of
operations that violate the policy – ones performed while the TOE is in an insecure state – can be
“undone,” in a transactional sense. Systems that do not have this rollback capability can have a
problem much like a single drop of dye in a glass of water: undoing the effects of “pollution” is
difficult to achieve. In such a case, the TOE could achieve the same rollback result required by
2b by disabling the polluted partition or through re-initialization, per 2c. The latter bears some
discussion.

148 It is axiomatic to the SKPP concept of security, and to systems that enforce policies based on
equivalence classes of resources in general, that the data that determines the initial assignment of
resources to equivalence classes (viz., SKPP partitions) is semantically correct. In other words,
the association of resources and partitions (Section 5.3.2 User-Subject Binding (FIA_USB)) as
well as the related rules regarding flows (Sections 5.2.1 and 5.2.2) according to the configuration
data reflect the intention of the data owner(s) (e.g., see O.CORRECT_CONFIG in Section 4.1).
These requirements are levied on the TSF. Whether or not the TOE initialization mechanism has
the capability to assess this semantic correctness, including determining if any partitions have
been “polluted” in a previous execution session, is beyond the scope of this PP. However, if the
TSF is able to detect that a partition has been polluted, the SKPP requires that the association of
resources with partitions is once again made consistent with the configuration data (by definition
of secure state). An acceptable, although not required, recovery action is to make all resources
within the polluted partition(s) unavailable.

12 If maintenance mode is entered when the TOE is in a secure state, the operations will either be consistent with 2a,
or will be outside of the scope of the model (e.g., TSF may be required to take recovery actions that override the
security policy).
13 For example, using information sensitivity labels mapped to partitions, high confidentiality or low integrity
resources have been put into a low confidentiality or high integrity partition.

174

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix E – TSF Data Description
149 There are various types of TSF Data, for example: internal data structures, configuration data,

and TSF-generated data. Configuration data includes flow policy and non-flow policy data.
Some or all configuration data may be imported from the IT environment during system
initialization. The TSF generates some data, such as audit records and digital signatures. The
TSF may export certain TSF Data, including generated data, configuration data, and other
implementation-dependent TSF Data.

150 Examples of TSF data are, Internal TSF Structures, Configuration Data and TSF-Generated
Data:

A. Internal TSF Structures

1. Hardware registers

2. Software data structures

B. Configuration Data

1. Flow Policy Configuration Data

a. Least Privilege Flow Configuration Data

b. Partition Flow Configuration Data

2. Non-Flow Policy Configuration Data

c. Audit Configuration Parameters

d. General Configuration Parameters

i. Clock Settings

ii. Self-Test Periods

C. TSF-Generated Data

1. Subject and resource policy-enforcement attributes

2. Audit Output (e.g., audit records)

3. Clock Output

175

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix F – Example TOE Scenario

151 For the configuration data and TOE implementation components, Figure F-1 provides a notional
illustration of an acceptable scenario for their generation, movement and use, as well as the
allocation of components to the TSF and TOE.

152 For simplicity and generality, the entity that develops or modifies a TOE component is called a
“TOE developer,” even if some of the development is performed by an entity that is an integrator
or customer in some other scenario. If a component (e.g., a new hardware dependent module) is
to be integrated into the TOE, then the component, as well as the combination of that component
with the rest of the TOE will need to have been evaluated. Also, implementation components
will always need to be accepted by the TOE trusted delivery mechanism. For example, if an
“integrator,” receives a TOE from the original developer and then modifies certain TOE
components as part of the integration of the SK into a larger component/system – conceptually
creating a new TOE – evaluation or re-evaluation of the new TOE must occur. It is beyond the
scope of this protection profile to specify requirements that are specific to a partial re-evaluation
of the new TOE.

176

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Trusted Delivery
“Integrity Seal”

Generation

TOE Developer IT Environment

Target of Evaluation

Legend
Optional Items:

Note: At least one set of {Configuration Tool, Configuration Vectors}
is required, the other is optional.

Load
Function

Configuration
Vector(s)

Configuration
Tool

Trusted Delivery
Integrity Verification

Load
Function

TSF

Runtime
Software

Components

TOE Customer IT Environment

Target of Evaluation

Hardware

Configuration
Vector(s)

Configuration
Vector(s)

Configuration
Tool

Software
Components

Hardware

Software
Components

TSF

Initialization Component
and Configuration Tool

Boot Function

Function to
establish TSF
initial secure

state
Configuration

Data

Initialization Function

Cycle Power or Restart

Data Movement
Execution Flow

Trusted Delivery
“Integrity Seal”

Generation

TOE Developer IT Environment

Target of Evaluation

Legend
Optional Items:

Note: At least one set of {Configuration Tool, Configuration Vectors}
is required, the other is optional.

Load
Function

Configuration
Vector(s)

Configuration
Tool

Trusted Delivery
Integrity Verification

Load
Function

TSF

Runtime
Software

Components

TOE Customer IT Environment

Target of Evaluation

Hardware

Configuration
Vector(s)

Configuration
Vector(s)

Configuration
Tool

Software
Components

Hardware

Software
Components

TSF

Initialization Component
and Configuration Tool

Boot Function

Function to
establish TSF
initial secure

state
Configuration

Data

Initialization Function

Cycle Power or Restart

Data Movement
Execution Flow

Figure F-1. Example TOE Scenario

177

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Appendix G – Rationale for Class APT
Platform Assurance

153 This Appendix provides explanatory material for the explicit Class APT requirements.

154 It is up to the TOE vendor to define the platform components, as well as the degree of openness
of the platform definition.

1. Rationale for Class APT
Objective

155 The families in the “Platform Assurance” class specify assurance requirements that provide
confidence that commercial off-the-shelf (COTS) platform components used to implement the
operation of a TOE are capable of effectively supporting the TOE's security functions.

156 For purposes of this class, platform components are defined by specification, as supplied in the
developer's Platform Definition Document, allowing an end-user to identify and procure
platform components that will act correctly as components of the TOE.

Application notes

157 These families are intended for use with TOEs that rely on mass-produced, non-specialized
platform components. These families are a substitute for ADV, ATE, and other assurance
requirements for such platform components, allowing acceptable platform components to be
included in the TOE.

158 To the extent that specialized platform components are required to implement the TOE's security
functions, or that specialized mechanisms within those components are required to satisfy
physical protection requirements such as FPT_PHP or anti-tampering requirements, the hardware
mechanisms used to satisfy those requirements cannot be considered part of the platform and
must be evaluated in accordance with the non-platform assurance requirements (e.g., ADV).

2. APT_PDF_EXP — Platform Definition
Objective

159 This family states requirements for how the platform is defined, in terms of component types and
component properties. This definition is contained in a specific document called the platform
definition, and the platform definition is required to be available to potential product end-users in
the same manner as the security target.

178

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

Component levelling

160 The components in this family are levelled based on the degree of detail required in the platform
definition. Although not specified in this PP, the basic component is intended to be satisfied by
existing standard commercial practices in terms of defining “compatible” platform components
and the next level component requires explicit security analysis of the definition, an activity
specific to a particular evaluation. This PP mandates the highest level which requires that
detailed specifications for all components be available.

Application notes

161 The APT_PDF_EXP family follows the model of UK interpretation #008 [11] in requiring a
definition of platform components (by type) and an analysis of each component type against the
SFRs and architectural properties that it upholds.

3. APT_PSP_EXP — Platform Specification
Objective

162 The specification of platform component interfaces allows analysis of the TSF for functional
correctness and supports analysis for vulnerabilities exercised through those interfaces.

Component levelling

163 Although not specified in this PP, the basic component simply requires that interface
specifications be identified for external platform interfaces only and the next level component
requires that the specification be well-defined and complete. This PP requires the highest level
component which adds internal interfaces to the required specifications.

Application note

164 The expectation is that the interface specifications called for by this family are those provided by
the manufacturer/supplier of each platform component, or, where a single platform component
(such as a computer) comprises multiple elements (e.g., a CPU, a network interface), the
manufacturer of the individual platform element.

4. APT_PCT_EXP — Platform Conformance
Testing

Objective

179

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

165 Platform conformance testing is the process by which platform components are determined to be
acceptable as part of a valid platform for the TOE.

Component levelling

166 The components in this family are levelled on the basis of the level of effort devoted to ensuring
that components are acceptable in the TOE.

Application notes

167 For the lowest (casual) level, the intent is that it be satisfied by any platform component that
allows the product to work well enough to run some level of exposure testing. The assumption is
that otherwise-compatible platform components are unlikely to introduce subtle security
problems while apparently functioning well overall—and in any case, if they do,
APT_PST_EXP.1 should pick them up.

168 The other two levels require more rigorous testing. In both cases, testing is expected to be
performed through the TSF interface, with an argument made about how those tests exercise the
platform features—as opposed to APT_PST_EXP, which requires testing specific platform
interfaces at the platform component interface level. This PP only requires testing of all security
features identified in the platform component security analysis. The highest level requires
testing of all platform interfaces.

5. APT_PST_EXP — Platform Security Testing
Objective

169 Platform security testing verifies that all external platform interfaces, and those internal platform
interfaces used by the TOE function correctly and are resistant to attack.

Component levelling

170 This family has two components: one addressing only the external platform interfaces, and one
addressing all external platform interfaces, and those internal platform interfaces used by the
TOE. This PP requires the second level.

Application notes

171 This family may require tests that run directly on the platform, rather than under control of the
TSF. The intent of this class is to make deterministic tests of the platform mechanisms rather
than relying on test coverage arguments at the TSFI level.

180

U.S. Government Protection Profile for Separation Kernels in Environments Requiring High Robustness
Version 1.03 – 29 June 2007

6. APT_PVA_EXP — Platform Vulnerability
Assessment

Objective
172 This component provides explicit requirements for considering platform component interfaces in

satisfying the applicable AVA_VLA requirements.

Component levelling

173 There are two levels for the APT_PVA_EXP family: one that addresses only external platform
interfaces, and one that addresses all external platform interfaces, and those internal platform
interfaces used by the TOE. This PP requires the second level.

Application notes

174 There are no specific AVA requirements for hardware and firmware. This is just a requirement
that hardware and firmware be considered.

181

	2.3.1 Principle of Least Privilege
	2.3.2 Partitions and the Partitioned Information Flow Policy (PIFP)
	2.3.3 Partitions and Subject Address Spaces
	2.3.4 TOE Configuration Changes
	2.3.4.1 Static Total Configuration Change
	2.3.4.2 Dynamic Total Configuration Change
	2.3.4.3 Dynamic Selective Configuration Change
	2.6.1 Platform Components
	2.6.2 Platform Interfaces
	2.7.1 Security Management
	2.7.2 TOE Component Development Diversity
	5.1.1 Security Audit Automatic Response (FAU_ARP)
	5.1.1.1 Security Alarms (FAU_ARP.1)
	5.1.2.1 Audit Data Generation (FAU_GEN.1)
	5.1.3.1 Explicit: Audit Review (FAU_SAR_EXP.1)
	5.1.4.1 Selective Audit (FAU_SEL_EXP.1)
	5.2.1.1 Complete Information Flow Control (FDP_IFC.2)
	5.2.2.1 Simple Security Attributes (FDP_IFF.1)
	5.2.2.2 Limited Illicit Information Flows (FDP_IFF.3)
	5.2.3.1 Full Residual Information Protection (FDP_RIP.2)

	5.3.1 User Attribute Definition (FIA_ATD)
	5.3.1.1 Explicit: User Attribute Definition (for partition attributes) (FIA_ATD_EXP.1(1))
	5.3.1.2 Explicit: User Attribute Definition (for subject attributes) (FIA_ATD_EXP.1(2))
	5.3.1.3 Explicit: User Attribute Definition (for non-subject exported resource attributes) (FIA_ATD_EXP.1(3))

	5.3.2 User-Subject Binding (FIA_USB)
	5.3.2.1 Explicit: User-Subject Binding (for partition attribute binding) (FIA_USB_EXP.1(1))
	5.3.2.2 Explicit: User-Subject Binding (for subject attribute binding) (FIA_USB_EXP.1(2))
	5.3.2.3 Explicit: User-Subject Binding (for non-subject exported resource attribute binding) (FIA_USB_EXP.1(3))
	5.4.1.1 Explicit: Management of Configuration Data (FMT_MCD_EXP.1)

	5.4.2 Management of Functions in TSF (FMT_MOF)
	5.4.2.1 Management of Security Functions Behavior (to change the TOE configuration) (FMT_MOF.1(1))
	5.4.2.2 Management of Security Functions Behavior (to restart the TOE) (FMT_MOF.1(2))
	5.4.2.3 Management of Security Functions Behavior (to halt the TOE) (FMT_MOF.1(3))
	5.4.2.4 Management of Security Functions Behavior (to initiate TOE self-tests) (FMT_MOF.1(4))
	5.4.2.5 Management of Security Functions Behavior (to transition the TOE to maintenance mode) (FMT_MOF.1(5))
	5.4.3.1 Explicit: Management of Security Attributes (FMT_MSA_EXP.1)
	5.4.3.2 Explicit: Static Policy Attribute Initialization (FMT_MSA_EXP.3)

	5.4.4 Management of TSF Data (FMT_MTD)
	5.4.4.1 Management of TSF Data (for obtaining TSF self-test results) (FMT_MTD.1(1))
	5.4.4.2 Management of TSF Data (for obtaining audit information) (FMT_MTD.1(2))
	5.4.4.3 Secure TSF Data (FMT_MTD.3)

	5.4.5 Specification of Management Functions (FMT_SMF)
	5.4.5.1 Specification of Management Functions (FMT_SMF.1)
	5.5.1.1 Abstract Machine Testing (FPT_AMT.1)
	5.5.2.1 Explicit: Configuration Change (FPT_CFG_EXP.1)
	5.5.3.1 Explicit: Establishment of Secure State (FPT_ESS_EXP.1)
	5.5.4.1 Failure with Preservation of Secure State (FPT_FLS.1)
	5.5.5.1 Explicit: TOE Halt (FPT_HLT_EXP.1)
	5.5.6.1 Explicit: TOE Maintenance (FPT_MTN_EXP.1)
	5.5.6.2 Explicit: TOE Maintenance Secure (FPT_MTN_EXP.2)
	5.5.7.1 Explicit: TSF Least Privilege (FPT_PLP_EXP.1)
	5.5.8.1 Explicit: Automated Recovery (FPT_RCV_EXP.2)
	5.5.8.2 Function Recovery (FPT_RCV.4)
	5.5.9.1 Explicit: TOE Restart (FPT_RST_EXP.1)
	5.5.10.1 Non-Bypassability of the TSP (FPT_RVM.1)
	5.5.11.1 Complete Reference Monitor (FPT_SEP.3)

	5.5.12 Time Stamps (FPT_STM)
	5.5.12.1 Reliable Time Stamp (FPT_STM.1)
	5.5.13.1 Explicit: TSF Testing (FPT_TST_EXP.1)
	5.6.1.1 Minimum and Maximum Quotas (FRU_RSA.2)
	5.6.2.1 Explicit: TSF Predictable Resource Utilization (FRU_PRU_EXP.1.1)

	End Notes
	6.1.1.1 Complete CM Automation (ACM_AUT.2)
	6.1.2.1 Advanced Support (ACM_CAP.5)
	6.1.3.1 Development Tools CM Coverage (ACM_SCP.3)
	6.2.1.1 Explicit: Detection of Modification (ADO_DEL_EXP.2)
	6.2.2.1 Installation, Generation and Start-Up Procedures (ADO_IGS.1)
	6.3.1.1 Explicit: Architectural Design (ADV_ARC_EXP.1)
	6.3.2.1 Explicit: Configuration Tool Design (ADV_CTD_EXP.1)
	6.3.3.1 Explicit: Formal Functional Specification (ADV_FSP_EXP.4)
	6.3.4.1 Explicit: Semiformal High-Level Explanation (ADV_HLD_EXP.4)
	6.3.5.1 Explicit: Structured Implementation of the TSF (ADV_IMP_EXP.3)
	6.3.6.1 Explicit: Trusted Initialization (ADV_INI_EXP.1)
	6.3.7.1 Explicit: Minimization of Complexity (ADV_INT_EXP.3)
	6.3.8.1 Explicit: Semi-Formal Low-Level Design (ADV_LLD_EXP.2)

	6.3.9 Load Tool Design (ADV_LTD)
	6.3.9.1 Explicit: Load Tool Design (ADV_LTD_EXP.1)
	6.3.10.1 Formal Correspondence Demonstration (ADV_RCR.3)
	6.3.11.1 Formal TOE Security Policy Model (ADV_SPM.3)
	6.4.1.1 Explicit: Administrator Guidance (AGD_ADM_EXP.1)
	6.4.2.1 User Guidance (AGD_USR.1)
	6.5.1.1 Sufficiency of Security Measures (ALC_DVS.2)
	6.5.2.1 Systematic Flaw Remediation (ALC_FLR.3)
	6.5.3.1 Standardized Life-Cycle Model (ALC_LCD.2)
	6.5.4.1 Compliance with Implementation Standards – All Parts (ALC_TAT.3)
	6.6.1.1 Explicit: Assurance Maintenance Plan (AMA_AMP_EXP.1)
	6.7.1.1 Explicit: Specified Platform Definition (APT_PDF_EXP.1)
	6.7.2.1 Explicit: Complete Platform Specification (APT_PSP_EXP.1)
	6.7.3.1 Explicit: Tested Platform Conformance (APT_PCT_EXP.1)
	6.7.4.1 Explicit: Comprehensive Platform Security Testing (APT_PST_EXP.1)
	6.7.5.1 Explicit: Comprehensive Platform Vulnerability Assessment (APT_PVA_EXP.1)
	6.8.1.1 Rigorous Analysis of Coverage (ATE_COV.3)
	6.8.2.1 Testing: Implementation Representation (ATE_DPT.3)
	6.8.3.1 Ordered Functional Testing (ATE_FUN.2)
	6.8.4.1 Independent Testing – Complete (ATE_IND.3)
	6.9.1.1 Explicit: Systematic Covert Channel Analysis (AVA_CCA_EXP.2)
	6.9.2.1 Analysis and Testing for Insecure States (AVA_MSU.3)
	6.9.3.1 Strength of TOE Security Function Evaluation (AVA_SOF.1)
	6.9.4.1 Explicit: Highly Resistant (AVA_VLA_EXP.4)

	End Notes
	Appendix A - Acronyms
	Appendix B - Cryptographic Standards, Policies, and Other Publications
	Appendix C – Rationale for Two-Level Policy
	Appendix D – Rationale for Secure State
	Appendix E – TSF Data Description
	Appendix F – Example TOE Scenario
	Appendix G – Rationale for Class APT Platform Assurance

