
TOC

Consistency Instruction Manual

For development of

US Government Protection Profiles (PP)

For use in

Medium Robustness Environments

Release 2.0

1 March 2004

 1

Forward
(Back to TOC)

This Protection Profile (PP) Consistency Instruction Manual for Medium Robustness
Environment was developed by the Protection Profile Review Board (PPRB) to identify
and set forth a framework of consistent security requirements for the specification of
products in environments requiring medium robustness, based on Version 2.1 of the
Common Criteria, International Standard 15408. Details of the complete Common
criteria may be found at http://csrc.nist.gov/cc

It is the intent of the PPRB that this manual be periodically updated. Feedback on its
content may be forwarded to Ms. Jean Schaffer at jhschaf@missi.ncsc.mil.

If you are viewing this document online, you should activate your web toolbar
(View, Toolbars, Web) to maximize the use of hyperlinks embedded throughout the
document.

Record of Release

1. Preliminary Release 1.0, dated September 2002
2. Release 2.0 dated 1 March 2004

 2

http://csrc.nist.gov/cc
mailto:jhschaf@missi.ncsc.mil

Table of Contents
Forward ... 2
Table of Contents.. 3

I. Introduction .. 5

II. Medium Robustness Definition .. 6

Instruction 1: Characterize Robustness Level... 6
Instruction 2: Requiring Hardware for Medium Robustness TOE 11
Instruction 3: Uses of Medium Robustness .. 12
Instruction 4: Assurance Requirements for Medium Robustness............................. 13

III. General Information Instructions... 15

Instruction 5: Content and outline of a Protection Profile .. 15
Instruction 6: Format for the title page of a Protection Profile................................. 16
Instruction 7: Assumptions ... 17
Instruction 8: Describing Threats.. 18
Instruction 9: Threats, Policies, Objectives and Requirements 20
Instruction 10: Specifying Requirements on the IT Environment 45
Instruction 11: Scheme Interpretations ... 47
Instruction 12: Rationale Section.. 48
Instruction 13: Conventions.. 51
Instruction 14: Glossary.. 53

IV. Minimum Common Criteria Security Functional Requirement
Instructions.. 58

A. Security Audit .. 58
Instruction 15: FAU_GEN.1-NIAP-0407 Audit data generation and
FAU_GEN.2-NIAP-410 User Identity Association ... 58
Instruction 16: FAU_SEL.1-NIAP-0407 Audit event selection 60
Instruction 17: FAU_STG.1-NIAP-0429 Audit event storage (Back to TOC) 60
Instruction 18: FAU_STG.3 Audit event storage ... 61
Instruction 19: FAU_STG.NIAP—0414 Site-Configurable Prevention of Audit Loss
... 61
Instruction 20: FAU_ARP.1 Security alarm, FAU_ARP_ACK_(EXP).1 Security
alarm acknowledgment, FAU_SAA.1-NIAP-407 Potential violation analysis........ 62

B. Cryptographic Support ... 65
Instruction 21: FCS_BCM Baseline Cryptographic Module, FCS_CKM
Cryptographic Key, Management, FCS_COP Cryptographic operation.................. 65

C. User Data Protection ... 66
Instruction 22: FDP_ACF Access control functions .. 66
Instruction 23: FDP_IFF.1 and .2 Information flow control functions..................... 66

D. Identification and Authentication... 69
Instruction 24: FIA_AFL.1-NIAP-0425 Authentication failures 69
Instruction 25: FIA_USB.1 User-subject binding .. 69

E. Protection of the TSF.. 70

 3

Instruction 26: FPT_RPL.1 Replay detection... 70
Instruction 27: FPT_RCV Trusted recovery... 70
Instruction 28: FPT_TST TSF self test... 71

F. Resource Utilization ... 74
Instruction 29: FRU_RSA.1 Resource allocation, FMT_MOF.1 Management of
functions in TSF, FMT_MTD.2 Management of TSF data...................................... 74

G. Security Management Roles .. 77
Instruction 30: FMT_SMR.2 Restriction on Security Roles 77

H. TOE Access.. 78
Instruction 31: FTA_TAB.1 TOE access banner.. 78

Required Text.. 78
Instruction 32: FTA_TSE.1 TOE session establishment .. 78

V. Explicit Common Criteria Security Assurance Requirements 80

Instruction 33: ADV_ARC_(EXP).1 Architectural design, ADV_INT_(EXP).1
Modular decomposition, DV_FSP_(EXP).1 Functional specification With Complete
Summary, ADV_HLD_(EXP).1 Security-enforcing high-level design,
ADV_LLD_(EXP).1 Security-enforcing low-level design 80

VI. Appendices .. 86

Appendix A Mapping of Medium Robustness Threats/Policies to Objectives 86
Appendix B: Mapping of Medium Robustness Objectives to Requirement............... 103
Appendix C: Sample PP Mapping Spreadsheet.. 123
Appendix D: Explanatory Material for Explicit Assurance Requirements 126
Appendix E: Protection Profile Cover Sheet Template .. 146

 4

I. Introduction
(Back to TOC)

NSA has produced a number of Common Criteria Protection Profiles in response to the
Office of the Secretary of Defense (OSD) request for procurement guidance on IA
technologies. This work is being performed to support new Department of Defense IA
system policies (i.e., DoDD 8500.1 and DODI 8500.2). In November 2001, NSA and the
National Institute of Standards and Technology agreed to work together to create a joint
set of profiles that would represent the two organizations’ collective interests.

With many profiles being developed by numerous organizations within NIST and NSA, it
has become apparent that in order for the organizations to lead in this area, IA Protection
Profile efforts need to be closely coordinated to facilitate representing a consistent
strategic view to our customer base. Such consistency is important to create and maintain
our customer’s confidence in our products and guidance.

To this end, a corporate PP consistency-working group, called the PP Review Board
(PPRB), has been formed to review all proposed PPs and work with the PP authors to
offer comments to make them as consistent as possible. The first activity of this group
was to review a number of Protection Profiles and offer comments to the authors on areas
that should be addressed to improve consistency. In the context of this first review, a
number of consistent items for Medium Robustness Profiles have been captured and
recorded in this document that will offer Medium PP authors guidance on how to make
U.S. Government PPs more consistent.

The document presents instructions for a PP author. The instructions are presented for all
PP authors to consider and either include the recommendation in their PP or justify why
the recommendation does not apply to the profile. This methodology will ensure that all
PP authors address the minimal security considerations or perform an analysis as to why
they are not addressed. Each instruction is self-contained and offers either text for
specific sections of a PP or specific common criteria functional/security requirements so
that all PP are consistent in addressing minimum-security concerns for Medium
Robustness PP.

It should be noted that the final authority for the content of the PP is the PP owner.
However, the profile must be consistent with other profiles of the same robustness thus
the author should review other profile at the same robustness level. The author should
also ensure that the functional requirements are consistent with the technology and may
want to consult with other experts in the technology area.

As PP reviews continue, this guidance will be updated to offer new instructions as they
become available.

 5

II. Medium Robustness Definition

Instruction 1: Characterize Robustness Level
(Back to TOC)

All PPs should contain a discussion characterizing the level of robustness TOEs
compliant with the PP can achieve, thus allowing a user of the PP to determine if a
compliant TOE is appropriate for the environment in which they intend to use the TOE.
The PPRB created a discussion (included below) that provides a definition of factors for
TOE environments as well as an explanation of how a given level of robustness is
categorized.

The intent of these new sections is to have system integrator and product vendors clearly
understand the concept of robustness, what products or systems designed to meet a
specific robustness level are useful for, and the suitability of a level of robustness for
their application.

DODI 8500.2 February 6, 2003 says, “Robustness describes the strength of mechanism
(e.g., the strength of a cryptographic algorithm) and assurance properties (i.e., confidence
measures taken to ensure proper mechanism implementation) for an IA solution. The
more robust a particular component is, the greater the level of confidence in the
protection provided to the security services it supports. The three levels of robustness are
discussed in detail in Chapter 4 in the Information Assurance Technical Framework
(IATF), reference (k). It is also possible to use non-technical measures to achieve the
equivalent of a level of robustness. For example, physical isolation and protection of a
network can be used to provide confidentiality. In these cases, the technical solution
requirement may be reduced or eliminated.”

Text:
Below is text (blue text) for inclusion as Appendix D of the Medium Robustness
Protection Profile.

General Environmental Characterization

In trying to specify the environments in which TOEs with various levels of robustness are
appropriate, it is useful to first discuss the two defining factors that characterize that
environment: value of the resources and authorization of the entities to those
resources.

In general terms, the environment for a TOE can be characterized by the authorization (or
lack of authorization) the least trustworthy entity has with respect to the highest value of
TOE resources (i.e. the TOE itself and all of the data processed by the TOE).

 6

Note that there are an infinite number of combinations of entity authorization and value
of resources; this conceptually “makes sense” because there are an infinite number of
potential environments, depending on how the resources are valued by the organization,
and the variety of authorizations the organization defines for the associated entities. In
the next section 1.2.2, these two environmental factors will be related to the robustness
required for selection of an appropriate TOE.

VALUE OF RESOURCES

Value of the resources associated with the TOE includes the data being processed or used
by the TOE, as well as the TOE itself (for example, a real-time control processor).
“Value” is assigned by the using organization. For example, in the DoD low-value data
might be equivalent to data marked “FOUO”, while high-value data may be those
classified Top Secret. In a commercial enterprise, low-value data might be the internal
organizational structure as captured in the corporate on-line phone book, while high-
value data might be corporate research results for the next generation product. Note that
when considering the value of the data one must also consider the value of data or
resources that are accessible through exploitation of the TOE. For example, a firewall
may have “low value” data itself, but it might protect an enclave with high value data. If
the firewall was being depended upon to protect the high value data, then it must be
treated as a high-value-data TOE.

AUTHORIZATION OF ENTITIES

Authorization that entities (users, administrators, other IT systems) have with respect to
the TOE (and thus the resources of that TOE, including the TOE itself) is an abstract
concept reflecting a combination of the trustworthiness of an entity and the access and
privileges granted to that entity with respect to the resources of the TOE. For instance,
entities that have total authorization to all data on the TOE are at one end of this
spectrum; these entities may have privileges that allow them to read, write, and modify
anything on the TOE, including all TSF data. Entities at the other end of the spectrum
are those that are authorized to few or no TOE resources. For example, in the case of a
router, non-administrative entities may have their packets routed by the TOE, but that is
the extent of their authorization to the TOE's resources. In the case of an OS, an entity
may not be allowed to log on to the TOE at all (that is, they are not valid users listed in
the OS’s user database).

It is important to note that authorization does not refer to the access that the entities
actually have to the TOE or its data. For example, suppose the owner of the system
determines that no one other than employees was authorized to certain data on a TOE, yet
they connect the TOE to the Internet. There are millions of entities that are not
authorized to the data (because they are not employees), but they actually have
connectivity to the TOE through the Internet and thus can attempt to access the TOE and
its associated resources.

 7

Entities are characterized according to the value of resources to which they are
authorized; the extent of their authorization is implicitly a measure of how trustworthy
the entity is with respect to compromise of the data (that is, compromise of any of the
applicable security policies; e.g., confidentiality, integrity, availability). In other words,
in this model the greater the extent of an entity's authorization, the more trustworthy
(with respect to applicable policies) that entity is.

SELECTION OF APPROPRIATE ROBUSTNESS LEVELS

Robustness is a characteristic of a TOE defining how well it can protect itself and its
resources; a more robust TOE is better able to protect itself. This section relates the
defining factors of IT environments, authorization, and value of resources to the selection
of appropriate robustness levels.

When assessing any environment with respect to Information Assurance the critical point
to consider is the likelihood of an attempted security policy compromise, which was
characterized in the previous section in terms of entity authorization and resource value.
As previously mentioned, robustness is a characteristic of a TOE that reflects the extent
to which a TOE can protect itself and its resources. It follows that as the likelihood of an
attempted resource compromise increases, the robustness of an appropriate TOE should
also increase.

It is critical to note that several combinations of the environmental factors will result in
environments in which the likelihood of an attempted security policy compromise is
similar. Consider the following two cases:

The first case is a TOE that processes only low-value data. Although the organization
has stated that only its employees are authorized to log on to the system and access the
data, the system is connected to the Internet to allow authorized employees to access the
system from home. In this case, the least trusted entities would be unauthorized entities
(e.g. non-employees) exposed to the TOE because of the Internet connectivity. However,
since only low-value data are being processed, the likelihood that unauthorized entities
would find it worth their while to attempt to compromise the data on the system is low
and selection of a basic robustness TOE would be appropriate.

The second case is a TOE that processes high-value (e.g., classified) information. The
organization requires that the TOE be stand-alone, and that every user with physical and
logical access to the TOE undergo an investigation so that they are authorized to the
highest value data on the TOE. Because of the extensive checks done during this
investigation, the organization is assured that only highly trusted users are authorized to
use the TOE. In this case, even though high value information is being processed, it is
unlikely that a compromise of that data will be attempted because of the authorization
and trustworthiness of the users and once again, selection of a basic robustness TOE
would be appropriate.

 8

The preceding examples demonstrated that it is possible for radically different
combinations of entity authorization/resource values to result in a similar likelihood of an
attempted compromise. As mentioned earlier, the robustness of a system is an indication
of the protection being provided to counter compromise attempts. Therefore, a basic
robustness system should be sufficient to counter compromise attempts where the
likelihood of an attempted compromise is low. The following chart depicts the
“universe” of environments characterized by the two factors discussed in the previous
section: on one axis is the authorization defined for the least trustworthy entity, and on
the other axis is the highest value of resources associated with the TOE.

As depicted in the following figure, the robustness of the TOEs required in each
environment steadily increases as one goes from the upper left of the chart to the lower
right; this corresponds to the need to counter increasingly likely attack attempts by the
least trustworthy entities in the environment. Note that the shading of the chart is
intended to reflect- the notion that different environments engender similar levels of
“likelihood of attempted compromise”, signified by a similar color. Further, the
delineations between such environments are not stark, but rather are finely grained and
gradual.

While it would be possible to create many different "levels of robustness" at small
intervals along the “Increasing Robustness Requirements” line to counter the increasing
likelihood of attempted compromise due to those attacks, it would not be practical nor
particularly useful. Instead, in order to implement the robustness strategy where there are
only three robustness levels: Basic, Medium, and High, the graph is divided into three
sections, with each section corresponding to a set of environments where the likelihood
of attempted compromise is roughly similar. This is graphically depicted in the following
chart.

 9Highest Value of Resources
Associated with the TOE

Low
Value

High
Value

Not
Authorized

Partially
Authorized

Fully
Authorized

A
ut

ho
riz

at
io

n
D

ef
in

ed
 fo

r
Le

as
t T

ru
st

w
or

th
y

En
tit

y

Increasing Robustness Requirements

In this second representation of environments and the robustness plane below, the “dots”
represent given instantiations of environments; like-colored dots define environments
with a similar likelihood of attempted compromise. Correspondingly, a TOE with a
given robustness should provide sufficient protection for environments characterized by
like-colored dots. In choosing the appropriateness of a given robustness level TOE PP
for an environment, then, the user must first consider the lowest authorization for an
entity as well as the highest value of the resources in that environment. This should
result in a “point” in the chart above, corresponding to the likelihood that that entity will
attempt to compromise the most valuable resource in the environment. The appropriate
robustness level for the specified TOE to counter this likelihood can then be chosen.

The difficult part of this activity is differentiating the authorization of various
entities, as well as determining the relative values of resources; (e.g., what
constitutes “low value” data vs. “medium value” data). Because every
organization will be different, a rigorous definition is not possible. In <PP
Section>1 of this PP, the targeted threat level for a medium robustness TOE is

characterized. This information is provided to help organizations using this PP -
ensure that the functional requirements specified by this medium robustness PP
are appropriate for their intended application of a compliant TOE.

Highest Value of Resources
Associated with the TOE

Low
Value

High
Value

Not
Authorized

Partially
Authorized

Fully
Authorized

A
ut

ho
riz

at
io

n
D

ef
in

ed
 fo

r
Le

as
t T

ru
st

w
or

th
y

En
tit

y Low Likelihood
Basic Robustness

Medium Likelihood
Medium Robustness

High Likelihood
High Robustness

 10

1 The PP author should insert the section of the PP that describes the TOE Environment.

Instruction 2: Requiring Hardware for Medium Robustness TOE
(Back to TOC)

Experience has shown that many security compromises occur when products are
“composed”; that is, individual products that may be, by themselves, trustworthy, yield a
vulnerable result when they are integrated together as a composite product. In order to
provide the assurance necessary for products to be integrated into medium robustness
environments, it is generally necessary to require that certain components of a product be
evaluated as part of a TOE to give high confidence that the product is tamperproof and
that the security policy is always invoked (as opposed to allowing an evaluation sponsor
to remove the component from the TOE and relegate it to the environment). A particular
component of note for all medium robustness products is the product’s hardware.
Because it is important for medium robustness products to show, through analysis and
testing of an evaluation, that they are truly tamperproof and always invoke the correct
policy, a medium robustness product’s hardware should almost always be specified as
part of the TOE that is to be compliant to a medium robustness PP. This is done through
the inclusion of FPT_SEP as a requirement for the TOE. In a medium robustness TOE,
this requirement cannot be met by the solely or partially by the IT Environment, and it is
highly unlikely that this requirement can be met without including the underlying
hardware (that supports the security functionality provided by the software components
of the TOE).

It should be noted that inclusion of the hardware within the TOE boundary
does not mean that the evidence about this hardware must necessarily be to
the same degree of detail as the other portions of the TOE. The level of detail
of design documentation and the implementation representation is dependent
upon a components role in security policy enforcement (this applies to
software components as well). For example, while an operating system TOE
relies upon its underlying hardware for the enforcement of the TSP, the role
of the hardware in this enforcement is usually only correct operation;
therefore, the required details concerning the hardware would be less
rigorous than the details required for the operating system. On the other
hand, a network interface card (NIC) in a firewall TOE may play an
important role in enforcing the firewall’s information flow policy. A NIC, for
performance reasons, may perform functions that impact the processing of
network packets (e.g., fast FTP transfers which do not require each network
packet to be processed by the TOE’s network stack). There must be enough
information provided for the hardware and its interaction with the TOE’s
software to determine the security relevance of the hardware (e.g., does it
simply have to work correctly, does it have the ability to bypass policy
enforcement, what is the untrusted user interface).

 11

Instruction 3: Uses of Medium Robustness
(Back to TOC)

The PPRB recognized the importance of a clear understanding of the TSF specified in
terms of applicable assumptions, threats and policies which are related to or appropriate
for a particular robustness levels.

Therefore, it is required that PP authors include in section 3 of all PPs a discussion
relating the specified TOE robustness level to the formation of applicable assumptions,
threats and policies of the TOE security environment (TSE).

 Text for Medium Robustness PPs:

A medium robustness TOE is considered sufficient protection for environments where
the likelihood of an attempted compromise is medium. This implies that the motivation
of the threat agents will be average in environments that are suitable for TOEs of medium
robustness. Note that while highly sophisticated threat agents will not be motivated to
use great expertise or extensive resources in an environment where medium robustness is
suitable, the wide spread availability of exploits and hacking tools available on the
Internet provide less sophisticated threat agents with expertise (and indirectly resources)
that they otherwise might not have access to.

The medium motivation of the threat agents can be reflected in a variety of ways. One
possibility is that the value of the data processed or protected by the TOE will be only
medium, thus providing little motivation of even a totally unauthorized entity to attempt
to compromise the data. Another possibility, (where higher value data is processed or
protected by the TOE) is that the procuring organization will provide environmental
controls (that is, controls that the TOE itself does not enforce) in order to ensure that
threat agents that have generally high motivation levels (because of the value of the data)
cannot logically or physically access the TOE (e.g., all users are “vetted” to help ensure
their trustworthiness, and connectivity to the TOE is restricted).

 12

Instruction 4: Assurance Requirements for Medium Robustness
(Back to TOC)

A TOE that has been evaluated against the requirements of a Medium Robustness PP has
several differences from one that has been evaluated against a Basic Robustness PP. The
following list is some areas where Medium and Basic Robustness profiles differ:

• Roles and remote administration (FMT_SMR)
• Hardware is included in the TOE
• Toe access requirements (FTA requirements)
• Potential violation analysis (FAU_SAA requirements)
• Assurance requirements

The Security Assurance Requirements drawn or derived from the Common Criteria for
Information Technology Security Evaluation, Part 3, dated Aug. 99, Version 2.1 of
CCIB-99-031 which collectively define “Medium Robustness” include the following:

The assurance requirements were originally based upon Evaluated Assurance Level
(EAL) 4. In order to gain the necessary level of assurance for medium robustness
environments explicit requirements have been created for some families in the ADV class
both to remove ambiguity in the existing ADV requirements as well as to provide greater
assurance than that associated with EAL4. The set of assurance components are noted in
the following table. Those labeled with an EXP suffix are further described in various
instructions in this document. Requirements bolded that are not explicit requirements are
those that have been selected to augment the CC EAL4 for medium robustness protection
profiles.

Family Assurance
Components

Assurance Components
Description

ACM_AUT.1 Partial CM automation

ACM_CAP.4 Generation support and
acceptance procedures

Configuration Management

ACM_SCP.2 Problem tracking CM coverage

ADO_DEL.2 Detection of modification Delivery and
Operation ADO_IGS.1 Installation, generation, and start-up

procedures

ADV_FSP_(EXP).1 Functional specification With Complete
Summary, see Instruction 33:3

Development

ADV_HLD_(EXP).1 Security-enforcing high-level design, see
Instruction 33:4

 13

Family Assurance
Components

Assurance Components
Description

ADV_ARC_(EXP).1 Architectural Design with Justification, see
Instruction 33:1

ADV_INT_(EXP).1 Modular decomposition, see Instruction
33:2

ADV_IMP.2 Implementation of the TSF

ADV_LLD_(EXP).1 Security-enforcing low-level design, see
Instruction 33:5

ADV_RCR.1 Informal correspondence demonstration

ADV_SPM.1 Informal TOE security policy model

AGD_ADM.1 Administrator guidance Guidance
Documents AGD_USR.1 User guidance

ALC_DVS.1 Identification of security measures

ALC_FLR.2 Flaw Reporting Procedures

ALC_LCD.1 Developer defined life-cycle model

Life Cycle Support

ALC_TAT.1 Well-defined development tools

ATE_COV.2 Analysis of coverage

ATE_DPT.2 Testing: low-level design

ATE_FUN.1 Functional testing

Tests

ATE_IND.2 Independent testing - sample

AVA_CCA_(EXP).2 Systematic cryptographic module covert
channel analysis

AVA_MSU.2 Validation of analysis

AVA_SOF.1 Strength of TOE security function evaluation

Vulnerability
Assessment

AVA_VLA.3 Moderately resistance

 14

III. General Information Instructions
(Back to TOC)

Instruction 5: Content and outline of a Protection Profile
(Back to TOC)

Title page

The Title Page will include the title, version and date of the protection profile.
See Instruction 6 and Appendix E for details about the title page

1. Introduction to the Protection Profile
1.1 PP Identification
1.2 PP Overview of the protection profile

1.2.1 General Environmental Characterization
1.3 Conventions – See instruction 13
1.4 Glossary of terms – See instruction 14
1.5 Document Organization

2. TOE Description
2.1 Product type
2.2 Toe Definition
2.3 General TOE functionality
2.4 TOE Operational environment

3. Security Environment
3.1 Threats – See instruction 8
3.2 Organizational Security Policies – See instruction 9
3.3 Assumptions – See instruction 7

4. Security Objectives
4.1 TOE Security Objectives – See instruction 9
4.2 Environment Security Objectives - See instruction 10

5. IT Security Requirements
5.1 TOE Security Functional Requirements – See instructions 15-33
5.2 Security Requirements for the IT Environment - See instruction 10
5.3 TOE Security Assurance Requirements – See instruction 4

6. Rationale
6.1 Rationale foe TOE Security Objectives - See Appendix A
6.2 Rationale for the security objectives and security functional requirements for the

environment
6.3 Rationale for TOE Security Requirements - See Appendix B
6.4 Rationale for assurance requirements
6.5 Rational for strength of function claim
6.6 Rational for satisfying all dependencies
6.7 Rational for explicit requirements
5.8 Rationale for not addressing consistency instructions

7. Appendices:
A. References
B. Glossary - See instruction 14
C. Acronyms
D. Robustness Environment Characterization – See instruction 1

 15

Instruction 6: Format for the title page of a Protection Profile
(Back to TOC)

In general, whole numbers (starting with 1) will be reserved for NIAP validated profiles,
and decimal numbers (starting with 0.1) will be used for draft profiles, which are released
for review outside of the immediate development team. The team may use finer
granularity for its internal coordination and tracking purposes

NIAP Validated profile will be whole numbers starting with 1 and increased by 1 for
each new revision that get NIAP validated. Examples will be “Version 1”, “Version 3”,
etc not “Version 1.0” or “Version 3.0.”

Draft profiles will start decimal numbers starting with 0.1 and increased by .1 for each
new draft released outside of the development team. Examples will be “Version 0.1”, or
“Version 0.3”. Drafts are documents that have been written and are under going various
stages of review. Once a draft is written and released for the first review, it will be
labeled “Version 0.1”. If no changes are required during a review the version number
will remain the same, however if it is determined that changes are required the draft
version number will be increase by .1 indicating the changes were made and the review
process continues (even if it is back to the same review step).

When it is required to update a NIAP validated Protection Profile, the updated drafts will
be numbered “Version 1.1”, or “Version 1.2”, etc. Once the NIAP validates the new
draft, it will get a new NIAP validated whole number 2, 3, etc.

In addition to the version number, the profile will contain a title of the profile and the
date of the proposed version. The format of the date will be yyyymmdd. The title of the
document should be provided in the following format "U.S. Government Protection
Profile for (technology) used in (Robustness Level) Environments." Since we are now in
a joint NSA/NIST process all profile will be U.S. Government and not DoD specific.

See appendix E for the template that shall be used by the Profile Author. The author shall
fill in the technology area, date, version number and use cover sheet for their Profile.

 16

Instruction 7: Assumptions
(Back to TOC)

Assumptions (included in Section 3 of the PP) are defined as non-IT items that the TOE
itself cannot implement or enforce. Assumptions should not be used to specify functional
requirements on the IT environment; that should be done with a threat or policy
statement. For instance, a valid assumption might be “All administrators will be trained
in the secure administration of the TOE.” The TOE has no control over whether the
administrators are trained or not, so this is a valid assumption. An invalid assumption
might be “All users are authenticated before taking any action on the TOE.” Since the
TOE (or IT environment) could implement this, it is not a valid assumption.

In addition, it is useful to readers of the PP to list assumptions necessary for the TOE to
work correctly.
From the initial review of several PP, the PPRB identified a few assumptions that seem to
be frequently specified by PP authors. The text below proposes consistent names and
descriptions for these commonly included assumptions. Note that not all assumptions
will be valid for all PPs. PP authors need to determine if whether specific assumptions
apply to the TOE being described in the PP.

 Text

A.NO_GENERAL_PURPOSE2

The administrator ensures there are no general-purpose
computing or storage repository capabilities (e.g.,
compilers, editors, or user applications) available on the
TOE.

A.PHYSICAL It is assumed that the IT environment provides the TOE
with appropriate physical security, commensurate with the
value of the IT assets protected by the TOE.

2 This assumption should be used only on “server”-type TOEs that should have no
general-purpose functionality available to untrusted users. It makes sense, for example,
for a firewall or a router, but does not make sense for an operating system or someone’s
desktop computer.

 17

Instruction 8: Describing Threats
(Back to TOC)

Threats (included in Section 3 of the PP) are stated as risks to security that the TOE will
mitigate or eliminate. Therefore, threat statements must not include situations in which
the TOE plays no part (i.e., those that are completely addressed by the environment),
threats the TOE cannot recognize (e.g., the TOE may be incorrectly configured), or
threats to the TOE itself that would not exist without the TOE (e.g., the TOE may contain
Trojan horses).

The PPRB recognized the importance of a clear understanding of the basis for specifying
appropriate threats for a given robustness level and therefore, requires the inclusion in
section 3 of all PPs, a discussion that will establish the context of how to formulate
applicable threats for a given robustness level. The following text should be included in
all PPs to explain to PP authors and reviewers, how the itemized threats as described in
the TSE section were formulated.

Text for Describing the Threat Environment

Threat Agent Characterization

In addition to helping define the robustness appropriate for a given environment, the
threat agent is a key component of the formal threat statements in the PP. Threat agents
are typically characterized by a number of factors such as expertise, available resources,
and motivation. Because each robustness level is associated with a variety of
environments, there are corresponding varieties of specific threat agents (that is, the
threat agents will have different combinations of motivation, expertise, and available
resources) that are valid for a given level of robustness. The following discussion
explores the impact of each of the threat agent factors on the ability of the TOE to protect
itself (that is, the robustness required of the TOE).

The motivation of the threat agent seems to be the primary factor of the three
characteristics of threat agents outlined above. Given the same expertise and set of
resources, an attacker with low motivation may not be as likely to attempt to compromise
the TOE. For example, an entity with no authorization to low value data none-the-less
has low motivation to compromise the data; thus a basic robustness TOE should offer
sufficient protection. Likewise, the fully authorized user with access to highly valued
data similarly has low motivation to attempt to compromise the data, thus again a basic
robustness TOE should be sufficient.

Unlike the motivation factor, however, the same can't be said for expertise. A threat
agent with low motivation and low expertise is just as unlikely to attempt to compromise
a TOE as an attacker with low motivation and high expertise; this is because the attacker
with high expertise does not have the motivation to compromise the TOE even though
they may have the expertise to do so. The same argument can be made for resources as
well.

 18

Therefore, when assessing the robustness needed for a TOE, the motivation of threat
agents should be considered a “high water mark”. That is, the robustness of the TOE
should increase as the motivation of the threat agents increases.

Having said that, the relationship between expertise and resources is somewhat more
complicated. In general, if resources include factors other than just raw processing power
(money, for example), then expertise should be considered to be at the same “level” (low,
medium, high, for example) as the resources because money can be used to purchase
expertise. Expertise in some ways is different, because expertise in and of itself does not
automatically procure resources. However, it may be plausible that someone with high
expertise can procure the requisite amount of resources by virtue of that expertise (for
example, hacking into a bank to obtain money in order to obtain other resources).
It may not make sense to distinguish between these two factors; in general, it appears that
the only effect these may have is to lower the robustness requirements. For instance,
suppose an organization determines that, because of the value of the resources processed
by the TOE and the trustworthiness of the entities that can access the TOE, the
motivation of those entities would be “medium”. This normally indicates that a medium
robustness TOE would be required because the likelihood that those entities would
attempt to compromise the TOE to get at those resources is in the “medium” range.
However, now suppose the organization determines that the entities (threat agents) that
are the least trustworthy have no resources and are unsophisticated. In this case, even
though those threat agents have medium motivation, the likelihood that they would be
able to mount a successful attack on the TOE would be low, and so a basic robustness
TOE may be sufficient to counter that threat.

It should be clear from this discussion that there is no “cookbook” or mathematical
answer to the question of how to specify exactly the level of motivation, the amount of
resources, and the degree of expertise for a threat agent so that the robustness level of
TOEs facing those threat agents can be rigorously determined. However, an organization
can look at combinations of these factors and obtain a good understanding of the
likelihood of a successful attack being attempted against the TOE. Each organization
wishing to procure a TOE must look at the threat factors applicable to their environment;
discuss the issues raised in the previous paragraph; consult with appropriate accreditation
authorities for input; and document their decision regarding likely threat agents in their
environment.

The important general points we can make are:

• The motivation for the threat agent defines the upper bound with respect to the
level of robustness required for the TOE

• A threat agent’s expertise and/or resources that is “lower” than the threat agent’s
motivation (e.g., a threat agent with high motivation but little expertise and few
resources) may lessen the robustness requirements for the TOE (see next point,
however).

• The availability of attacks associated with high expertise and/or high availability of resources (for
example, via the Internet or “hacker chat rooms”) introduces a problem when trying to define the
expertise of, or resources available to, a threat agent.

 19

Instruction 9: Threats, Policies, Objectives and Requirements
(Back to TOC)
Medium Robustness PPs should contain relevant threats, policies and associated
objectives and requirements for the Medium Robustness level, and use a consistent
naming convention and description. The PPRB has formulated a list of threats, policies,
and objectives that must be considered for all Medium Robustness TOEs, and a
methodology for instantiating these in a PP. Each threat or policy has one or more
objectives that address the stated threat or policy, and each objective in turn has
requirement components associated with it that address the stated objective and mitigate
or implement the threat or policy.

Unfortunately, cutting-and-pasting of all of these items without careful consideration is
not appropriate. Reasons include:

• a threat may not apply to a technology;

• a threat or policy may be applicable but may need to be tailored in a technology-
specific way; or

• although the threat may be applicable for the technology, the way in which it is
countered, or the resources to which it applies, may be different depending on the
technology. This might necessitate a change in the objective and/or requirement
components; or

• some technologies may have threats that are not provided in this guidance that need to
be countered, or policies that need to be met. For these additional threats or policies,
additional objectives may need to be formulated, and requirements added.

Additionally, for most threat/objective/requirement mappings the rationale (how a set of
objectives satisfies a threat or policy, and how a set of requirement components meets an
objective) will have to be written “from scratch” to reflect the unique aspects of the
technology. Some rational is included in this document for reference and possible use in
Medium robustness PPs. Care should be taken to review it to ensure its validity before it
is included.

PP Creation Methodology Overview
In order to enhance consistency in writing PPs, the PPRB has formulated a methodology
that can be used by PP authors in creating a substantial portion of the PP. There are
several things to note about this methodology:

• This methodology has been used to produce quality PPs that are consistent with the
PPRB guidance given in Table 7, Applicable Threats, Policies, Objectives and
Requirements for Medium Robustness TOEs. This does not mean that other
methodologies cannot be used. If the PP authors have a different approach that will
yield a PP that is consistent with the PPRB guidance, they are welcome to use it.

• While the PP writing team may not use the methodology described below, they
should still use the threats, objectives, and requirements listed in Table 7 to ensure
consistency with other Medium Robustness TOEs.

• The following methodology is for the creation of significant parts of the PP.

 20

However, additional work will have to be done by the PP writing team to complete
the document.

It is critical in writing a PP that the requirements support the objectives and either
mitigate the threats, or implement the policies stated in the PP. The CC framework calls
for this to be documented in “rationale” sections: one detailing how the objectives (and
associated requirements) mitigate a threat or implement a policy, and one detailing how
the requirements implement the objectives (see Instruction 12 for more information on
writing the Rationale sections). It is important to note that because the threat/policy to
objective rationale section has to detail how the applicable requirements from the
objective mitigate the threat (or implement the policy), it is important for the PP authors
to “keep track” of how the threats/polices map to objectives, and what requirements from
those objectives relate to the threat/policies.

The PPRB has found that using a spreadsheet to keep track of this information is helpful.
Although such a spreadsheet is not part of the PP itself, it can be a useful tool for PP
authors in tracking the association between threats/policies, objectives, and requirements.
In Appendix C of this guidance a spreadsheet has been prepared that has been “pre-
loaded” with the information in Table 7. The PP authors can update this spreadsheet as
they are working through the steps in the methodology so that when they are ready to
write the rationale sections, they can ensure that they have accurately captured the
relationship between all three “levels” in the requirements decomposition (those three
levels being: threats/policies, objectives, and requirements).

Using Table 7: Applicable Threats, Policies, Objectives and
Requirements for Medium Robustness TOEs
Table 7 consists of three columns. The first column indicates the threats and policies that
the PP author must include in their Medium Robustness PP. Each of the threats is
mitigated by one or more objectives; likewise, each of the policies is implement by one or
more objectives. For each threat/policy, the objective or objectives that
mitigate/implement it are listed in the second column. Note that the same objective may
be listed more than once in this second column, depending on how many of the
threats/policies it applies to.

Each objective is implemented by one or more requirements (“components” in CC
terminology). While multiple requirement components may be used to implement an
entire objective, in some cases only a subset of those requirement components are used to
counter a specific threat or implement a specific policy. This is reflected in the table by
listing in column 3 only those requirements that apply to the particular threat or policy in
column 1.

For instance, from Table 7 the PPRB suggests that O.ROBUST_TOE_ACCESS be
implemented by FIA_AFL.1-NIAP-0425, FIA_ATD.1, FIA_UID, FIA_UAU,
FTA_SSL.1, FTA_SSL.2, FTA_SSL.3, and AVA_SOF. O.ROBUST_TOE_ACCESS
partially mitigates the T.MASQUERADE threat, fully mitigates the
T.UNATTENDED_SESSION threat, and partially implements the
P.ACCOUNTABILITY policy. However, not all of the requirements associated with

 21

O.ROBUST_TOE_ACCESS are applicable to all of the threats and policies that
O.ROBUST_TOE_ACCESS is associated with (e.g., only the FIA_UID component of
O.ROBUST_TOE_ACCESS is used to implement P.ACCOUNTABILITY). This is why
there may be different sets of requirements listed in column 3 for the same objective.

The last column of Table 7 contains notes on the information in that row. It may draw
attention to the threat/policy, the objective, or the requirement. Where the PPRB is
recommending specific text (e.g., an assignment, selection or refinement) be used for a
requirement, it may refer the PP authors to another Instruction that contains the text the
PP authors should use.

The PPRB suggests that the PP authors make a “working copy” of Table 7 so that if
threats/policies are added, objectives added or changed, or when requirements are added
or tailored, a centralized record can be maintained by modifying the copy of Table 7
appropriately. This will make it easier to create the CC-mandated tables that will appear
in the PP in later steps in the methodology below. It is important to note that the only
difference between this working copy of Table 7 and the Excel spreadsheet mentioned
above and contained in Appendix C is that the Excel spreadsheet does not have the text
associated with the threats and objectives, so that it can be more easily be viewed “all at
once”.

PP Creation Methodology
The methodology for incorporating the information in Table 7 into a PP is described in
the following steps. The overall approach is for the PP author to start at the beginning of
Table 7 and address the first threat, then the objectives that apply to that threat, and
finally the components from those objectives that mitigate the threat. The PP authors
then address the next threat-objective-component “thread” until all threats and policies
have been addressed.3 After the PP authors ensure that the technology-specific details are
covered, the PP material (various tables) is created and the rationale written. The details
of this process is as follows:

1. The PP authors select the first (or next, for subsequent iterations) threat or
policy provided in the Table 7. Applicable Threats, Policies, Objectives and
Requirements for Medium Robustness TOEs. They should review the
threat/policy statement to ensure its applicability to the subject PP. Most
threats/policies will apply directly to the technology being specified in the PP;
if there are technology-specific aspects to a threat the PP authors should
capture these aspects in the threat-to-objective rationale (see step 11) rather
than try to create a new threat. Although a threat/policy may have to be
tailored for a specific technology, this should be rare. Most threats/policies in
Table 7 are sufficient so that no tailoring is necessary.

2. If the threat/policy is not applicable to the technology, a short justification will
need to be included in Table 2, Medium Robustness Threats Not Applicable to
the TOE. See Step 9 for placement of this table. It should be noted that

3 While it is certainly feasible to perform the activity by first doing all of the threats/policies, then doing all
of the objectives, and then doing all of the requirement components, the methodology described above
appears to reduce iteration on the part of the PP authors.

 22

placing a threat/policy from Table 7 into this category should be rare. The PP
authors must be careful to distinguish threats that really don’t apply because
of the nature of the technology from threats that can’t be countered because
current instantiations of the technology do not include the required features.

3. If the threat/policy is applicable, then the objectives associated with the
threat/policy in the table should be examined for validity. Note that the same
objective may apply to multiple threats/policies, and thus may appear multiple
times in the table (for example, O.RESIDUAL_INFORMATION is associated
with T.AUDIT_COMPROMISE, T.RESIDUAL_DATA, and
T.MALICIOUS_TSF_COMPROMISE). This means the PP authors will have
to ensure that any text added or modified for an objective is applicable for all
threats/policies to which that objective applies. In some cases, new objectives
may need to be created; if so, the PP authors should ensure that the objective
statements are consistent (with respect to format and level of detail) with those
in the table.

4. Finally, the requirements components associated with each objective for the
given threat/policy should be examined. The last column of Table 7 makes
reference to some Instructions containing actual requirement component text
(for example FAU_GEN.1-NIAP-407/0410 and Instruction 15 of this
document); the PPRB feels that this text should be included in the PP
verbatim unless there is good justification for not doing so. Such text includes
assignments, selections, etc. that is important to keep intact from a consistency
perspective across all Medium Robustness PPs. In reviewing a Medium
Robustness PP the PPRB will note requirements that were not included
verbatim, and will ask the PP authors for a rationale for omitting the
recommended text. The PP authors should therefore ensure that when the
decision is made to omit the recommend requirement text, a justification for
this action is written and submitted with the PP for review by the PPRB.

The PP authors should check to ensure that, for each requirement component
chosen, the requirement component (1) applies to the objective and (2)
mitigates some aspect of the threat/policy. The PP authors may want to make
notes for the rationale section while they are doing this (see steps x and y,
below). This step will be the most time consuming, and the PP authors may
find they need to create new objectives, new threats/policies, etc. in the course
of selecting components.

5. The PP authors then repeat steps 1 through 4 for each of the threats and
policies listed in Table 7.

6. After the PP authors have gone through all of the threats and policies in the
table, they need to consider if there are any technology-specific threats that
need to be met by compliant TOEs. When considering such threats, the PP
authors should consider whether the threat is appropriate for the Medium
Robustness environment and whether the threat may be covered by an existing
threat or policy. If the PP authors identify technology-specific aspects of an
existing Medium Robustness threat, the PP authors should ensure that those

 23

aspects are captured in the threat-to-objective rationale statement (see step 11)
as opposed to creating new technology-specific threats. For each new threat
that is created, the objectives that will counter that threat should be either
picked from existing objectives or (more likely) created by the PP authors,
and components picked that meet the objective and mitigate the threat. The
policies identified in Table 7 should be sufficient for all Medium Robustness
TOEs. It is generally not necessary to create additional technology-specific
policies because the requirements that would be derived from such policies
would already be covered by existing threats and policies.

7. After performing the above steps, the PP authors should review the
components to ensure that all desired functionality is included. If it is
determined that some desired functionality is omitted, the PP authors should
review the threat and policy statements to determine if the functionality is
needed to counter one of the existing threats or implement one of the existing
policies. In the unlikely event that no applicable threat or policy is found, the
PP authors should devise a threat or policy statement (and associated
objective) to which the functionality would apply, and then choose the
appropriate components from the CC to require the functionality.

At the completion of step 7 all of the threats, policies, objectives, and
requirements for the technology should be identified. If the PP authors have
been modifying the working copy of Table 7 with updates to the threats,
policies, objectives, and requirement component identifiers, the modified table
will aid the team in their next tasks: creation of the threat, policy, and
objective tables, and creation of the rationale.

8. The PP writing team should next construct a threat table (like Table 1 below)
for the TOE Environment section of the PP that details all of the threats that
apply to the TOE. The table should consist of each threat label, followed by
the threat text. The threats should be in alphabetical order. A sample format
follows:

Table 1 Medium Robustness Applicable Threats

Threat Name Threat Definition

T.AUDIT_COMPROMISE A malicious user or process may view
audit records, cause audit records to be
lost or modified, or prevent future audit
records from being recorded, thus
masking a user’s action.

A similarly formatted table should be created for the policies and included in
the TOE environment section.

The PP authors should also introduce the threat table with the following text:

 24

The following threats are addressed by the TOE and should be read in
conjunction with the threat rationale section. There are other threats that the
TOE does not address (e.g., malicious developer inserting a backdoor into the
TOE) and it is up to a site to determine how these types of threats apply to its
environment.

9. For those threats found to be not applicable to the TOE because the threat
does not “make sense” for the technology area (see step 2 above), the PP
authors should construct a table such as Table 2 below that details the threat
label, the text of the threat, and a short rationale detailing why the threat is not
applicable for the technology. This table is not included in the PP, but
provides a justification that the threats considered for that specific technology
are commensurate with those in other Medium Robustness PPs.

Table 2 Medium Robustness Threats NOT Applicable to the TOE

Threat Name Threat Definition Rationale for NOT
Including this Threat

T.ADMIN_ERROR An administrator may
incorrectly install or
configure the TOE, or
install a corrupted TOE
resulting in ineffective
security mechanisms.

There are no administrators
on compliant TOEs.

10. The PP writing team should then construct an table of objectives for the TOE
Objectives section of the PP that details all of the objectives. The objectives
should be drawn from two sources. First, for each assumption on the IT
environment (see Instruction 7) an objective for the IT environment should be
created (see Table 3). Additionally, if a threat is mitigated (or a policy
implemented) by both the TOE and the IT Environment, then an objective for
the environment (in addition to the objective(s) for the TOE listed in Table 7)
should be created for each of these. The environmental objectives should
have a tag of “OE.assumption_tag”, where assumption_tag is the tag
associated with the assumption. For example, for the assumptions given in
Instruction 7:

Table 3 Objectives for the IT Environment

IT Environment Objective
Name

Environment Objective Definition

OE.NO_GENERAL_
PURPOSE

There will be no general-purpose computing
or storage repository capabilities (e.g.,
compilers, editors, or user applications)
available on the TOE.

 25

OE.PHYSICAL Physical security will be provided within the
domain for the value of the IT assets
protected by the operating system and the
value of the stored, processed, and
transmitted information.

Second, all objectives generated in steps 1 through 6 need to be captured in an
objective table (in alphabetical order). The format is similar and is shown in
Table 3:

Table 4 TOE Objectives

Objective Name Objective Definition

O. ROBUST_ADMIN_GUIDANCE The TOE will provide administrators
with the necessary information for
secure delivery and management.

O.AUDIT_GENERATION The TOE will provide the capability
to detect and create records of
security-relevant events associated
with users.

11. The threat/policy-objective rationale section should be created next. In
writing this rationale, the PP authors should use the format shown in Table 5.

Table 5 Threat/Policy to Objective Rationale

Threat/Policy Objectives Addressing the
Threat

Rationale

T.ADMIN_ERROR

An administrator may
incorrectly install or
configure the TOE, or
install a corrupted TOE
resulting in ineffective
security mechanisms.

O.
ROBUST_ADMIN_GUIDANCE

The TOE will provide
administrators with the necessary
information for secure delivery and
management.

O. ADMIN_GUIDANCE
(ADO_DEL.2, ADO_IGS.1,
AGD_ADM.1, AGD_USR.1,
AVA_MSU.2) help to mitigate this
threat by ensuring the TOE
administrators have guidance that
instructs them how to administer the
TOE in a secure manner and to provide
the administrator with instructions to
ensure the TOE was not corrupted
during the delivery process. Having this
guidance helps to reduce the mistakes
that an administrator might make that
could cause the TOE to be configured
in a way that is insecure.

 26

Threat/Policy Objectives Addressing the
Threat

Rationale

T.AUDIT_COMPROMISE

A malicious user or process
may view audit records,
cause audit records to be
lost or modified, or prevent
future audit records from
being recorded, thus
masking a user’s action.

O.AUDIT_PROTECTION

The TOE will provide the
capability to protect audit
information.

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a
protected resource is not released
when the resource is reallocated.

O.SELF_PROTECTION

The TSF will maintain a domain
for its own execution that protects
itself and its resources from
external interference, tampering, or
unauthorized disclosure.

O.AUDIT_PROTECTION
(FAU.SAR.2, FAU_STG.1-NIAP-
0429, FAU_STG.3, FAU_STG.NIAP-
0414-1, FMT_SMF.1) contributes to
mitigating this threat by controlling
access to the audit trail. The auditor and
any trusted IT entities performing IDS-
like functions are the only ones allowed
to read the audit trail. No one is
allowed to modify audit records, and
the Auditor is the only one allowed to
delete audit records in the audit trail.
The TOE has the capability to prevent
auditable actions from occurring if the
audit trail is full, and of notifying an
administrator if the audit trail is
approaching its capacity. In addition,
the TOE has the capability to restore
audit data corrupted by the attacker.

 O.RESIDUAL_INFORMATION
(FDP.RIP.2) prevents a user not
authorized to read the audit trail from
access to audit information that might
otherwise be persistent in a TOE
resource (e.g., memory). By ensuring
the TOE prevents residual information
in a resource, audit information will not
become available to any user or process
except those explicitly authorized for
that data.

O.SELF_PROTECTION (FPT_SEP.2,
FPT_RVM.1) contributes to countering
this threat by ensuring that the TSF can
protect itself from users. If the TSF
could not maintain and control its
domain of execution, it could not be
trusted to control access to the
resources under its control, which
includes the audit trail. Likewise,
ensuring that the functions that protect
the audit trail are always invoked is
also critical to the mitigation of this
threat.

The first two columns of this table are identical to the first two columns of
Table 7. The rationale should address how each objective contributes to
mitigating the threat or implementing the policy, and the applicable
components from each objective should be identified. In Appendix A of this
Manual we have supplied sample rational for several threats.

 27

12. The PP authors should then write the objective/requirement component
rationale. The format for this rationale should be as is shown in Table 6.

Table 6 Objective to Requirement Rationale

Objectives Requirements
addressing
Objectives

Rational

O.
ROBUST_ADMIN_GUIDANCE

The TOE will provide
administrators with the necessary
information for secure delivery
and management.

ADO_DEL.2

AGD_ADM.1

AVA_MSU.2

ADO_IGS.1

AGD_USR.1

ADO_DEL.2 ensures that the administrator is provided
documentation that instructs them how to ensure the
delivery of the TOE, in whole or in parts, has not been
tampered with or corrupted during delivery. This
requirement ensures the administrator has the ability to
begin their TOE installation with a clean (e.g., malicious
code has not been inserted once it has left the developer’s
control) version of the TOE, which is necessary for
secure management of the TOE.

The ADO_IGS.1 requirement ensures the administrator
has the information necessary to install the TOE in the
evaluated configuration. Often times a vendor’s product
contains software that is not part of the TOE and has not
been evaluated. The Installation, Generation and Startup
(IGS) documentation ensures that once the administrator
has followed the installation and configuration guidance
the result is a TOE in a secure configuration.

The AGD_ADM.1 requirement mandates the developer
provide the administrator with guidance on how to
operate the TOE in a secure manner. This includes
describing the interfaces the administrator uses in
managing the TOE, security parameters that are
configurable by the administrator, how to configure the
TOE’s ruleset and the implications of any dependencies
of individual rules. The documentation also provides a
description of how to setup and review the auditing
features of the TOE.

The AGD_USR.1 is intended for non-administrative
users, but could be used to provide guidance on security
that is common to both administrators and non-
administrators (e.g., password management guidelines).
Since the non-administrative users of this TOE are
limited to relying parties it is expected that the user
guidance would discuss how the data validation
(FDD_DAU_(EXP).1) authentication mechanism is used,
and any instructions on authenticating to the TOE. The
description of the use of these mechanisms would not
have to be repeated in the administrator's guide.
 AVA_MSU.2 ensures that the guidance
documentation is complete and can be followed
unambiguously to ensure the TOE is not
misconfigured in an insecure state due to
confusing guidance.

 28

Objectives Requirements
addressing
Objectives

Rational

O.AUDIT_GENERATION

The TOE will provide the
capability to detect and create
records of security-relevant events
associated with users.

FAU_GEN.1-
NIAP-0407

FAU_GEN.2-
NIAP-0410

FIA_USB.1-
NIAP-0415

FAU_SEL.1-
NIAP-0407

FAU_GEN.1-NIAP-0407 defines the set of events that
the TOE must be capable of recording. This requirement
ensures that an administrator has the ability to audit any
security relevant event that takes place in the TOE. This
requirement also defines the information that must be
contained in the audit record for each auditable event.
There is a minimum of information that must be present
in every audit record and this requirement defines that, as
well as the additional information that must be recorded
for each auditable event. This requirement also places a
requirement on the level of detail that is recorded on any
additional security functional requirements an ST author
adds to this PP.

FAU_GEN.2-NIAP-410 ensures that the audit records
associate a user identity with the auditable event.
Although the FIA_ATD.1(*) requirements mandate that a
“userid” be used to represent a user identity, the TOE
developer is able to associate different types of userids
with different users in order to meet this objective.

FAU_SEL.1-NIAP-0407 allows the selected
administrator(s) to configure which auditable events will
be recorded in the audit trail. This provides the
administrator with the flexibility in recording only those
events that are deemed necessary by site policy, thus
reducing the amount of resources consumed by the audit
mechanism and providing the ability to focus on the
actions of an individual user. In addition, the requirement
has been refined to require that the audit event selection
function is configurable during run-time to ensure the
TOE is able to capture security-relevant events given
changes in threat conditions.
FIA_USB.1 plays a role is satisfying this
objective by requiring a binding of security
attributes associated with users that are
authenticated with the subjects that represent
them in the TOE. This only applies to
authenticated users, since the identity of
unauthenticated users cannot be confirmed.
Therefore, the audit trail may not always have
the proper identity of the subject that causes an
audit record to be generated (anonymous
relying parties).

As with the previous rationale, the objective/component rationale should
address how each component contributes to satisfying the objective. In
Appendix B of this Manual we have supplied sample rational for several
objectives.

 29

In writing the rationale sections the PP authors may discover that a threat is
not mitigated to the extent desired, or that an objective is not fully met. The
PP authors will have to resolve these discrepancies by adjusting the
threat/policy/objective statement or by adjusting component or element text,
or by including a new component.

Table 7 Applicable Threats, Policies, Objectives and Requirements for Medium
Robustness TOEs

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O. ROBUST_ADMIN_GUIDANCE

The TOE will provide administrators
with the necessary information for
secure delivery and management.

ADO_DEL.2,
ADO_IGS.1,
AGD_ADM.1,
AGD_USR.1,
AVA_MSU.2

 T. ADMIN_ ERROR

An administrator may
incorrectly install or configure
the TOE, or install a corrupted
TOE resulting in ineffective
security mechanisms.

O.ADMIN_ROLE

The TOE will provide administrator
roles to isolate administrative
actions, and to make the
administrative functions available
locally and remotely.

FMT_SMR See T.ADMIN_ROGUE. We
recommend that roles be included in
medium robustness PPs for at least
cryptography (if cryptography is
included) and all other functions. If
T.ADMIN_ROGUE does not “make
sense” for a technology, then
O.ADMIN_ROLE will not have to
be achieved by TOEs for that
technology area.

 30

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

 O.MANAGE

The TOE will provide all the
functions and facilities necessary to
support the administrators in their
management of the security of the
TOE, and restrict these functions and
facilities from unauthorized use.

FMT_MTD Any FMT_MTD iterations that allow
an administrator to review
configuration settings for the security
mechanisms are considered as
contributing to the avoidance of
errors.

T.ADMIN_ROGUE

An administrator’s intentions
may become malicious resulting
in user or TSF data being
compromised.

O.ADMIN_ROLE

The TOE will provide administrator
roles to isolate administrative
actions, and to make the
administrative functions available
locally and remotely.

FMT_SMR The component from the FMT_SMR
family should be either FMT_SMR.2
or FMT_SMR.3, depending on
technology and TAL guidance. If
crypto is included, then there must be
a crypto role. There also must be at
least two administrative roles
regardless of whether crypto is
included or not. For instance,
“auditor” and “administrator” roles;
“operator” and “administrator” roles;
“security administrator” and
“administrator” roles.

Having chosen the roles, the PP
authors must ensure that all
components in the PP that specify
“administrator” or “authorized
administrator” be changed to
specifically call out the appropriate
role or roles for that particular
function. If different roles have
different functionality for the same
mechanism, the PP author may need
to iterate the requirement for each
applicable role. In the text required
below, this has been identified by the
notation <role administrator>; This
should be replaced by the PP authors
with the appropriate role.

 31

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.AUDIT_PROTECTION

The TOE will provide the capability
to protect audit information.

FMT_MOF,
FAU_SAR.2,
FAU_STG.1-
NIAP-0429,
FAU_STG.3,
FAU_STG.NIAP
-0414-1

There should exist an iteration of
FMT_MOF that applies to the audit
functionality of the system; that
iteration should be associated with
this threat/objective combination.

For FAU_STG.1-NIAP-0429 the PP
authors should include the text in
Instruction 17.

For FAU_STG.3, the PP authors
should include the text written in
Instruction 11.

FAU_STG.NIAP-0414-1 provides
functionality similar to FAU_STG.4
and should be used instead of
FAU_STG.4; the PP authors should
include the text written in Instruction
19.

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a protected
resource is not released when the
resource is reallocated.

FDP_RIP.2

T.AUDIT_COMPROMISE

A malicious user or process may
view audit records, cause audit
records to be lost or modified, or
prevent future audit records from
being recorded, thus masking a
user’s action.

O.SELF_PROTECTION

The TSF will maintain a domain for
its own execution that protects itself
and its resources from external
interference, tampering or
unauthorized disclosure.

FPT_SEP,
FPT_RVM.1

If crypto is included in the TOE, then
FPT_SEP.2 (see Instruction 21
below) should be used; otherwise,
use FPT_SEP.1. As noted in
Instruction 2, inclusion of FPT_SEP
as a requirement on the TOE means
that hardware the TOE relies on to
implement its security functionality
has to be part of the TOE.

 32

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a protected
resource is not released when the
resource is reallocated.

 See Instruction 21 for cryptography

O.SELF_PROTECTION

The TSF will maintain a domain for
its own execution that protects itself
and its resources from external
interference, tampering, or
unauthorized disclosure.

FPT_SEP,
FPT_RVM.1

See Instruction 21 for FPT_SEP.2.

T.CRYPTO_COMPROMISE

A malicious user or process may
cause key, data or executable
code associated with the
cryptographic functionality to be
inappropriately accessed
(viewed, modified, or deleted),
thus compromising the
cryptographic mechanisms and
the data protected by those
mechanisms.

O.DOCUMENT_KEY_LEAKAGE

The bandwidth of channels that can
be used to compromise key material
shall be documented.

AVA_CCA_(EX
P).2

See Instruction 21.

T.EAVESDROP

A malicious user or process may
observe or modify user or TSF
data transmitted between
physically separated parts of the
TOE.

O.PROTECT_IN_TRANSIT

The TSF shall protect user and TSF
data when it is in transit from one
portion of a distributed TOE to
another.

FDP_ITT.1,
FPT_ITT.1

Both user and TSF data need to be
protected in transit for modification
and disclosure, so both components
are needed. This protection should
be done with cryptography; see
Instruction 21. The PP author may
want to specify a particular
encryption operation to be used for
the requirements by including the in
the refinement a reference to an
appropriate iteration of FCS_COP.

 33

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

T.MASQUERADE

A malicious user, process, or
external IT entity may
masquerade as an authorized
entity in order to gain
unauthorized access to data or
TOE resources.

O. ROBUST_TOE_ACCESS

The TOE will provide mechanisms
that control a user’s logical access to
the TOE and to explicitly deny
access to specific users when
appropriate.

FIA_AFL.1-
NIAP-0425,
FIA_ATD.1,
FIA_UID,
FIA_UAU,
FTA_TSE.1,
AVA_SOF

This is an area that different
technologies may address in different
ways; some modification of the
threat and objective may be
necessary. The choice of the
applicable FIA requirements will also
depend on technology-specific
concerns.

If TOEs in a particular technology
depend on other entities (e.g., a
certificate authority, DNS server) in
order to perform a security function,
then the authors need to include
FPT_ITC (used to satisfy the
O.TRUSTED_PATH) in order to
protect the communication between
the TOE and the external entities;
appropriate environmental
requirements must be included in the
PP as well.

For FIA_AFL.1-NIAP-0425, see
Instruction 24 for the required text.

See Instruction 11, Interpretation I-
0375, for information on specifying
FAU_UAU requirements for a single
authentication mechanism.

See Instruction 32 for FTA_TSE.1.

T.FLAWED_DESIGN

Unintentional or intentional
errors in requirements
specification or design of the
TOE may occur, leading to flaws
that may be exploited by a
malicious user or program.

O.CHANGE_MANAGEMENT

The configuration of, and all changes
to, the TOE and its development
evidence will be analyzed, tracked,
and controlled throughout the TOE’s
development.

ACM_AUT.1,
ACM_CAP.4,
ACM_SCP.2,
ALC_DVS.1,
ALC_FLR.2,
ALC_LCD.1

 34

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.SOUND_DESIGN

The TOE will be designed using
sound design principles and
techniques. The TOE design, design
principles and design techniques will
be adequately and accurately
documented.

ADV_FSP_(EX
P).1,
ADV_HLD_(EX
P).1,
ADV_INT_(EX
P).1,
ADV_LLD_(EX
P).1,

ADV_ARC_(EX
P).1,
ADV_RCR.1,
ADV_SPM.1

If cryptography is included, see
Instruction 21 regarding
ADV_SPM.1.

O.VULNERABILITY_ANALYSIS_
TEST

The TOE will undergo appropriate
independent vulnerability analysis
and penetration testing to
demonstrate the design and
implementation of the TOE does not
allow attackers with medium attack
potential to violate the TOE’s
security policies.

AVA_VLA.3

O.CHANGE_MANAGEMENT

The configuration of, and all changes
to, the TOE and its development
evidence will be analyzed, tracked,
and controlled throughout the TOE’s
development.

ACM_AUT.1,
ACM_CAP.4,
ACM_SCP.2,
ALC_DVS.1,
ALC_FLR.2,
ALC_LCD.1

 T.FLAWED_IMPLEMENTATI
ON

Unintentional or intentional
errors in implementation of the
TOE design may occur, leading
to flaws that may be exploited
by a malicious user or program.

O.SOUND_IMPLEMENTATION

The implementation of the TOE will
be an accurate instantiation of its
design, and is adequately and
accurately documented.

ADV_IMP.2,
ADV_LLD_(EX
P).1,

ADV_RCR.1,
ADV_INT_(EX
P).1,
ADV_ARC_(EX
P).1,

ALC_TAT.1

 35

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.THOROUGH_FUNCTIONAL_
TESTING

The TOE will undergo appropriate
security functional testing that
demonstrates the TSF satisfies the
security functional requirements.

ATE_COV.2,
ATE_FUN.1,
ATE_DPT.2,
ATE_IND.2

O.VULNERABILITY_ANALYSIS_
TEST

The TOE will undergo appropriate
independent vulnerability analysis
and penetration testing to
demonstrate the design and
implementation of the TOE does not
allow attackers with medium attack
potential to violate the TOE’s
security policies.

AVA_VLA.3

O.CORRECT_ TSF_OPERATION

The TOE will provide a capability to
test the TSF to ensure the correct
operation of the TSF in its
operational environment.

FPT_TST If cryptography is included then self-
test for that functionality must be
specified through iteration of
FPT_TST; see Instruction 21. See
Instruction 28 for guidance on
FPT_TST for non-cryptographic
portions of the TOE.

T.POOR_TEST

Lack of or insufficient tests to
demonstrate that all TOE
security functions operate
correctly (including in a fielded
TOE) may result in incorrect
TOE behavior being
undiscovered thereby causing
potential security vulnerabilities.

O.THOROUGH_FUNCTIONAL_T
ESTING

The TOE will undergo appropriate
security functional testing that
demonstrates the TSF satisfies the
security functional requirements.

ATE_COV.2,
ATE_FUN.1,
ATE_DPT.2,
ATE_IND.2

 36

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

 O.VULNERABILITY_ANALYSIS_
TEST

The TOE will undergo appropriate
independent vulnerability analysis
and penetration testing to
demonstrate the design and
implementation of the TOE does not
allow attackers with medium attack
potential to violate the TOE’s
security policies.

AVA_VLA.3

T.REPLAY

A user may gain inappropriate
access to the TOE by replaying
authentication information, or
may cause the TOE to be
inappropriately configured by
replaying TSF data or security
attributes (e.g., captured as
transmitted during the course of
legitimate use).

O.REPLAY_DETECTION

The TOE will provide a means to
detect and reject the replay of
authentication data as well as other
TSF data and security attributes.

FPT_RPL.1 See Instruction 26 for specific
wording for FPT_RPL.1.

T.RESIDUAL_DATA

A user or process may gain
unauthorized access to data
through reallocation of TOE
resources from one user or
process to another.

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a protected
resource is not released when the
resource is reallocated.

FDP_RIP.2,
FCS_CKM

The FCS requirements should be
included to place additional
requirements on keys if cryptography
is included in the TOE; see
Instruction 21.

T.RESOURCE_EXHAUSTION

A malicious process or user may
block others from system
resources (e.g., example of
resources that apply to
technology) via a resource
exhaustion denial of service
attack.

O.RESOURCE_SHARING

The TOE shall provide mechanisms
that mitigate attempts to exhaust
<specific types of resources which
the TOE protects> resources
provided by the TOE (e.g., examples
of resources that apply to
technology).

FRU_RSA.1,
FMT_MTD.2,
FMT_MOF.1

See Instruction 29 for more
information on how this should be
instantiated in the PP.

The PP author should replace the
italicized text in the threat and
objective with technology-specific
information, and iterate FRU_RSA.1,
FMT_MTD.2, and FMT_MOF.1 as
required.

 37

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

T.SPOOFING

A malicious user, process, or
external IT entity may
misrepresent itself as the TOE to
obtain identification and
authentication data.

O.TRUSTED_PATH

The TOE will provide a means to
ensure that users are not
communicating with some other
entity pretending to be the TOE when
supplying identification and
authentication data.

FTP_TRP,
FTP_ITC

Since “users” include both human
users and IT entities, the PP author
should consider which of the two
components (or both) might be
necessary for the technology. For
instance, if it is not required that IT
entities authenticate to the TOE, then
FTP_ITC may not need to be
included. If the PP authors want to
specify encryption as being the
means to implement these
requirements, see Instruction 21 for
wording for these components.

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a protected
resource is not released when the
resource is reallocated.

FDP_RIP.2,
FCS_CKM

The FCS requirements should be
included to place additional
requirements on keys if cryptography
is included in the TOE; see
Instruction 21.

T.MALICIOUS_TSF_
COMPROMISE

A malicious user or process
may cause TSF data or
executable code to be
inappropriately accessed
(viewed, modified, or deleted). O.SELF_PROTECTION

The TSF will maintain a domain for
its own execution that protects itself
and its resources from external
interference, tampering or
unauthorized disclosure.

FPT_SEP,
FPT_RVM.1

See Instruction 21 for FPT_SEP.2.

 38

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.MANAGE

The TOE will provide all the
functions and facilities necessary to
support the administrators in their
management of the security of the
TOE, and restrict these functions and
facilities from unauthorized use.

FMT_MTD.1,
FMT_MSA.1,
FMT_MOF.1

FMT_SMF.1

For MTD and MOF, the PP authors
should group the data and functions
according to 1) who has access and
2) the actions that the users can
perform. The requirements should be
iterated for each unique set of actions
that are specified.

It should be noted that for
FMT_MSA.1, the attributes are
defined with respect to a user data
access control policy (FDP_ACC,
FDP_IFC) and should not- be used
for general “security attribute”
restrictions.

The requirement FMT_SMF.1 was
introduced as an international
interpretation. This requirement
specifies functionality that must be
provided to administrators of the
TOE. If the PP author includes this
requirement care must be taken to
use the other FMT requirements to
specify how the functionality is
restricted and to which role the
functionality is provided.

O.DISPLAY_BANNER

The TOE will display an advisory
warning regarding use of the TOE.

FTA_TAB.1 See Instruction 31 for FTA_TAB.1.

O.TRUSTED_PATH

The TOE will provide a means to
ensure that users are not
communicating with some other
entity pretending to be the TOE when
supplying identification and
authentication data.

FTP_TRP,
FTP_ITC

See Instruction 21 for FTP_TRP and
FTP_ITC, since encryption is being
recommended as the method by
which the “protected communication
channels” are provided.

T.UNATTENDED_SESSION

A user may gain unauthorized
access to an unattended session.

O.ROBUST_TOE_ACCESS

The TOE will provide mechanisms
that control a user’s logical access to
the TOE and to explicitly deny
access to specific users when
appropriate.

FTA_SSL.1,
FTA_SSL.2,
FTA_SSL.3,
AVA_SOF.1

FTA_SSL.3 is needed only if remote
activity (e.g., remote administration)
is included as required functionality
for this technology.

 39

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.MEDIATE

The TOE must protect user data in
accordance with its security policy.

FDP_ACC*
FDP_ACF*,
FDP_IFF*

This threat is one of the most
technology-specific, and will likely
require substantial modification to
focus on the access control policy
implemented in the technology. This
applies only to user data (TSF data
are covered by other threats).
Additional objectives may need to be
created, and the wording for
O.MEDIATE will likely need to be
modified. It may not be necessary to
include both the FDP_ACF or
FDP_ACC* and FDP_IFF* families.
Other components from FDP might
also be included, again dependent on
the technology.

See Instructions 22 and 23 for
interpreted FDP_ACF and FDP_IFF
requirements, respectively, to use as
a baseline for the technology-specific
requirements.

T.UNAUTHORIZED_ACCESS

A user may gain access to user
data for which they are not
authorized according to the TOE
security policy.

O.USER_GUIDANCE

The TOE will provide users with the
information necessary to correctly
use the security mechanisms.

AGD_USR.1 The AGD_USR.1 is intended for
non-administrative users, but could
be used to provide guidance on
security that is common to both
administrators and non-
administrators (e.g., password
management guidelines). Since the
non-administrative users of this TOE
are limited to relying parties it is
expected that the user guidance
would discuss the various security
mechanisms and how to use them
correctly.

 40

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

T.UNIDENTIFIED_ACTIONS

The administrator may fail to
notice potential security
violations, thus limiting the
administrator’s ability to identify
and take action against a
possible security breach.

O.AUDIT_REVIEW

The TOE will provide the capability
to selectively view audit information,
and alert the administrator of
identified potential security
violations.

FAU_SAA.1-
NIAP-0407,
FAU_ARP.1,
FAU_ARP_AC
K_ (EXP).1,
FAU_SAR.1,
FAU_SAR.3

See Instruction 20 for information on
including FAU_SAA.1-NIAP-0407,
FAU_ARP.1, and
FAU_ARP_ACK_(EXP).1.1 in the
PP.

For FAU_SAR.3, the first selection
should be “searches and sorting” to
indicate that the capability to both
search and to sort on the criteria is
desired. The assignment in
FAU_SAR.3 should include at least
user identity, date, and time;
technology-specific information
should be included by the PP Authors
in this list as well.

O.MAINT_MODE

The TOE shall provide a mode from
which recovery or initial startup
procedures can be performed.

FPT_RCV.2-
NIAP-0406

See Instruction 27 for the required
wording for the FPT_RCV.2-NIAP-
0406 component.

T.UNKNOWN_STATE

When the TOE is initially started
or restarted after a failure, the
security state of the TOE may be
unknown.

O.CORRECT_ TSF_OPERATION

The TOE will provide a capability to
test the TSF to ensure the correct
operation of the TSF in its
operational environment.

FPT_TST If cryptography is included then self-
test for that functionality must be
specified through iteration of
FPT_TST; see Instruction 14. See
Instruction 28 for guidance on
FPT_TST for non-cryptographic
portions of the TOE.

 41

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.SOUND_DESIGN

The TOE will be designed using
sound design principles and
techniques. The TOE design, design
principles and design techniques will
be adequately and accurately
documented.

ADV_SPM.1 ADV_SPM.1 requires the developer
to provide an informal model of the
security policies of the TOE.
Modeling these policies helps
understand and reduce the
unintended side effects that occur
during the TOE’s operation that
might adversely affect the TOE’s
ability to enforce its security policies.

O. ROBUST_ADMIN_GUIDANCE

The TOE will provide administrators
with the necessary information for
secure delivery and management.

ADO_IGS.1,
AGD_ADM.1

ADO_IGS.1, AGD_ADM.1, help to
mitigate this threat by ensuring the
TOE administrators have guidance
that instructs them how to administer
the TOE in a secure manner and to
provide the administrator with
instructions to ensure the TOE has
been installed, generated and started
up in a secure manner as intended by
the developer. Having this guidance
helps to reduce the mistakes that an
administrator might make that could
cause the TOE to be configured in a
way that is insecure.

P.ACCESS_BANNER

The TOE shall display an initial
banner describing restrictions of
use, legal agreements, or any
other appropriate information to
which users consent by
accessing the TOE.

O.DISPLAY_BANNER

The TOE will display an advisory
warning regarding use of the TOE.

FTA_TAB.1 See Instruction 31 for FTA_TAB.1.

P.ACCOUNTABILITY

The authorized users of the TOE
shall be held accountable for
their actions within the TOE.

O.AUDIT_GENERATION
The TOE will provide the capability
to detect and create records of
security-relevant events associated
with users.

FAU_GEN.1-
NIAP-0407,
FAU_GEN.2-
NIAP-0410,
FIA_USB.1-
NIAP-0415,
FAU_SEL.1-
NIAP-0407

FAU_GEN.1-NIAP-0407 and
FAU_GEN.2-NIAP-0410 should be
included as indicated in Instruction
15; the audit event types and
additional audit information should
be included in a table and be will
specific to the requirements in the
finalized PP. See Instruction 25 for
the text for FIA_USB.1-NIAP-0415.
See Instruction 16 for FAU_SEL.1-
NIAP-0407.

 42

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.TIME_STAMPS

The TOE shall provide reliable time
stamps and the capability for the
administrator to set the time used for
these time stamps.

FPT_STM.1,
FMT_MTD.1

There should be a FMT_MTD.1
iteration that covers setting the time
that applies to this objective.

O.ROBUST_TOE_ACCESS

The TOE will provide mechanisms
that control a user’s logical access to
the TOE and to explicitly deny
access to specific users when
appropriate.

FIA_UID

O.ADMIN_ROLE

The TOE will provide administrator
roles to isolate administrative
actions, and to make the
administrative functions available
locally and remotely.

FMT_SMR.2 See Instruction 30 for notes on
requiring remote administration as
part of P.ADMIN_ACCESS.

P.ADMIN_ACCESS

Administrators shall be able to
administer the TOE both locally
and remotely through protected
communications channels.

O.TRUSTED_PATH

The TOE will provide a means to
ensure that users are not
communicating with some other
entity pretending to be the TOE when
supplying identification and
authentication data.

FTP_TRP,
FTP_ITC

See Instruction 21 for FTP_TRP and
FTP_ITC, since encryption is being
recommended as the method by
which the “protected communication
channels” are provided.

 43

Threat/Policy Objectives Addressing the
Threat

Requirements
associated

with
Objectives

addressing the
Threat

Notes

O.CRYPTOGRAPHY

The TOE shall use NIST FIPS 140-2
validated cryptographic services.

FCS_BCM
FCS_CKM.
FCS_COP

See Instruction 21 for a general
discussion of cryptography and
associated requirements. Note that
PP Authors should contact the
appropriate NSA personnel to ensure
that the requirements specified for
FCS_CKM and FCS_COP
components are compatible with
what is being required for other
Medium Robustness TOEs.
Only NIST FIPS validated cryptography
(methods and implementations) are acceptable
for key management (i.e.; generation, access,
distribution, destruction, handling, and storage
of keys) and cryptographic services (i.e.;
encryption, decryption, signature, hashing, key
exchange, and random number generation
services). Key management systems must be
NSA-approved. (DoDI 8500.2 section E2.4.3).

P.CRYPTOGRAPHY

The TOE shall use NIST FIPS
validated cryptography as a
baseline with additional NSA-
approved methods for key
management (i.e.; generation,
access, distribution, destruction,
handling, and storage of keys),
and for cryptographic operations
(i.e.; encryption, decryption,
signature, hashing, key
exchange, and random number
generation services).

O.RESIDUAL_INFORMATION

The TOE will ensure that any
information contained in a protected
resource is not released when the
resource is reallocated.

FCS_CKM See Instruction 21 for the text for
these requirements.

P.VULNERABILITY_
ANALYSIS_TEST

The TOE must undergo
appropriate independent
vulnerability analysis and
penetration testing to
demonstrate that the TOE is
resistant to an attacker
possessing a medium attack
potential.

O.VULNERABILITY_ANALYSIS_
TEST

The TOE will undergo appropriate
independent vulnerability analysis
and penetration testing to
demonstrate the design and
implementation of the TOE does not
allow attackers with medium attack
potential to violate the TOE’s
security policies.

AVA_VLA.3 O.VULNERABILITY_ANALYSIS
(AVA_VLA.3) satisfies this policy
by ensuring that an independent
analysis is performed on the TOE
and penetration testing based on that
analysis is performed. Having an
independent party perform the
analysis helps ensure objectivity and
eliminates preconceived notions of
the TOE’s design and
implementation that may otherwise
affect the thoroughness of the
analysis. The level of analysis and
testing requires that an attacker with
a moderate attack potential cannot
compromise the TOE’s ability to
enforce its security policies.

 44

Instruction 10: Specifying Requirements on the IT Environment
(Back to TOC)

The requirements on the IT environment for Medium Robustness TOEs are limited in
scope. There may be cases where entire services (e.g., a Certificate Authority, time
server) may be located external to the TOE that provides information to the TOE that the
TOE uses to enforce its policy. This might require the use of requirements on the IT
environment. The PPRB recommends that such requirements be specified when
appropriate, and offers the following guidance to PP authors in determining when they
should specify requirements on the IT environment, and how they should specify those
requirements.

In general, if a TOE depends upon another IT entity in order for the TOE to enforce its
security policies, then IT environmental requirements are used to specify the behavior
expected from that IT entity. Some PPs have attempted to use Assumptions (as in
Instruction 7) to deal with the dependencies a TOE has on other IT products; this is an
incorrect use of assumptions. Other PPs have included threats or OSPs that are solely
mitigated/implemented by objectives on the IT Environment (which pull in the
requirements on the IT environment); using threats/OSPs in this manner might be
limitless, and obscures the functionality that is the subject of the PP. Therefore, such
threats/OSPs (and their associated objectives and requirements for the IT environment)
are not allowed for PPs written using this manual. In other words, any threat/OSP
included in a PP written using this manual must trace to at least one requirement on the
TOE.

Specifying IT environment requirements affords the PP author the opportunity to state
what security functionality is required of other IT products using the same requirements
language as that used to specify the TOE’s security functionality. Using the same
language is important because it allows the end user to more easily ascertain whether IT
products can work together to enforce a security policy.

When determining what requirements should be levied on the IT environment, the PP
author considers what interaction the TOE will have with other IT entities and how that
interaction may impact the TOE’s ability to enforce its policies. If the TOE stores or
obtains TSF data or security attributes from another IT entity, then the TOE has some
security relevant dependency on that IT entity. If the TOE has a trust relationship with
another IT entity, then the TOE probably has some dependency on that IT entity. The PP
author considers the extent of the TOE’s dependencies on that IT entity and determines
what security functionality must be present in that IT entity to make it trustworthy from
the perspective of the TOE.

One approach to determining the IT environment requirements would be to consider the
IT entity as though it were part of the TOE. The PP author could then determine if the
requirements levied on the TOE would apply to this “piece”. The PP author then
considers whether any additional requirements need to be specified on IT environment
due to the nature of how the TOE depends on the trusted IT entity. For example, suppose
that the TOE requires communication channels (FTP_ITC) with other external entities to

 45

be encrypted. The IT environment requirements should levy the same requirements as
are on the TOE, including the encryption that is required (i.e., the FCS family).

With respect to presentation, when writing IT environment requirements the PP
author should replace the text TSF with the text IT environment. This makes
sense because the TSF is not ensuring the functionality; rather it is the IT
environment that is expected to ensure the specified behavior. Other adjustments
(e.g., replacing “TSC” with “IT environment’s Scope of Control”) may have to be
made to the components as well.

 46

Instruction 11: Scheme Interpretations
(Back to TOC)

This Consistency Instruction Manual requires that where applicable (e.g., for “new” PPs)
NIAP Interpretations (NIs) and International Interpretations are used in developing PPs.
Practical application of the CC and CEM against different types of security products and
systems, as well as within different security environments, results in the need for
interpretations of the CC and the CEM, in order to clarify their meaning.

As the Common Criteria is used by increasing numbers of people, inconsistencies or
ambiguities are found in the wording. In order to address these concerns, the Common
Criteria Interpretations Management Board (CCIMB) was formed. Regular meetings of
the CCIMB, comprising representatives from the member nations, result in formal
Interpretations, which specify textual updates to the CC and CEM.

National schemes likewise make pronouncements on any inconsistencies or ambiguities
found in the CC, and may issue their own interpretations to be used within their own
scheme; within CCEVS, the NIAP Interpretations Board (NIB) creates interpretations.
NIAP, like all schemes, forwards its final interpretations to the CCIMB for international
concurrence in order to minimize the divergence among the schemes. However, because
the list of interpretations, both NIAP and international, is ever increasing, it is impractical
to attempt listing all final interpretations in this document; doing so would require
constantly updating this document.

Within this document are some specific CC changes that the authors believe needed to be
incorporated into PPs; these are presented as explicit requirements or refinements. Many
of these suggested wording changes result from NIs, although many of these changes had
not yet become international interpretations when this document was written. In such
cases, within this document the PP author is reminded to check for an international
interpretation that specifies the wording to be used, so that the new wording would not be
considered an explicit requirement in need of justification.

If there is no international interpretation, then the PP author should check the NIs to see if
there is specific wording supplied to be used within the PP; the rationale is simply that
the new wording is the result of the NIAP interpretation.

Final International Interpretations can be found at:
http://www.commoncriteria.org/ccc/ri/finalIndex.jsp

Final NIAP Interpretations are available with other public NIB database entries at:
http://niap.nist.gov/cc-scheme/PUBLIC/index.html

 47

http://www.commoncriteria.org/ccc/ri/finalIndex.jsp
http://niap.nist.gov/cc-scheme/PUBLIC/index.html

Instruction 12: Rationale Section
(Back to TOC)

In this instruction the PPRB recommended that the PP authors spend a good deal of their
effort in formulating detailed and comprehensive rationale. Writing rationale is
sometimes difficult, but experience has shown that it is an important tool in producing
high-quality PPs and offers the following points that PP authors should keep in mind
while writing rationale.

The CC requires that a PP include rationale that demonstrates that the requirements
satisfy the security objectives, and that those objectives counter the threats and
implement the policies. The rationale serves two purposes. One purpose is to help the
reader understand the intent of the requirements and objectives. The second purpose is
that the process of writing a detailed rationale helps the PP author ensure that they have
incorporated the appropriate requirements into the PP, and have made the proper
selections and assignments within the requirements.

Since requirement language is written in English and typically consists of short concise
statements, there is often room for interpretation. The PP author’s intent may not be
readily apparent in the requirements and they may be interpreted in a way that was not
intended by the author. Having well-written rationale affords the PP author the
opportunity to discuss what each requirement is attempting to achieve. The ultimate goal
in writing a rationale is to communicate to the reader how the chosen requirements are
intended to mitigate the associated threats, and implement the associated policies, and to
what degree. Unfortunately, in an attempt to provide a different “view” of the system the
CC includes the notion of security objectives, which provide a layer of indirection in
achieving the ultimate goal of countering threats/implementing policies through
requirements.

Requirements to Objective Rationale

One concern with the notion of security objectives is that currently a ST can claim
conformance to a PP by demonstrating that the security objectives are satisfied. This
means they do not necessarily have to include the same requirements. Since the
objectives are also written in English and are usually written at a high general level, it
leaves the security objectives open to interpretation and the result can be a PP conformant
ST that does not meet the PP author’s intent. By providing enough detail in the
requirements to security objective rationale, the PP author can present the rationale in
enough detail to ensure the intent of the objective is understood, making it more difficult
for an ST author to claim conformance without satisfying the intent of the PP author.
When writing the rationale that the requirements satisfy the objectives, the PP author
should keep in mind the threats that are being addressed by the given objective and write
the rationale for the requirements to security objectives so the reader can determine, in
conjunction with the security objective to threat rationale to what degree the threats are
being countered.

 48

Objectives to Threat/Policy Rationale

When writing the security objectives to threat/policy rationale the PP author informs the
reader to what extent a threat is being countered. The PP author should rely on the
arguments made in the requirements to security objective rationale as the basis for
making the argument that the threat is mitigated. It is acceptable, in fact desirable, to
identify aspects of a threat that are not fully countered by the TOE. The threats provided
in the PP guidance documents are somewhat generic and are written at a high level. The
security objective to threat rationale should provide the details of what the TOE is
protecting against. If there are technology specific aspects of the high level threats, then
those specifics should be addressed in the rationale.

For example, consider the T.MASQUERADE threat from Table 7: “A user or process
may masquerade as another entity in order to gain unauthorized access to data or TOE
resources.” The authors of the Biometrics PP wanted to address several specific
biometric-related threats in the PP, such as:

• an imposter may use an artificial hand/fingerprint or other synthetic means to gain
unauthorized access;

• an imposter may know that their biometric characteristics are very similar to an
enrollee and attempt to masquerade as that individual.

Rather than creating several new threats, our recommended approach is to include
T.MASQUERADE and O.TOE_ACCESS, and address these specific aspects of
T.MASQUERADE in the rationale section for T.MASQUERADE to
O.TOE_ACCESS.

Writing the security objective to threat rationale section is further complicated by the fact
that typically more than one objective is used to mitigate a threat. In addition, different
aspects of an objective may be used to mitigate different threats. This is because
different requirements that are used to satisfy an objective are used to counter different
threats. For example, the objective O.RESIDUAL_INFORMATION is satisfied by two
requirements in the Medium Robustness Firewall PP: FDP.RIP.2 and FCS_CKM.4. The
threat T.CRYPTO_COMPROMISE is partially mitigated by the objective
O.RESIDUAL_INFORMATION, however, only the functionality provided by
FCS_CKM.4 is discussed in the objective to threat rationale, since requirement ensures
that cryptographic critical data will not be compromised by residing in resources that are
not “cleaned” before being released to untrusted users. On the other hand, the threat
T.AUDIT_COMPROMISE is partially mitigated by the objective
O.RESIDUAL_INFORMATION, and only the functionality provided by FDP.RIP.2 is
discussed in the rationale, FCS_CKM.4 does not contribute to satisfying the threat of a
compromise of audit data occurring. To clarify exactly what is being addressed, the
PPRB recommends that the requirement components applicable to a specific threat/policy
be identified and associated with the objective; see the example of
T.AUDIT_COMPROMISE in Table 5, Threats/Policy to Objective Rationale.

 49

One of the reasons given above for writing good rationale is to help the PP author ensure
they have included the appropriate CC components, and have made the appropriate
assignments and selections within an element. When writing a PP, the author has a
general idea of what family of requirements they want, but there may some indecision
over the component that is chosen or what assignments and selections to make. Going
through the exercise of making an argument of how and to what extent a threat is
countered by a requirement or set of requirements forces the PP author to ensure they
have the right requirements for what they are intending to protect against.

As an example, an early version of the firewall PP required functionality that locked a
user’s proxied session after a period of inactivity. The PP included FTA_SSL.1 and
FTA_SSL.2 to mitigate the threat T.UNATTENDED_SESSION. These two components
ensure that the user can initiate the locking of their session, and that after a time interval
of inactivity the session is locked. After considering the threat and thinking how proxied
sessions are used in a firewall, it was determined that these two components did not
address remote sessions in a way that made sense. Therefore, FTA_SSL.3 was added,
which requires that the remote session be terminated after a period of inactivity.

Assignments may not be filled in correctly, or there may be assignments that need
to be made that are not readily apparent. Writing good rationale can aid in
identifying these areas as well. For example, the assignment of time interval of
inactivity was modified in the FTA_SSL component. Originally this was left as an
open assignment to be filled in by the ST author, which could have been any
value the ST author deemed to be acceptable. After discussions about what was to
be achieved with this requirement the assignment was changed to administrator
specified time period of inactivity.

 50

Instruction 13: Conventions
(Back to TOC)

Except for replacing United Kingdom spelling with American spelling, the notation,
formatting, and conventions used in this PP are consistent with version 2.1 of the
Common Criteria (CC). Selected presentation choices are discussed here to aid the PP
reader.

The notation, formatting, and conventions used in this PP are largely consistent with
those used in version 2.1 of the Common Criteria (CC). Selected presentation choices are
discussed here to aid the PP user.

The CC allows several operations to be performed on functional requirements;
refinement, selection, assignment, and iteration are defined in paragraph 2.1.4 of Part 2 of
the CC. Each of these operations is used in this PP.

The refinement operation is used to add detail to a requirement, and thus further restricts
a requirement. Refinement of security requirements is denoted by bold text.

The selection operation is used to select one or more options provided by the CC in
stating a requirement. Selections that have been made by the PP authors are denoted by
italicized text, selections to be filled in by the ST author appear in square brackets with an
indication that a selection is to be made, [selection:], and are not italicized.

The assignment operation is used to assign a specific value to an unspecified parameter,
such as the length of a password. Assignments that have been made by the PP authors
are denoted by showing the value in square brackets, [Assignment_value], assignments to
be filled in by the ST author appear in square brackets with an indication that an
assignment is to be made [assignment:].

The iteration operation is used when a component is repeated with varying operations.
Iteration is denoted by showing the iteration number in parenthesis following the
component identifier, (iteration_number).

As this PP was sponsored, in part by NSA, National Information Assurance Partnership
(NIAP) interpretations are used and are presented with the NIAP interpretation number as
part of the requirement identifier (e.g., FAU_GEN.1-NIAP-0407 for Audit data
generation).

The CC paradigm also allows protection profile and security target authors to create their
own requirements. Such requirements are termed ‘explicit requirements’ and are
permitted if the CC does not offer suitable requirements to meet the authors’ needs.
Explicit requirements must be identified and are required to use the CC
class/family/component model in articulating the requirements. In this PP, explicit
requirements will be indicated with the “(EXP)” following the component name.

 51

Application Notes are provided to help the developer, either to clarify the intent of a
requirement, identify implementation choices, or to define “pass-fail” criteria for a
requirement. For those components where Application Notes are appropriate, the
Application Notes will follow the requirement component.

NAMING CONVENTIONS
Assumptions: TOE security environment assumptions are given names beginning with
“A.” followed by a descriptive label all in caps -- e.g., A.ADMINISTRATION.

Threats: TOE security environment threats are given names beginning with “T.”
followed by a descriptive label all in caps-- e.g., T.SIGNAL_DETECT.

Policy Statements: Policy statements are given names beginning with “P.” followed by a
descriptive label all in caps-- e.g., P.PHYSICAL_ACCESS.

Security Objectives for the TOE: Security Objectives are given names beginning with
“O.” followed by a descriptive label all in caps-- e.g., O.ACCESS.

Security Objectives for both the IT Environment and Non-IT Environment: Security
Objectives are given names beginning with “OE.” followed by a descriptive label all in
caps-- e.g., OE.ACCESS

 52

Instruction 14: Glossary
(Back to TOC)

The glossary is used to define very basic concepts such as roles and responsibilities that
are specified in Protection Profiles (PPs) should be used consistently in all PPs. The
independent definition and usage of redundant terms by multiple PP development teams
leads to confusion amongst our target audiences of customers, vendors and evaluators.

The PPRB developed a set of term and definitions to be considered for inclusion in all
PPs. The following list consists of terms that should be considered first by PP authors
when trying to decide how best to describe their particular TOE and TOE environment.
PP authors are dissuaded from developing new, redundant terminology and definitions
when one of these terms may be adequate

Text
In the Common Criteria, many terms are defined in Section 2.3 of Part 1. The following are a subset of
those definitions. They are listed here to aid the user of the PP being developed and should be included in
the Glossary (Appendix B) of the Protection Profile.

Access -- Interaction between an entity and an object that results in the flow or
modification of data.

Access Control -- Security service that controls the use of resources4 and the
disclosure and modification of data.5

Accountability -- Property that allows activities in an IT system to be traced to
the entity responsible for the activity.

Administrator -- A user who has been specifically granted the authority to
manage some portion or all of the TOE and whose actions may affect the TSP.
Administrators may possess special privileges that provide capabilities to
override portions of the TSP.

Assurance -- A measure of confidence that the security features of an IT
system are sufficient to enforce its’ security policy.

Asymmetric Cryptographic System -- A system involving two related
transformations; one determined by a public key (the public transformation),
and another determined by a private key (the private transformation) with the
property that it is computationally infeasible to determine the private
transformation (or the private key) from knowledge of the public
transformation (and the public key).

Asymmetric Key -- The corresponding public/private key pair needed to
determine the behavior of the public/private transformations that comprise an

4 Hardware and software.
5 Stored or communicated.

 53

asymmetric cryptographic system.

Attack -- An intentional act attempting to violate the security policy of an IT
system.

Authentication -- Security measure that verifies a claimed identity.

Authentication data -- Information used to verify a claimed identity.

Authorization -- Permission, granted by an entity authorized to do so, to
perform functions and access data.

Authorized user -- An authenticated user who may, in accordance with the
TSP, perform an operation.

Availability -- Timely6, reliable access to IT resources.

Compromise -- Violation of a security policy.

Confidentiality -- A security policy pertaining to disclosure of data.

Critical Security Parameters (CSP) -- Security-related information (e.g.,
cryptographic keys, authentication data such as passwords and pins, and
cryptographic seeds) appearing in plaintext or otherwise unprotected form and
whose disclosure or modification can compromise the security of a
cryptographic module or the security of the information protected by the
module.

Cryptographic Administrator -- An authorized user who has been granted the
authority to perform cryptographic initialization and management functions.
These users are expected to use this authority only in the manner prescribed
by the guidance given to them.

Cryptographic boundary -- An explicitly defined contiguous perimeter that
establishes the physical bounds (for hardware) or logical bounds (for
software) of a cryptographic module.

Cryptographic key (key) -- A parameter used in conjunction with a
cryptographic algorithm that determines [7]:

• the transformation of plaintext data into ciphertext data,

• the transformation of cipher text data into plaintext data,

• a digital signature computed from data,

• the verification of a digital signature computed from data, or

• a digital authentication code computed from data.

Cryptographic Module -- The set of hardware, software, firmware, or some
combination thereof that implements cryptographic logic or processes,

6 According to a defined metric.

 54

including cryptographic algorithms, and is contained within the cryptographic
boundary of the module.

Cryptographic Module Security Policy -- A precise specification of the
security rules under which a cryptographic module must operate, including the
rules derived from the requirements of this PP and additional rules imposed by
the vendor.

Defense-in-Depth (DID) -- A security design strategy whereby layers of
protection are utilized to establish an adequate security posture for an IT
system.

Discretionary Access Control (DAC) -- A means of restricting access to
objects based on the identity of subjects and/or groups to which they belong.
These controls are discretionary in the sense that a subject with a certain
access permission is capable of passing that permission (perhaps indirectly) on
to any other subject.

Embedded Cryptographic Module -- One that is built as an integral part of a
larger and more general surrounding system (i.e., one that is not easily
removable from the surrounding system).

Enclave -- A collection of entities under the control of a single authority and
having a homogeneous security policy. They may be logical, or may be based
on physical location and proximity.

Entity -- A subject, object, user or another IT device, which interacts with
TOE objects, data, or resources.

External IT entity -- Any trusted Information Technology (IT) product or
system, outside of the TOE, which may, in accordance with the TSP, perform
an operation.

Identity -- A representation (e.g., a string) uniquely identifying an authorized
user, which can either be the full or abbreviated name of that user or a
pseudonym.

Integrity -- A security policy pertaining to the corruption of data and TSF
mechanisms.

Integrity label -- A security attribute that represents the integrity level of a
subject or an object. Integrity labels are used by the TOE as the basis for
mandatory integrity control decisions.

Integrity level -- The combination of a hierarchical level and an optional set of
non-hierarchical categories that represent the integrity of data.

Mandatory Access Control (MAC) -- A means of restricting access to objects
based on subject and object sensitivity labels.7

Mandatory Integrity Control (MIC) -- A means of restricting access to

7 The Bell LaPadula model is an example of Mandatory Access Control

 55

objects based on subject and object integrity labels.

Multilevel -- The ability to simultaneously handle (e.g., share, process)
multiple levels of data, while allowing users at different sensitivity levels to
access the system concurrently. The system permits each user to access only
the data to which they are authorized access.

Named Object -- An object that exhibits all of the following characteristics:

• The object may be used to transfer information between subjects of
differing user identities within the TSF.

• Subjects in the TOE must be able to request a specific instance of the
object.

• The name used to refer to a specific instance of the object must exist in
a context that potentially allows subjects with different user identities
to request the same instance of the object.

Non-Repudiation -- A security policy pertaining to providing one or more of
the following:

• To the sender of data, proof of delivery to the intended recipient,

• To the recipient of data, proof of the identity of the user who sent the
data.

Object -- An entity within the TSC that contains or receives information and
upon which subjects perform operations.

Operating Environment -- The total environment in which a TOE operates. It
includes the physical facility and any physical, procedural, administrative and
personnel controls.

Operating System (OS) -- An entity within the TSC that causes operations to
be performed. Subjects can come in two forms: trusted and untrusted.
Trusted subjects are exempt from part or all of the TOE security policies.
Untrusted subjects are bound by all TOE security policies.

Operational key -- Key intended for protection of operational information or
for the production or secure electrical transmissions of key streams.

Peer TOEs -- Mutually authenticated TOEs that interact to enforce a common
security policy.

Public Object -- An object for which the TSF unconditionally permits all
entities “read” access. Only the TSF or authorized administrators may create,
delete, or modify the public objects.

Robustness -- A characterization of the strength of a security function,
mechanism, service or solution, and the assurance (or confidence) that it is
implemented and functioning correctly. DoD has three levels of robustness:

Basic: Security services and mechanisms that equate to good commercial
practices.

 56

Medium: Security services and mechanisms that provide for layering of
additional safeguards above good commercial practices.

High: Security services and mechanisms that provide the most stringent
protection and rigorous security countermeasures.

Secure State -- Condition in which all TOE security policies are enforced.

Security attributes -- TSF data associated with subjects, objects, and users
that are used for the enforcement of the TSP.

Security level -- The combination of a hierarchical classification and a set of
non-hierarchical categories that represent the sensitivity of the information
[10].

Sensitivity label -- A security attribute that represents the security level of an
object and that describes the sensitivity (e.g. Classification) of the data in the
object. Sensitivity labels are used by the TOE as the basis for mandatory
access control decision.

Split key -- A variable that consists of two or more components that must be
combined to form the operational key variable. The combining process
excludes concatenation or interleaving of component variables.

Subject -- An entity within the TSC that causes operations to be performed.

Symmetric key -- A single, secret key used for both encryption and decryption
in symmetric cryptographic algorithms.

Threat -- Capabilities, intentions and attack methods of adversaries, or any
circumstance or event, with the potential to violate the TOE security policy.

Threat Agent - Any human user or Information Technology (IT) product or
system, which may attempt to violate the TSP and perform an unauthorized
operation with the TOE.

User -- Any entity (human user or external IT entity) outside the TOE that
interacts with the TOE.

Vulnerability -- A weakness that can be exploited to violate the TOE security
policy.

 57

IV. Minimum Common Criteria Security Functional Requirement
Instructions

A. Security Audit
 (Back to TOC)

Instruction 15: FAU_GEN.1-NIAP-0407 Audit data generation and
FAU_GEN.2-NIAP-410 User Identity Association
(Back to TOC)

The FAU_GEN.1-NIAP-0407 component should be structured in a consistent way. The
events to be audited, as well as the information to be contained in the events, are
currently presented in a variety of different ways. Further, the requirements as written
may allow an ST writer to add components and not require auditing on the functionality
provided by these components if the FAU_GEN.1-NIAP-0407 elements are used directly
as indicated in the CC. Also, the FAU_GEN.2-NIAP-0410 component should be
included as stated in the interpretation.
Therefore, the PPRB recommends the following standard wording and format (including
the table) be used when FAU_GEN.1-NIAP-0407 and FAU_GEN.2-NIAP-0410 are
included in the PP. The table in FAU_GEN.1-NIAP-0407 is for illustrative purposes
only; the PP writing team should detail audit information as required for their PP.

When constructing the table, the PP authors should consider the “Basic” level of audit the
starting point for selecting the events to be audited. However, when examining the Basic
level of audit for each component included in the PP, the PP authors may choose to either
omit or add events. The PP authors should examine other Medium Robustness PPs to
determine in what instances strict adherence to the CC Basic level of audit may not be
appropriate.

RequiredText

FAU_GEN.1-NIAP-0407 Audit data generation

FAU_GEN.1.1-NIAP-0407 – The TSF shall be able to generate an audit record of
the following auditable events:

• Start-up and shutdown of the audit functions;

• All auditable events listed in Table 1;

• [selection: [assignment: events at a basic level of audit introduced by the
inclusion of additional SFRs determined by the ST author], [assignment:
events commensurate with a basic level of audit introduced by the
inclusion of explicit requirements determined by the ST author], “no
additional events”].

Application Note: For the selection, the ST author should choose one or both of
the assignments (as detailed in the following paragraphs), or select “no
additional events”.

 58

 For the first assignment, the ST author augments the table (or lists explicitly)
the audit events associated with the basic level of audit for any SFRs that the
ST author includes that are not included in this PP.

 Likewise, for the second assignment the ST author includes audit events that
may arise due to the inclusion of any explicit requirements not already in the
PP. Because “basic” audit is not defined for such requirements, the ST
author will need to determine a set of events that are commensurate with the
type of information that is captured at the basic level for similar
requirements.

 If no additional (CC or explicit) SFRs are included, or if additional SFRs are
included that do not have “basic” audit associated with them, then it is
acceptable to assign “no additional events” in this item.

FAU_GEN.1.2-NIAP-0407 - The TSF shall record within each audit record
at least the following information:

a) Date and time of the event, type of event, subject identity (if applicable), and
the outcome (success or failure) of the event; and

b) For each audit event type, based on the auditable event definitions of the
functional components included in the PP/ST, [information specified in
column three of Table 1 below].

Application Note: In column 3 of the table below, “if applicable” is used to
designate data that should be included in the audit record if it “makes sense”
in the context of the event that generates the record. If no other information is
required (other than that listed in Item a above) for a particular audit event
type, then an assignment of “none” is acceptable.

Requirement Auditable Events Additional Audit Record
Contents

FAU_GEN.1-NIAP-0407 None
FAU_SAR.1 Opening the audit trail The identity of the <role

administrator> performing the
function

FAU_SAR.2 Unsuccessful attempts to read
information from the audit records

The identity of the <role
administrator>performing the
function

FAU_SAR.3 None
FAU_SEL.1-NIAP-0407 All modifications to the audit

configuration that occur while the
audit collection functions are
operating

The identity of the <role
administrator>performing the
function

(…all components in the PP should be included in this table…)

Table 1 – Auditable Events

 59

FAU_GEN.2-NIAP-0410 User identity association

FAU_GEN.2.1-NIAP-0410 For audit events resulting from actions of identified
users, the TSF shall be able to associate each auditable event
with the identity of the user that caused the event.

Instruction 16: FAU_SEL.1-NIAP-0407 Audit event selection
 (Back to TOC)

The following text reflects the consistent selections and assignments that the PPRB
recommends for all Medium Robustness PPs. PP authors should also include other
technology-specific attributes on which to base the selectivity of audit.

Required Text

FAU_SEL.1-NIAP-0407 Selective Audit

FAU_SEL.1.1-NIAP-0407 - Refinement: The TSF shall allow only the <role
administrator> to include or exclude auditable events from the
set of audited events based on the following attributes:

a) user identity;

b) event type;

c) [selection: object identity, subject identity, host identity, “none”];

d) success of auditable security events;

e) failure of auditable security events; and

f) [selection: [assignment: list of additional criteria that audit selectivity is
based upon], no additional criteria]].
Application Note: “event type” is to be defined by the ST author; the intent is to be able

to include or exclude classes of audit events.

Instruction 17: FAU_STG.1-NIAP-0429 Audit event storage (Back to TOC)

The PPRB recommends that the administrative role allowed to delete audit records be
specifically specified in the requirement, and that modifications to the audit records in the
audit trail be prevented. In order to implement these changes, as well as the
interpretations to the FAU_STG.1 requirement, the following text and format should be
used for Medium Robustness PPs.

 60

Note that I-0423 changes FAU_STG.1.2 from “modifications” to “unauthorized
modifications”; the PPRB recommends that all modifications (whether authorized or not)
be prevented, thus the refinement for FAU_STG.1.2-NIAP-0429 below is suggested.

Required Text:

FAU_STG.1-NIAP-0429 Protected audit trail storage

FAU_STG.1.1-NIAP-0429 – Refinement: The TSF shall restrict the
deletion of stored audit records in the audit trail to the <role
administrator>.

FAU_STG.1.2-NIAP-0429 Refinement: The TSF shall be able to prevent
modifications to the audit records in the audit trail.

Instruction 18: FAU_STG.3 Audit event storage
(Back to TOC)

Should the PP author invoke FAU_STG.3, it should be structured in a common manner to
reflect the same assignments across all Medium Robustness PPs.

This requirement calls for the percentage of the storage capacity to be administrator
settable; this implies that an FMT_MOF or FMT_MTD requirement is needed as well.
PP Authors should ensure that it is included when this component is included.

Required Text

FAU_STG.3 Action in case of possible audit data loss

FAU_STG.3.1 - Refinement: The TSF shall [immediately alert the <role
administrator>by displaying a message at the local console, [assignment:
other actions determined by the ST author]] if the audit trail exceeds [a <role
administrator>-settable percentage of storage capacity].

Application Note: The ST Author should determine if there are other actions that should be taken
when the audit trial setting is exceeded, and put these in the assignment. If there are no other
actions, then a null assignment is acceptable.

Instruction 19: FAU_STG.NIAP—0414 Site-Configurable Prevention of Audit Loss
(Back to TOC)

The PPRB recommends that the PP author specify functionality for audit trail loss for
Medium Robustness PPs. Since it is desirable that this capability be administrator-
settable, FAU_STG.NIAP-0414-1 should be used as follows.

FAU_STG.NIAP-0414-1 calls for the selection of the option taken by the administrator
when there’s an audit storage failure. The inclusion of requirement in the PP implies that
an FMT_MOF or FMT_MTD requirement is needed as well. PP Authors should ensure

 61

that it is included when this component is included. If there are “special” administrators
that are able to perform this function, then the application note and the text of the
requirement should be changed as well.

Required Text

FAU_STG.NIAP-414 Site-configurable Prevention of audit data loss

FAU_STG.NIAP-0414-1. The TSF shall provide the <role administrator> the
capability to select one or more of the following actions [selection: 'ignore
auditable events', 'prevent auditable events, except those taken by the
authorised user with special rights', 'overwrite the oldest stored audit
records'] and [assignment: other actions to be taken in case of audit storage
failure] to be taken if the audit trail is full.

FAU_STG.NIAP-0414-2-NIAP-0429 Refinement: The TSF shall
enforce the <role administrator>’s [selection: choose one of:
"ignore auditable events", "prevent auditable events, except those
taken by the authorized user with special rights", "overwrite the oldest
stored audit records"] and [assignment: other actions to be taken in
case of audit storage failure] if the audit trail is full.

Application Note: The TOE provides the <role administrator> the option of
preventing audit data loss by preventing auditable events from occurring. The <role
administrator>r’s actions under these circumstances are not required to be
audited. The TOE also provides the <role administrator> the option of
overwriting “old” audit records rather than preventing auditable events, which may
protect against a denial-of-service attack.

The ST writer should fill in other technology-specific actions that can be taken for audit
storage failure (in addition to the two already specified), or select “no additional
options” if there are no such technology-specific actions.

Instruction 20: FAU_ARP.1 Security alarm, FAU_ARP_ACK_(EXP).1 Security
alarm acknowledgment, FAU_SAA.1-NIAP-407 Potential violation analysis
(Back to TOC)

The PPRB considers a more robust audit mechanism essential to the assurance afforded
by Medium Robustness TOEs. The PPRB suggests using the following requirements to
implement this functionality. In using these elements, the PP authors should consider the
unique technology-dependant events that would make sense to include as indicators of a
potential violation of the policies being enforced by that specific technology. If remote
administration is not feasible for the technology, then the PP authors should consider
modifying the following requirements appropriately.

Required Text

 62

FAU_ARP.1 Security alarms

FAU_ARP.1.1 – The TSF shall [immediately display a message
identifying the potential security violation, and make accessible the
audit record contents associated with the auditable event(s) that
generated the alarm, at the:

a. local console;

b. remote <administrative role' s> sessions that exist;

c. remote <administrative role' s> sessions that are initiated before
the alarm has been acknowledged; and

d. [selection: [ST assignment: other methods determined by the ST
author], no other methods]]

upon detection of a potential security violation.

Application Note: The TSF provides a message to the local console regardless of
whether an administrator is logged in. The message is displayed at the remote
console if an administrator is already logged in, or when an administrator logs in if
the alarm message has not been acknowledged. The audit records contents
associated with the alarm may or may not be part of the message displayed, however
the relevant audit information must be available to administrators. In addition, the
TOE provides an audible alarm that can be configured to sound an alarm if desired
by the Security Administrator. It is acceptable for the ST author to fill the open
assignment with none, if no other methods (e.g., pager, e-mail) are included in the
TOE.

Explicit: Security alarm acknowledgement (FAU_ARP_ACK_(EXP).1)

FAU_ARP_ACK_(EXP).1.1 – The TSF shall display the alarm message
identifying the potential security violation and make accessible the
audit record contents associated with the auditable event(s) until it
has been acknowledged. An audible alarm will sound until
acknowledged by an administrator.

FAU_ARP_ACK_(EXP).1.2 – The TSF shall display an acknowledgement
message identifying a reference to the potential security violation,
a notice that it has been acknowledged, the time of the
acknowledgement and the user identifier that acknowledged the
alarm, at the:

1.2.2 local console, and

1.2.3 remote administrator sessions that received the alarm.
Application Note: This explicit requirement is necessary since a CC requirement does not

exist to ensure an administrator will be aware of the alarm. The intent is to ensure
that if an administrator is logged in and not physically at the console or remote
workstation the message will remain displayed until they have acknowledged it. The
message will not be scrolled off the screen due to other activity-taking place (e.g.,
the Audit Administrator is running an audit report). If the Security Administrator
configures the TOE to generate an audible alarm, the alarm will sound until an
administrator acknowledges the alarm. Acknowledging the message and audible
alarm could be a single event, or different events.

 63

FAU_ARP_ACK_(EXP).1.2 ensures that each administrator that received the alarm
message also receives the acknowledgement message, which includes some form of
reference to the alarm message, who acknowledged the message and when.

FAU_SAA.1-NIAP-0407 Potential violation analysis

FAU_SAA.1.1-NIAP-0407 – The TSF shall be able to apply a set of rules in
monitoring the audited events and based upon these rules
indicate a potential violation of the TSP.

FAU_SAA.1.2-NIAP-0407 - Refinement: The TSF shall monitor the
accumulation or combination of the following events known to
indicate a potential security violation:

a) <role administrator>-specified number of authentication failures;

b) Any detected replay of TSF data or security attributes;

c) Any failure of the cryptographic self-tests;

d) Any failure of the other TSF self-tests;

e) <role administrator>-specified number of encryption failures;

f) <role administrator>-specified number of decryption failures; and

g) [selection: [assignment: additional events from the set of defined auditable
events], “no additional events”].
Application Note: The intent of this requirement is that an alarm is generated

(FAU_ARP.1) once the threshold for an event is met. Once the alarm has been
generated it is assumed that the “count” for that event is reset to zero. The <role
administrator>-settable number of authentication failures in (a) is intended to be
the same value as specified in FIA_AFL.1.1-NIAP-0425.

The failure of TSF self-tests in (d) include failures of FPT_TST_(EXP).

 64

B. Cryptographic Support
(Back to TOC)

Instruction 21: FCS_BCM Baseline Cryptographic Module, FCS_CKM
Cryptographic Key, Management, FCS_COP Cryptographic operation
(Back to TOC)

The TSF may employ cryptographic functionality to help satisfy several high-level
security objectives. These include (but are not limited to): identification and
authentication, non-repudiation, trusted path, trusted channel and data separation.

Cryptographic services might be provided in hardware or software, and might be
provided at any level from link up through application. Cryptography might be based
upon public-keys or on private key exchanges, and is implemented using any of a variety
of algorithms, some of which can be certified under validation programs such as the
Federal Information Processing Standard (FIPS). Additionally, the cryptographic support
requirements of one technology may not be suitable for a different technology. Each
technology area has unique requirements that involve a team effort to ensure that all
aspects of the technology are covered8. Because of all of these factors, there are a
considerable number of ways to express FCS components, including refined and
extended components, that PP authors might use to express the cryptographic needs
unique to the technology area of their PP. This makes it imperative that the TAL
collaborate with the Cryptographic Support Organization so all the required
cryptographic support requirements suitable for medium robustness are accurately
defined relative to the technology area.

8 Cryptography presents a unique challenge in that there are many technologies that
perform the cryptography itself; others use a Cryptographic Application Program
Interface (CAPI) to another product or the underlining operating system.

 65

C. User Data Protection
(Back to TOC)

Instruction 22: FDP_ACF Access control functions
(Back to TOC)

If the PP authors choose to use the FDP_ACF family requirements, they should use the
following interpreted requirement text as a basis.

Interpreted Text:

FDP_ACF.1-NIAP-0407 Security attribute based access control

FDP_ACF.1.1-NIAP-0407: The TSF shall enforce the [assignment: access
control SFP] to objects based on the following: [assignment: list of
subjects and objects controlled under the indicated SFP, and for
each, the SFP-relevant security attributes, or named groups of
SFP-relevant security attributes]

FDP_ACF.1.2-NIAP-0407 The TSF shall enforce the following rules to
determine if an operation among controlled subjects and
controlled objects is allowed: [assignment: rules governing access
among controlled subjects and controlled objects using controlled
operations on controlled objects].

FDP_ACF.1.3-NIAP-0407 The TSF shall explicitly authorise access of
subjects to objects based on the following additional rules:
[selection: [assignment: rules, based on security attributes, that
explicitly authorise access of subjects to objects], “no additional
rules”].

FDP_ACF.1.4-NIAP-0407 The TSF shall explicitly deny access of subjects to
objects based on the [selection: [assignment: rules, based on
security attributes, that explicitly deny access of subjects to
objects], “no additional rules”].

Instruction 23: FDP_IFF.1 and .2 Information flow control functions
(Back to TOC)

If the PP authors choose to use the FDP_IFF.1 or .2 components, they should use the
following interpreted requirement text as a basis.

Interpreted Text:

FDP_IFF.1-NIAP-0407 Simple security attributes

FDP_IFF.1.1-NIAP-0407: The TSF shall enforce the [assignment: information
flow control SFP] based on the following types of subject and
information security attributes: [assignment: the minimum number

 66

and type of security attributes list of subjects and information
controlled under the indicated SFP, and for each, the SFP-
relevant security attributes]

FDP_IFF.1.2-NIAP-0407 The TSF shall permit an information flow between a
controlled subject and controlled information via a controlled
operation if the following rules hold: [assignment: for each
operation, the security attribute-based relationship that must hold
between subject and information security attributes].

FDP_IFF.1.3-NIAP-0407 The TSF shall enforce the following information flow
control rules: [selection: [assignment: additional information flow
control SFP rules], "no additional information flow control SFP
rules"]

FDP_IFF.1.4-NIAP-0407 The TSF shall provide the following [selection:
[assignment: list of additional SFP capabilities], "no additional SFP
capabilities"]

FDP_IFF.1.5-NIAP-0407 The TSF shall explicitly authorize an information
flow based on the following rules: [selection: [assignment: rules,
based on security attributes, that explicitly authorize information
flows], "no explicit authorization rules"]

FDP_IFF.1.6-NIAP-0407 The TSF shall explicitly deny an information flow
based on the following rules: [selection: [assignment: rules, based
on security attributes, that explicitly deny information flows], "no
explicit denial rules"]

FDP_IFF.2-NIAP-0407 Hierarchical security attributes

FDP_IFF.2.1-NIAP-0407: The TSF shall enforce the [assignment: information flow
control SFP] based on the following types of subject and information
security attributes: [assignment: the minimum number and type of
security attributes list of subjects and information controlled under the
indicated SFP, and for each, the SFP-relevant security attributes]

FDP_IFF.2.2-NIAP-0407 The TSF shall permit an information flow between a
controlled subject and controlled information via a controlled operation if
the following rules, based on the ordering relationships of security
attributes, hold: [assignment: for each operation, the security attribute-
based relationship that must hold between subject and information
security attributes].

FDP_IFF.2.3-NIAP-0407 The TSF shall enforce the following information flow control
rules: [selection: [assignment: additional information flow control SFP
rules], "no additional information flow control SFP rules"]

FDP_IFF.2.4-NIAP-0407 The TSF shall provide the following [selection: [assignment:
list of additional SFP capabilities], "no additional SFP capabilities"]

FDP_IFF.2.5-NIAP-0407 The TSF shall explicitly authorize an information flow based
on the following rules: [selection: [assignment: rules, based on security
attributes, that explicitly authorize information flows], "no explicit
authorization rules"]

 67

FDP_IFF.2.6-NIAP-0407 The TSF shall explicitly deny an information flow based on
the following rules: [selection: [assignment: rules, based on security
attributes, that explicitly deny information flows], "no explicit denial rules"]

FDP_IFF.2.7-NIAP-0407 The TSF shall enforce the following relationships for any
two valid information flow control security attributes:

a) There exists an ordering function that, given two valid security
attributes, determines if the security attributes are equal, if one security
attribute is greater than the other, or if the security attributes are
incomparable; and

b) There exists a “least upper bound” in the set of security attributes,
such that, given any two valid security attributes, there is a valid security
attribute that is greater than or equal to the two valid security attributes;
and

c) There exists a “greatest lower bound” in the set of security attributes,
such that, given any two valid security attributes, there is a valid security
attribute that is not greater than the two valid security attributes.

 68

D. Identification and Authentication
(Back to TOC)

Instruction 24: FIA_AFL.1-NIAP-0425 Authentication failures
(Back to TOC)

The PPRB recommends that authentication failure controls be present on all Medium
Robustness PPs, and further that these controls be administrator-settable. The PPRB
recommends the following text be included to capture this functionality for all Medium
Robustness PPs.

Required Text:

FIA_AFL.1-NIAP-0425 Authentication failure handling

FIA_AFL.1.1-NIAP-0425: Refinement: The TSF shall detect when [a <role
administrator>-configurable integer] of unsuccessful
authentication attempts occur related to [assignment: list of
authentication events].

FIA_AFL.1.2-NIAP-0425 When the defined number of unsuccessful
authentication attempts has been met or surpassed, the TSF shall
[prevent the [assignment: entities requesting authentication]
from performing activities that require authentication until an
action is taken by the <role administrator>].

The PP authors should ensure that when the entities requesting
authentication is specified in the PP, at least one account should be
exempted from the requirement so as to avoid an administrative denial of
service.

Instruction 25: FIA_USB.1 User-subject binding
(Back to TOC)

In the Threats, Policies, Objectives, and Requirements for Medium Robustness TOEs
table the PPRB suggests including FIA_USB.1-NIAP-0415. This text is included below
to capture the notion that all of the user attributes specified in FIA_ATD should be
associated with subjects.

Required Text:

FIA_USB.1-NIAP-0415 User-Subject Binding

FIA_USB.1.1-NIAP-0415 - Refinement: The TSF shall associate all user
security attributes with subjects acting on behalf of that user.

 69

If the PP authors wish to specify rules governing the binding of users to subjects (which
is not able to be specified using FIA_USB.1-NIAP-0415), the Interpreted Text below
should be used as the template.

Interpreted Text:

FIA_USB.NIAP-0352-1: Expanded user-subject binding

FIA_USB.NIAP-0352-1.1: Refinement: The TSF shall associate all user
security attributes with subjects acting on the behalf of that user.

FIA_USB.NIAP-0352-1.2: The TSF shall enforce the following rules on the
initial association of user security attributes with subjects acting on
the behalf of users: [assignment: initial association rules].

FIA_USB.NIAP-0352-1.3: The TSF shall enforce the following rules
governing changes to the user security attributes associated with
subjects acting on the behalf of users: [assignment: changing of
attributes rules].

E. Protection of the TSF
(Back to TOC)

Instruction 26: FPT_RPL.1 Replay detection
(Back to TOC)

In order to ensure consistency in the selection of data and actions for which replay
detection is required at Medium Robustness, the PPRB recommends that the following
text be used.

Required Text

FPT_RPL.1 Replay detection

FPT_RPL.1.1 - The TSF shall detect replay for the following entities:
[authentication data, TSF data, and security attributes].

FPT_RPL.1.2 - The TSF shall perform: [reject data; audit event; and
[assignment: list of specific actions]] when replay is detected.

Instruction 27: FPT_RCV Trusted recovery
(Back to TOC)

The PPRB considers basic recovery a feature consistent with Medium Robustness. The
PPRB suggests including the following text for a minimum of FPT_RCV.2-NIAP-0406
in all Medium Robustness PPs. For Medium Robustness, a selection of “no
failures/service discontinuities” is acceptable. However, the PP authors may wish to
leave the selection open to accommodate vendors that do provide more robust recovery
mechanisms.

 70

If the PP authors use FPT_RCV.3-NIAP-0406 instead, the Interpreted Text below should
be used as the template.

Required Text:

FPT_RCV.2-NIAP-0406 Recovery from Failure

FPT_RCV.2.1-NIAP-0406 For [selection: [assignment: list of failures/service
discontinuities], "no failures/service discontinuities"], the TSF shall
ensure the return of the TOE to a secure state using automated
procedures.

FPT_RCV.2.2-NIAP-0406 When automated recovery from a failure or service
discontinuity is not possible, the TSF shall enter a maintenance
mode where the ability to return the TOE to a secure state is
provided.

Interpreted Text:

FPT_RCV.3-NIAP-0406 Recovery without undue loss

FPT_RCV.3.1-NIAP-0406 For [selection: [assignment: list of failures/service
discontinuities], "no failures/service discontinuities"], the TSF shall
ensure the return of the TOE to a secure state using automated
procedures.

FPT_RCV.3.2-NIAP-0406 When automated recovery from a failure or service
discontinuity is not possible, the TSF shall enter a maintenance
mode where the ability to return the TOE to a secure state is
provided.

FPT_RCV.3.3-NIAP-0406 The functions provided by the TSF to recover from
failure or service discontinuity shall ensure that the secure initial
state is restored without exceeding [assignment: quantification] for
loss of TSF data or objects within the TSC.

FPT_RCV.3.4-NIAP-0406 The TSF shall provide the capability to determine
the objects that were or were not capable of being recovered.

Instruction 28: FPT_TST TSF self test
(Back to TOC)

The PPRB recommends that TSF testing be specified in all Medium Robustness PPs in
order to validate aspects of the TSF prior to or while it is operating. However, some TOE
data are dynamic (e.g., data in the audit trail, passwords) and so interpretation of
“integrity” for FPT_TST.1.2 is required, leading to potential inconsistencies amongst
Medium Robustness TOEs. The PPRB therefore makes the following recommendation
for the FPT_TST component.

 71

Required Text:

FPT_TST_(EXP).4 TSF testing (with cryptographic integrity verification)

• FPT_TST_(EXP).4.1 –The TSF shall run a suite of self-tests
during initial start-up, periodically during normal operation as
specified by the <role administrator>, and at the request of a
<role administrator> to demonstrate the correct operation of the
hardware portions of the TSF.

• FPT_TST_(EXP).4.2 –The TSF shall provide a <role
administrator> with the capability to use a TSF-provided
cryptographic function to verify the integrity of all TSF data
except the following: audit data, [selection: [assignment: other
dynamic TSF data for which no integrity validation is justified],
none]].

• FPT_TST_(EXP).4.3 - The TSF shall provide a <role
administrator> with the capability to use a TSF-provided
cryptographic function to verify the integrity of stored TSF
executable code.

Application Note: This explicit requirement is necessary since some TOE data are
dynamic (e.g., data in the audit trail, passwords) and so interpretation of “integrity”
for FPT_TST.1.2 is required, leading to potential inconsistencies. The intention is
that any parameter that only an administrator can control is verified to ensure its
integrity is maintained. It is not necessary for the TOE to verify the integrity of audit
data or user’s passwords. If the TOE verifies the integrity of these, the ST author
may fill in the assignment to include them.

Since this TOE includes all the hardware necessary for the operation of the TOE, the
element FPT_TST_(EXP).4.1 ensures that the hardware aspects of the TOE are
tested prior to or during operations. It is not necessary to test the software portions
of the TSF, since the evaluation ensures the correct operation of the software,
software does not degrade or suffer intermittent faults, as does hardware, and
integrity of the software portions of the TSF are addressed by FPT_TST_(EXP).4.3.
Note that since cryptographic functions implemented in hardware that are part of a
cryptomodule are tested in FPT_TST_(EXP).5, this requirement only applies to
cryptographic functionality implemented in hardware that is not implemented in a
cryptomodule (for instance, an implementation of a Key Agreement algorithm).

In element 4.2, the ST author should specify the TSF data for which integrity
validation is not required, and also specify the administrative role that is able to
invoke the integrity verification process. While some TSF data are dynamic and
therefore not amenable to integrity verification, it is expected that all TSF data for
which integrity verification “makes sense” be subject to this requirement.

In elements 4.2 and 4.3, the cryptographic mechanism can be any one of the ones
specified in FCS_COP_(EXP).3 or FCS_COP_(EXP).6, although typically hash
functions or digital signatures are used for integrity verification.

FPT_TST_(EXP).5 Cryptographic self-test

 72

a) FPT_TST_(EXP).5.1 – The TSF shall run the suite of self-tests
provided by the FIPS 140-2 cryptographic module during initial
start-up (power on), at the request of the cryptographic
administrator, periodically (at a Security Administrator-specified
interval not less than at least once a day) to demonstrate the
correct operation of the cryptographic components of the TSF.

b) FPT_TST_(EXP).5.2 – The TSF shall be able to run the suite of
self-tests provided by the FIPS 140-2 cryptographic module
immediately after the generation of a key.

Application Note: For element 3.2, the Cryptographic Administrator has the ability
to enable and disable this capability; this is specified in FMT_MOF.1(2).

 73

F. Resource Utilization
(Back to TOC)

Instruction 29: FRU_RSA.1 Resource allocation, FMT_MOF.1 Management of
functions in TSF, FMT_MTD.2 Management of TSF data
(Back to TOC)

Another key feature of medium robustness TOEs is their ability to prevent some level of
denial of service attacks. These types of attacks are very technology-specific and must be
specified by the PP authors. It is not necessary for a medium robustness TOE to counter
all denial of service attacks; only those that may be countered using current technology
capabilities should be specified.

In specifying requirements for resource utilization, the PP authors need to use three
different components. Because there are a number of selections of these components, it
may be necessary to iterate them to distinguish requirements on one resource from
another. FRU_RSA.1 should be used to specify the resource, and controls on that
resource. The PPRB suggests refining the requirement to specify that the administrator
be able to specify (at a minimum) the period of time over which the resource utilization
check will be made; therefore, an FMT_MOF.1 iteration is needed to restrict this
functionality to the administrator. Likewise, since the administrator is imposing limits on
the use of a resource, FMT_MTD.2 iteration is needed to specify those limits and restrict
them to the appropriate administrator.

The following text is an example of such a FRU_RSA.1/FMT_MOF.1/FMT_MTD.2
grouping from the Firewall Protection Profile. Unlike other requirement text in this
document, it is not intended to be used verbatim in other PPs. Instead, it is included as an
example of how the three components are linked to specify this type of functionality, and
to suggest a style (including the somewhat verbose application notes) for such
components. The PPRB suggests that the PP authors use non-technology-specific
refinements (such as those mandating an administrator be allowed to set various items
called for by the components, as opposed to having the developer “hard-wire” them in) in
their specifications.

Example Text

FRU_RSA.1(2) - Maximum quotas (controlled connection-oriented
quotas)

FRU_RSA.1.1(2) – Refinement: The TSF shall enforce administrator-
specified maximum quotas of the following resources:
[assignment: controlled connection-oriented resources] that users
associated with [an administrator-specified network identifier and
a set of administrator-specified network identifiers] can use [over
an administrator-specified period of time].

 74

Application Note: This requirement applies to a network entity attempting to exhaust the
specified connection-oriented resources (or set of such resources) on the TOE.
Connectionless sessions are not a concern because they do not consume resources
that persist like connection-oriented sessions do.

 The ST author should fill in the first assignment with the list of connection-oriented
resources to which this requirement applies. That is, when a network entity uses
such a connection-oriented resource (or a collection of these resources), the TOE
tracks that use for the purpose of determining whether the entity has exceed the
quota established by the administrator.

The ST author should use the first selection to indicate whether the TOE is able to
track the assignment of the specified resources based on a single network identifier
(e.g., a specific IP address) or multiple network identifiers (e.g., a specific IP subnet
address). The second selection should reflect the way in which the TOE tracks such
resource use. Note that the ST author may have to iterate this requirement if
different resources can be controlled differently by the TOE. The ST author should
ensure that FMT_MTD.2(2) specifies the actions that are taken for each resource on
which there is a quota.

FMT_MOF.1(4) Management of security functions behavior (quota
mechanism)

FMT_MOF.1.1(4) - The TSF shall restrict the ability to determine the behavior
of the functions:

2 [Controlled connection-oriented resource allocation (FRU_RSA.1(2));

3 an administrator-specified network identifier;

4 set of administrator-specified network identifiers;

5 administrator-specified period of time.]

to [the Security Administrator].

Application Note: “determine the behavior of” refers to specifying the network
identifier(s) that will be tracked using the FRU_RSA.1(2) requirement and the time
period over which the quota limitations are enforced. Note that the specification of
the actual quotas, while part of the resource allocation functionality, is done by
FMT_MTD.2(2).

FMT_MTD.2(2) Management of limits on TSF data (controlled
connection-oriented quotas)

FMT_MTD.2.1(2) - The TSF shall restrict the specification of the limits for
[quotas on controlled connection-oriented resources] to [the
Security Administrator].

FMT_MTD.2.2(2) - The TSF shall take the following actions, if the TSF data
are at, or exceed, the indicated limits: [assignment: actions to be
taken].

 75

Application Note: For FMT_MTD.2.2(2), the ST author should specify the
actions that the TOE takes for each controlled connection-oriented
resource when the quota (with respect to the specific network identifier or
set of network identifiers) established by the Security Administrator is
reached. This requirement may have to be iterated to be consistent with
FRU_RSA.1(2). See the application note on FRU_RSA.1(2) for more
detail on the requirements for the quota mechanism.

 76

G. Security Management Roles
(Back to TOC)

Instruction 30: FMT_SMR.2 Restriction on Security Roles
(Back to TOC)

Separation of roles is required in Medium Robustness PPs primarily in order to mitigate
the T.ADMIN_ROGUE threat. Additionally, the PPRB considers remote administration
desirable for Medium Robustness TOEs. However, remote administration may not make
sense for all technology areas. If remote administration does not make sense, the PP
authors should provide a justification for this -- separate from the PP--and adjust the text
of the PP appropriately for the P.ADMIN_ACCESS policy. The PP authors should also
modify the appropriate threats, policies, objectives, and components to remove the notion
of remote administration. When remote administration is employed the TOE must
provide a secure means of performing the remote administration by providing a means
for protecting the communication path from disclosure of data, and providing a means for
detecting modification of data.

Required Text

FMT_SMR.2 Restrictions on security roles

FMT_SMR.2.1 - The TSF shall maintain the roles:

[Security Administrator; Cryptographic Administrator (i.e., users authorized to
perform cryptographic initialization and management functions); Audit
Administrator; and [selection: [assignment: any other roles], none]].

FMT_SMR.2.2 - The TSF shall be able to associate users with roles.

FMT_SMR.2.3 - The TSF shall ensure that the conditions

[All roles shall be able to administer the TOE locally; all roles shall be able to
administer the TOE remotely; all roles are distinct; that is, there shall be no
overlap of operations performed by each role, with the following exceptions:
[assignment: the PP author assigns the functions that are allowed to overlap] (The
PP author must play close attention to the FMT requirements and which roles are
allowed to perform certain functions within the other requirements.).
Application Note: The administering of the TOE is limited to the capabilities associated
with an administrative role.

 77

H. TOE Access
(Back to TOC)

Instruction 31: FTA_TAB.1 TOE access banner
(Back to TOC)

The PPRB recommends that a TOE Access Banner be required for all Medium
Robustness TOEs. The PP authors should ensure that the wording of the requirement
reflects -the fact that a banner only makes sense for sessions established by human users.
Note also that the application note clarifies that an administrator has control of what is
displayed, including whether or not to display information that might identify the TOE
(as opposed to the developer “hard-coding” this information).

Required Text

FTA_TAB.1 Default TOE access banners

FTA_TAB.1.1 - Refinement: Before establishing a user session that
requires authentication, the TSF shall display only a <role
administrator>-specified advisory notice and consent warning
message regarding unauthorized use of the TOE.

Application Note: The access banner applies whenever the TOE will
provide a prompt for identification and authentication (e.g.,
administrators, authenticated proxy users). The intent of this requirement
is to advise users of warnings regarding the unauthorized use of the TOE
and to provide the Security Administrator with control over what is
displayed (e.g., if the Security Administrator chooses, they can remove
banner information that informs the user of the product and version
number).

Instruction 32: FTA_TSE.1 TOE session establishment
(Back to TOC)

The PPRB recommends that additional restrictions be placed on how and when
authorized users can access the TOE; this is accomplished by FTA_TSE.1. In order to
ensure a similar granularity of control with this mechanism, the PPRB recommends the
following text be used in all Medium Robustness PPs. PP authors may have to include an
application note to clarify what is meant by “authorized user session.”

Required Text

FTA_TSE.1 TOE session establishment

FTA_TSE.1.1 - Refinement: The TSF shall be able to deny establishment of
an authorized user session based on location, time, and day.

 78

 79

V. Explicit Common Criteria Security Assurance Requirements
(Back to TOC)

Instruction 33: ADV_ARC_(EXP).1 Architectural design, ADV_INT_(EXP).1
Modular decomposition, DV_FSP_(EXP).1 Functional specification With Complete
Summary, ADV_HLD_(EXP).1 Security-enforcing high-level design,
ADV_LLD_(EXP).1 Security-enforcing low-level design

The PPRB has crafted a number of explicit ADV assurance requirements to be included
in profiles written for Medium Robustness environments. The assurance requirements
are provided below. The PP author should place the assurance requirements in the body
of the PP. Additional explanatory (e.g., objective, application notes) material for each
explicit component can be found in an appendix of this document and should be
incorporated (as an appendix) into medium robustness PPs as well. The
ADV_INT_(EXP).1 assurance requirement differs from other assurance requirements in
that the PP author is to fill in an assignment of the modules that are of special concern to
their TOE.

Required text

ADV_ARC_(EXP).1 Architectural design

Dependencies: FPT_SEP.1, FPT_RVM.1, ADV_FSP_(EXP).1,
ADV_HLD_(EXP).1, ADV_LLD_(EXP).1, ADV_INT_(EXP).1,
ADV_IMP.2

ADV_ARC_(EXP).1.1D The developer shall provide the architectural design
of the TSF.

Content and Presentation of Evidence:

ADV_ARC_(EXP).1.1C The presentation of the architectural design of the
TSF shall be informal.

ADV_ARC_(EXP).1.2C The architectural design shall be internally consistent.

ADV_ARC_(EXP).1.3C The architectural design shall describe the design of
the TSF self-protection mechanisms.

ADV_ARC_(EXP).1.4C The architectural design shall describe the design of
the TSF in detail sufficient to determine that the security enforcing
mechanisms cannot be bypassed.

ADV_ARC_(EXP).1.5C The architectural design shall justify that the design
of the TSF achieves the self-protection function.

Evaluator action elements:

ADV_ARC_(EXP).1.1E The evaluator shall confirm that the information
provided meets all requirements for content and presentation of
evidence.

 80

ADV_ARC_(EXP).1.2E The evaluator shall analyze the architectural
design and dependent documentation to determine that
FPT_SEP and FPT_RVM are accurately implemented in the
TSF.

ADV_INT_(EXP).1 Modular decomposition

Dependencies: ADV_IMP.2, ADV_LLD_(EXP).1

Developer action elements:

ADV_INT_(EXP).1.1D The developer shall design and implement the TSF
using modular decomposition.

ADV_INT_(EXP).1.2D The developer shall use sound software
engineering principles to achieve the modular decomposition of
the TSF.

ADV_INT_(EXP).1.3D The developer shall design the modules such that
they exhibit good internal structure and are not overly complex.

ADV_INT_(EXP).1.4D The developer shall design modules that implement
the [assignment: list of SFPs] such that they exhibit only
functional, sequential, communicational, or temporal cohesion,
with limited exceptions.

ADV_INT_(EXP).1.5D The developer shall design the SFP-enforcing
modules such that they exhibit only call or common coupling, with
limited exceptions.

Application Note: SFP-enforcing modules are TSF modules that implement a
specific SFP identified in ADV_INT_(EXP).1.4D.

ADV_INT_(EXP).1.6D The developer shall implement TSF modules using
coding standards that result in good internal structure that is not
overly complex.

ADV_INT_(EXP).1.7D The developer shall provide a software
architectural description.

Content and presentation of evidence elements:

ADV_INT_(EXP).1.1C The software architectural description shall identify
the SFP-enforcing and non-SFP-enforcing modules.

ADV_INT_(EXP).1.2C The TSF modules shall be identical to those
described by the low level design (ADV_LLD_(EXP).1.4C).

ADV_INT_(EXP).1.3C The software architectural description shall provide
a justification for the designation of non-SFP-enforcing modules
that interact with the SFP-enforcing module(s).

 81

ADV_INT_(EXP).1.4C The software architectural description shall
describe the process used for modular decomposition.

ADV_INT_(EXP).1.5C The software architectural description shall

ADV_INT_(EXP).1.7C The software architectural description shall provide

ules.

g modules, other than those permitted.

ADV_INT_ ll confirm that the information
provided meets all the requirements for content and presentation

-enforcing modules.

ADV_FSP tion with Complete Summary

eveloper Action Elements

nal
specification.

Evidence:

SF.

l specification shall be internally
consistent.

describe how the TSF design is a reflection of the modular
decomposition process.

ADV_INT_(EXP).1.6C The software architectural description shall include
the coding standards used in the development of the TSF.

a justification, on a per module basis, of any deviations from the
coding standards.

ADV_INT_(EXP).1.8C The software architectural description shall include
a coupling analysis that describes inter-module coupling for the
SFP-enforcing mod

ADV_INT_(EXP).1.9C The software architectural description shall provide
a justification, on a per module basis, for any coupling or cohesion
exhibited by SFP-enforcin

ADV_INT_(EXP).1.10C The software architectural description shall provide
a justification, on a per module basis, that the SFP-enforcing
modules are not overly complex.

Evaluator action elements:

(EXP).1.1E The evaluator sha

of evidence.

ADV_INT_(EXP).1.2E The evaluator shall perform a cohesion analysis for
the modules that substantiates the type of cohesion claimed for a
subset of SFP

ADV_INT_(EXP).1.3E The evaluator shall perform a complexity analysis
for a subset of TSF modules.

_(EXP).1 Functional specifica

D

 ADV_FSP_(EXP).1.1D The developer shall provide a functio

Content and Presentation of

ADV_FSP_(EXP).1.1C The functional specification shall completely
represent the T

ADV_FSP_(EXP).1.2C The functiona

 82

 ADV_FSP_(EXP).1.3C The functional specification shall describe the
external TSF interfaces (TSFIs) using an informal style.

I as security enforcing or security supporting.

 effects and
security enforcing exceptions.

ADV_FSP_ the functional
specification shall describe direct error messages resulting from

Evaluator A

 evaluator shall determine that the functional
specification is an accurate and complete instantiation of the user-

Dependenc P).1,
ADV_LLD_(EXP).1, ADV_ARC_(EXP).1, ADV_INT_(EXP).1

Developer Action Elements:

ADV_HLD_(EXP).1.1D The developer shall provide the high-level design of

Content an

ADV_HLD_(EXP).1.1C The high-level design shall describe the structure of

ADV_HLD_ C The high-level design shall be internally consistent.

ADV_HLD_(EXP).1.3C The high level design shall describe the subsystems

 ADV_HLD shall describe the design of the
E

are part of the TSF.

ADV_FSP_(EXP).1.4C The functional specification shall designate each
external TSF

ADV_FSP_(EXP).1.5C The functional specification shall describe the
purpose and method of use for each external TSFI.

ADV_FSP_(EXP).1.6C The functional specification shall identify and describe
all parameters associated with each external TSFI.

ADV_FSP_(EXP).1.7C For security enforcing external TSFIs, the functional
specification shall describe the security enforcing

(EXP).1.8C For security enforcing external TSFIs,

security enforcing effects and exceptions.

ction Elements

ADV_FSP_(EXP).1.1E The evaluator shall confirm that the information
provided meets all requirements for content and presentation of
evidence.

ADV_FSP_(EXP).1.2E The

visible TOE security functional requirements.

ADV_HLD_(EXP).1 Security-enforcing high-level design

ies: FPT_SEP.1, FPT_RVM.1, ADV_FSP_(EX

the TOE.

d Presentation of Evidence:

the TOE in terms of subsystems.

(EXP).1.2

using an informal style.

_(EXP).1.4C The high-level design
TOE in sufficient detail to determine what subsystems of the TO

 83

ADV_HLD_(EXP).1.5C The high-level design shall identify all subsystems in
the TSF, and designate them as either security enforcing or
security supporting.

ADV_HLD
 subsystems.

rity-enforcing behavior.

ADV_HLD_(EXP).1.10C The high-level design shall summarize all other

ADV_HLD_(EXP).1.11C The high-level design shall describe any interactions

ADV_HLD_(EXP).1.1E The evaluator shall confirm that the information

ser-visible
TOE security functional requirements with the exception of

Dependen
MP.2

DV_LLD_(EXP).1.1D The developer shall provide the low-level design of
the TSF.

Content and Presentation of Evidence

el design shall be

ADV_LLD_ C The presentation of the low-level design shall be
rom the implementation representation.

sign shall be internally consistent.

ommon to more than one module, where any of the
modules is a security-enforcing module.

_(EXP).1.6C The high-level design shall describe the structure of
the security-enforcing

ADV_HLD_(EXP).1.7C For security-enforcing subsystems, the high-level
design shall describe the design of the security-enforcing
behavior.

ADV_HLD_(EXP).1.8C For security-enforcing subsystems, the high-level
design shall summarize any non-secu

ADV_HLD_(EXP).1.9C The high-level design shall summarize the behavior
for security-supporting subsystems.

interactions between subsystems of the TSF.

between the security-enforcing subsystems of the TSF.

provided meets all requirements for content and presentation of
evidence.

ADV_HLD_(EXP).1.2E The evaluator shall determine that the high-level
design is an accurate and complete instantiation of all u

FPT_SEP and FPT_RVM.

ADV_LLD_(EXP).1 Security-enforcing low-level design

cies: ADV_FSP_(EXP).1, ADV_HLD_(EXP).1,
ADV_ARC_(EXP).1, ADV_I

A

ADV_LLD_(EXP).1.1C The presentation of the low-lev
informal.

(EXP).1.2
separate f

ADV_LLD_(EXP).1.3C The low-level de

ADV_LLD_(EXP).1.4C The low-level design shall identify and describe data
that are c

 84

ADV_LLD_(EXP).1.5C The low-level design shall describe the TSF in terms
of modules, designating each module as either security-enforcing
or security-supporting.

ADV_LLD_(EXP).1.6C The low level design shall describe each security-

mentation.

ADV_LLD_
all requirements for content and presentation of

evidence.

ADV_LLD_
ccurate and complete instantiation of all TOE

security functional requirements, with the exception of FPT_SEP

enforcing module in terms of its purpose, interfaces, return values
from those interfaces, called interfaces to other modules, and
global variables.

ADV_LLD_(EXP).1.7C For each security-enforcing module, the low level
design shall provide an algorithmic description detailed enough to
represent the TSF imple

Application Note: An algorithmic description contains sufficient detail such
that two different programmers would produce functionally-
equivalent code, although data structures, programming methods,
etc. may differ.

ADV_LLD_(EXP).1.8C The low level design shall describe each security-
supporting module in terms of its purpose and interaction with
other modules.

Evaluator Action Elements

(EXP).1.1E The evaluator shall confirm that the information
provided meets

(EXP).1.2E The evaluator shall determine that the low-level
design is an a

and FPT_RVM.

 85

VI. Appendices
(Back to TOC)

Appendix A Mapping of Medium Robustness Threats/Policies
to Objectives
(Back to TOC)

Sample rationale is provided below. The PP authors should examine various NIAP
evaluated PPs for examples of rationale.

Threat/Policy Objectives Addressing the Threat Rationale

O. ROBUST_ADMIN_GUIDANCE

The TOE will provide administrators with the
necessary information for secure delivery and
management.

O. ROBUST_ADMIN_GUIDANCE
(ADO_DEL.2, ADO_IGS.1, AGD_ADM.1,
AGD_USR.1, AVA_MSU.2) help to
mitigate this threat by ensuring the TOE
administrators have guidance that instructs
them how to administer the TOE in a secure
manner and to provide the administrator
with instructions to ensure the TOE was not
corrupted during the delivery process.
Having this guidance helps to reduce the
mistakes that an administrator might make
that could cause the TOE to be configured
in a way that is insecure.

O.ADMIN_ROLE

The TOE will provide administrator roles to
isolate administrative actions, and to make the
administrative functions available locally and
remotely.

O.ADMIN_ROLE (FMT_SMR.2) plays a
role in mitigating this threat by limiting the
functions an administrator can perform in a
given role. For example, the Audit
Administrator could not make a
configuration mistake that would impact the
directory access control policy. Likewise, a
directory manager could only affect policies
in the sub-hierarchy they are responsible
for, and not other sub-hierarchies or global
directory policies.

T. ADMIN_ ERROR

An administrator may
incorrectly install or configure
the TOE, or install a corrupted
TOE resulting in ineffective
security mechanisms.

O.MANAGE

The TOE will provide all the functions and
facilities necessary to support the
administrators in their management of the
security of the TOE, and restrict these functions
and facilities from unauthorized use.

O.MANAGE (FMT_MTD.1) also
contributes to mitigating this threat by
providing administrators the capability to
view configuration settings. For example, if
the Security Administrator made a mistake
when configuring the rule-set, providing
them the capability to view the rules affords
them the ability to review the rules and
discover any mistakes that might have been
made.

 86

Threat/Policy Objectives Addressing the Threat Rationale

T.ADMIN_ROGUE

An administrator’s intentions
may become malicious resulting
in user or TSF data being
compromised.

O.ADMIN_ROLE

The TOE will provide administrator roles to
isolate administrative actions, and to make the
administrative functions available locally and
remotely.

O.ADMIN_ROLE (FMT_SMR.2) mitigates
this threat by restricting the functions
available to an administrator. This is
somewhat different than the part this
objective plays in countering
T.ADMIN_ERROR, in that this presumes
that separate individuals will be assigned
separate roles. If the Audit Administrator’s
intentions become malicious they would not
be able to render the TOE unable to enforce
its directory access control policy. On the
other hand, if the Directory Administrator
becomes malicious they could affect the
directory access control policy, but the
Audit Administrator may be able to detect
those actions.

O.AUDIT_PROTECTION

The TOE will provide the capability to protect
audit information.

O.AUDIT_PROTECTION (FAU.SAR.2,
FAU_STG.1-NIAP-0429, FAU_STG.3,
FAU_STG.NIAP-0414-1, FMT_SMF.1)
contributes to mitigating this threat by
controlling access to the audit trail. The
auditor and any trusted IT entities
performing IDS-like functions are the only
ones allowed to read the audit trail. No one
is allowed to modify audit records, and the
Auditor is the only one allowed to delete
audit records in the audit trail. The TOE has
the capability to prevent auditable actions
from occurring if the audit trail is full, and
of notifying an administrator if the audit
trail is approaching its capacity. In
addition, the TOE has the capability to
restore audit data corrupted by the attacker.

T.AUDIT_COMPROMISE

A malicious user or process may
view audit records, cause audit
records to be lost or modified, or
prevent future audit records from
being recorded, thus masking a
user’s action.

O.RESIDUAL_INFORMATION

The TOE will ensure that any information
contained in a protected resource is not
released when the resource is reallocated.

O.RESIDUAL_INFORMATION
(FDP.RIP.2) prevents a user not authorized
to read the audit trail from access to audit
information that might otherwise be
persistent in a TOE resource (e.g.,
memory). By ensuring the TOE prevents
residual information in a resource, audit
information will not become available to
any user or process except those explicitly
authorized for that data.

 87

Threat/Policy Objectives Addressing the Threat Rationale

 O.SELF_PROTECTION

The TSF will maintain a domain for its own
execution that protects itself and its resources
from external interference, tampering or
unauthorized disclosure.

O.SELF_PROTECTION (FPT_SEP.2,
FPT_RVM.1) contributes to countering this
threat by ensuring that the TSF can protect
itself from users. If the TSF could not
maintain and control its domain of
execution, it could not be trusted to control
access to the resources under its control,
which includes the audit trail. Likewise,
ensuring that the functions that protect the
audit trail are always invoked is also critical
to the mitigation of this threat.

O.RESIDUAL_INFORMATION

The TOE will ensure that any information
contained in a protected resource is not
released when the resource is reallocated.

O.RESIDUAL_INFORMATION
(FDP_RIP.2) is necessary to mitigate this
threat by ensuring no TSF data remain in
resources allocated to a user. Even if the
security mechanisms do not allow a user to
explicitly view TSF data, if TSF data were
to inappropriately reside in a resource that
was made available to a user, that user
would be able to inappropriately view the
TSF data.

O.SELF_PROTECTION

The TSF will maintain a domain for its own
execution that protects itself and its resources
from external interference, tampering, or
unauthorized disclosure.

O.SELF_PROTECTION (FPT_SEP.2,
FPT_RVM.1) contributes to countering this
threat by ensuring that the TSF can protect
itself from users. If the TSF could not
maintain and control its domain of
execution, it could not be trusted to control
access to the resources under its control,
which includes the cryptographic data and
executable code.

T.CRYPTO_COMPROMISE

A malicious user or process may
cause key, data or executable
code associated with the
cryptographic functionality to be
inappropriately accessed
(viewed, modified, or deleted),
thus compromising the
cryptographic mechanisms and
the data protected by those
mechanisms.

O.DOCUMENT_KEY_LEAKAGE

The bandwidth of channels that can be used to
compromise key material shall be documented.

O.DOCUMENT_KEY_LEAKAGE
(AVA_CCA_(EXP).2) addresses this threat
by requiring the developer to perform an
analysis that documents the amount of key
information that can be leaked via a covert
channel. This provides information that
identifies how much material could be
inappropriately obtained within a specified
time period.

 88

Threat/Policy Objectives Addressing the Threat Rationale

T.MASQUERADE

A malicious user, process, or
external IT entity may
masquerade as an authorized
entity in order to gain access to
data or TOE resources.

O.ROBUST_TOE_ACCESS

The TOE will provide mechanisms that control
a user’s logical access to the TOE and to
explicitly deny access to specific users when
appropriate.

O. ROBUST_TOE_ACCESS (FIA_AFL.1-
NIAP-0425, FIA_ATD.1, FIA_UID.2,
FIA_UAU.1, FIA_UAU.2, FIA_UAU.5,
FTA_TSE.1, AVA_SOF.1, FPT_TDC.1,
FPT_ITA.1) mitigates this threat by
controlling the logical access to the TOE
and its resources. By constraining how and
when authorized users can access the TOE,
and by mandating the type and strength of
the authentication mechanisms, this
objective helps mitigate the possibility of a
user attempting to login and masquerade as
an authorized user. In addition, this
objective provides the administrator the
means to control the number of failed login
attempts a user can generate before an
account is locked out, further reducing the
possibility of a user gaining unauthorized
access to the TOE. This objective also
allows the TOE to correctly interpret
information used during the authentication
process so that it can make the correct
decisions when identifying and
authenticating users. Finally, this objective
provides the ability to control access to
certificates and revocation lists so they are
available in a timely fashion, contributing to
correct authentication decisions.

T.FLAWED_DESIGN

Unintentional or intentional
errors in requirements
specification or design of the
TOE may occur, leading to flaws
that may be exploited by a
malicious user or program.

O.CHANGE_MANAGEMENT

The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled throughout
the TOE’s development.

O.CHANGE_MANAGEMENT
(ACM_AUT.1, ACM_CAP.4,
ACM_SCP.2, ALC_DVS.1, ALC_FLR.2,
ALC_LCD.1) plays a role in countering this
threat by requiring the developer to provide
control of the changes made to the TOE’s
design. This includes controlling physical
access to the TOE’s development area, and
having an automated configuration
management system that ensures changes
made to the TOE go through an approval
process and only those persons that are
authorized can make changes to the TOE’s
design and its documentation.

 89

Threat/Policy Objectives Addressing the Threat Rationale

O.SOUND_DESIGN

The TOE will be designed using sound design
principles and techniques. The TOE design,
design principles and design techniques will be
adequately and accurately documented..

O.SOUND_DESIGN (ADV_FSP_(EXP).1,
ADV_HLD_(EXP).1, ADV_INT_(EXP).1,
ADV_LLD_(EXP).1, ADV_ARC_(EXP).1,
ADV_RCR.1, ADV_SPM.1) counters this
threat, to a degree, by requiring that the
TOE be developed using sound engineering
principles. By accurately and completely
documenting the design of the security
mechanisms in the TOE, including a
security model, the design of the TOE can
be better understood, which increases the
chances that design errors will be
discovered.

O.VULNERABILITY_ANALYSIS_TEST

The TOE will undergo appropriate independent
vulnerability analysis and penetration testing to
demonstrate the design and implementation of
the TOE does not allow attackers with medium
attack potential to violate the TOE’s security
policies.

O.VULNERABILITY_ANALYSIS_TEST
(AVA_VLA.3) ensures that the design of
the TOE is independently analyzed for
design flaws. Having an independent party
perform the assessment ensures an objective
approach is taken and may find errors in the
design that would be left undiscovered by
developers that have a preconceived
incorrect understanding of the TOE’s
design.

T.FLAWED_IMPLEMENTATI
ON

Unintentional or intentional
errors in implementation of the
TOE design may occur, leading
to flaws that may be exploited
by a malicious user or program.

O.CHANGE_MANAGEMENT

The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled throughout
the TOE’s development.

O.CHANGE_MANAGEMENT
(ACM_CAP.4, ACM_SCP.2, ALC_DVS.1,
ALC_FLR.2, ALC_LCD.1, ACM_AUT.1)
This objective plays a role in mitigating this
threat in the same way that the flawed
design threat is mitigated. By controlling
who has access to the TOE’s
implementation representation and ensuring
that changes to the implementation are
analyzed and made in a controlled manner,
the threat of intentional or unintentional
errors being introduced into the
implementation are reduced.

 90

Threat/Policy Objectives Addressing the Threat Rationale

O.SOUND_IMPLEMENTATION

The implementation of the TOE will be an
accurate instantiation of its design, and is
adequately and accurately documented.

In addition to documenting the design so
that implementers have a thorough
understanding of the design,
O.SOUND_IMPLEMENTATION
(ADV_IMP.2, ADV_LLD_(EXP).1,
ADV_RCR.1, ADV_INT_(EXP).1,
ADV_ARC_(EXP).1, ALC_TAT.1)
requires that the developer’s tools and
techniques for implementing the design are
documented. Having accurate and complete
documentation, and having the appropriate
tools and procedures in the development
process helps reduce the likelihood of
unintentional errors being introduced into
the implementation.

O.THOROUGH_FUNCTIONAL_TESTING

The TOE will undergo appropriate security
functional testing that demonstrates the TSF
satisfies the security functional requirements.

Although the previous three objectives help
minimize the introduction of errors into the
implementation,
O.THOROUGH_FUNCTIONAL_TESTIN
G (ATE_COV.2, ATE_FUN.1,
ATE_DPT.2, ATE_IND.2) increases the
likelihood that any errors that do exist in the
implementation (with respect to the
functional specification, high level, and
low-level design) will be discovered
through testing.

O.VULNERABILITY_ANALYSIS_TEST

The TOE will undergo appropriate independent
vulnerability analysis and penetration testing to
demonstrate the design and implementation of
the TOE does not allow attackers with medium
attack potential to violate the TOE’s security
policies.

O.VULNERABILITY_ANALYSIS_TEST
(AVA_VLA.3) helps reduce errors in the
implementation that may not be discovered
during functional testing. Ambiguous
design documentation, and the fact that
exhaustive testing of the external interfaces
is not required may leave bugs in the
implementation undiscovered in functional
testing. Having an independent party
perform a vulnerability analysis and
conduct testing outside the scope of
functional testing increases the likelihood of
finding errors.

 91

Threat/Policy Objectives Addressing the Threat Rationale

O.CORRECT_ TSF_OPERATION

The TOE will provide a capability to test the
TSF to ensure the correct operation of the TSF
in its operational environment.

While these testing activities are necessary
for successful completion of an evaluation,
this testing activity does not address the
concern that the TOE continues to operate
correctly and enforce its security policies
once it has been fielded. Some level of
testing must be available to end users to
ensure the TOE’s security mechanisms
continue to operate correctly once the TOE
is fielded. O.CORRECT_
TSF_OPERATION (FPT_TST_(EXP).4,
FPT_TST_(EXP).5) ensures that once the
TOE is installed at a customer’s location,
the capability exists that the integrity of the
TSF (hardware and software, including the
cryptographic functions) can be
demonstrated, and thus providing end users
the confidence that the TOE’s security
policies continue to be enforced.

O.THOROUGH_FUNCTIONAL_TESTING

The TOE will undergo appropriate security
functional testing that demonstrates the TSF
satisfies the security functional requirements.

Design analysis determines that TOE’s
documented design satisfies the security
functional requirements. In order to ensure
the TOE’s design is correctly realized in its
implementation, the appropriate level of
functional testing of the TOE’s security
mechanisms must be performed during the
evaluation of the TOE.
O.THOROUGH_FUNCTIONAL_
TESTING (ATE_FUN.1, ATE_COV.2,
ATE_DPT.2, ATE_IND.2) ensures that
adequate functional testing is performed to
demonstrate the TSF satisfies the security
functional requirements and that the TOE’s
security mechanisms operate as
documented. While functional testing serves
an important purpose, it does not ensure the
TSFI cannot be used in unintended ways to
circumvent the TOE’s security policies.

T.POOR_TEST

Lack of or insufficient tests to
demonstrate that all TOE
security functions operate
correctly (including in a fielded
TOE) may result in incorrect
TOE behavior being
undiscovered thereby causing
potential security vulnerabilities.

O.VULNERABILITY_ANALYSIS_TEST

The TOE will undergo appropriate independent
vulnerability analysis and penetration testing to
demonstrate the design and implementation of
the TOE does not allow attackers with medium
attack potential to violate the TOE’s security
policies.

O.VULNERABILITY_ANALYSIS_TEST
(AVA_VLA.3) addresses this concern by
requiring a vulnerability analysis be
performed in conjunction with testing that
goes beyond functional testing. This
objective provides a measure of confidence
that the TOE does not contain security flaws
that may not be identified through
functional testing.

 92

Threat/Policy Objectives Addressing the Threat Rationale

T.REPLAY

A user may gain inappropriate
access to the TOE by replaying
authentication information, or
may cause the TOE to be
inappropriately configured by
replaying TSF data or security
attributes (e.g., captured as
transmitted during the course of
legitimate use).

O.REPLAY_DETECTION

The TOE will provide a means to detect and
reject the replay of authentication data as well
as other TSF data and security attributes.

O.REPLAY_DETECTION (FPT_RPL.1)
prevents a user from replaying
authentication data. Prevention of replay of
authentication data will counter the threat
that a user will be able to record an
authentication session between a trusted
entity (administrative user or trusted IT
entity) and then replay it to gain access to
the TOE, as well as counter the ability of a
user to act as another user.

T.RESIDUAL_DATA

A user or process may gain
unauthorized access to data
through reallocation of TOE
resources from one user or
process to another.

O.RESIDUAL_INFORMATION

The TOE will ensure that any information
contained in a protected resource is not
released when the resource is reallocated.

O.RESIDUAL_INFORMATION
(FDP_RIP.2) counters this threat by
ensuring that TSF data and user data is not
persistent when resources are released by
one user/process and allocated to another
user/process. This means that network
packets sent in response to a request will
not have residual data from another packet
(potentially from another user) due to the
padding of a packet.

T.RESOURCE_EXHAUSTION

A malicious process or user may
block others from system
resources (e.g., example of
resources that apply to
technology) via a resource
exhaustion denial of service
attack.

O.RESOURCE_SHARING

The TOE shall provide mechanisms that
mitigate attempts to exhaust <specific types of
resources which the TOE protects> resources
provided by the TOE (e.g., examples of
resources that apply to technology).

O.RESOURCE_SHARING (FRU_RSA.1,
FMT_MTD.2) mitigates this threat by
requiring the TOE to provide controls
relating to two different resources: CPU
time and available network connections.
The administrator is allowed to specify a
percentage of processor time that is allowed
to be used so that an attempt to exhaust the
resource will fail when it reaches the quota.
This objective also addresses the denial-of-
service attack of a user attempting to
exhaust the connection-oriented resources
by generating a large number of half-open
connections (e.g., SYN attack).

T.SPOOFING

A malicious user, process, or
external IT entity may
misrepresent itself as the TOE to
obtain identification and
authentication data.

O.TRUSTED_PATH

The TOE will provide a means to ensure that
users are not communicating with some other
entity pretending to be the TOE when
supplying identification and authentication
data.

It is possible for an entity other than the
TOE (a subject on the TOE, or another IT
entity on the network between the TOE and
the end user) to provide an environment that
may lead a user to mistakenly believe they
are interacting with the TOE, thereby
fooling the user into divulging identification
and authentication information.
O.TRUSTED_PATH (FTP_ITC.1,
FTP_TRP.1) mitigates this threat by
ensuring users have the capability to ensure
they are communicating with the TOE when
providing identification and authentication
data to the TOE.

 93

Threat/Policy Objectives Addressing the Threat Rationale

O.RESIDUAL_INFORMATION

The TOE will ensure that any information
contained in a protected resource is not
released when the resource is reallocated.

O.RESIDUAL_INFORMATION
(FDP_RIP.2) is necessary to mitigate this
threat by ensuring no TSF data remain in
resources allocated to a user. Even if the
security mechanisms do not allow a user to
explicitly view TSF data, if TSF data were
to inappropriately reside in a resource that
was made available to a user, that user
would be able to inappropriately view the
TSF data.

O.SELF_PROTECTION

The TSF will maintain a domain for its own
execution that protects itself and its resources
from external interference, tampering or
unauthorized disclosure.

O.SELF_PROTECTION (FPT_SEP.2,
FPT_RVM.1) requires that the TSF be able
to protect itself from tampering and that the
security mechanisms in the TSF cannot be
bypassed. Without this objective, there
could be no assurance that users could not
view or modify TSF data or TSF
executables.

O.MANAGE

The TOE will provide all the functions and
facilities necessary to support the
administrators in their management of the
security of the TOE, and restrict these functions
and facilities from unauthorized use.

O.MANAGE (FMT_MTD.1, FMT_MSA.1,
FMT_MOF.1, FMT_MTD.2, FMT_SMF.1)
provides the capability to restrict access to
TSF to those that are authorized to use the
functions. Satisfaction of this objective (and
its associated requirements) prevents
unauthorized access to TSF functions and
data through the administrative
mechanisms.

T.MALICIOUS_TSF_
COMPROMISE

A malicious user or process may
cause TSF data or executable
code to be inappropriately
accessed (viewed, modified, or
deleted).

O.DISPLAY_BANNER

The TOE will display an advisory warning
regarding use of the TOE.

O.DISPLAY_BANNER (FTA_TAB.1)
helps mitigate this threat by providing the
Platform Administrator the ability to
remove product information (e.g., product
name, version number) from a banner that is
displayed to users. Having product
information about the TOE provides an
attacker with information that may increase
their ability to compromise the TOE

 94

Threat/Policy Objectives Addressing the Threat Rationale

 O.TRUSTED_PATH

The TOE will provide a means to ensure that
users are not communicating with some other
entity pretending to be the TOE when
supplying identification and authentication
data..

O.TRUSTED_PATH (FTP_TRP.1,
FTP_ITC.1) plays a role in addressing this
threat by ensuring that there is a trusted
communication path between the TSF and
various users (remote administrators,
relying parties (for authentication) and
trusted IT entities (for performing
replication, for instance)). This ensures the
transmitted data cannot be compromised or
disclosed during the duration of the trusted
path. The protection offered by this
objective is limited to TSF data, including
authentication data and all data sent or
received by trusted IT entities (a relying
party’s user data is not protected; only the
authentication portion of the session is
protected).

T.UNATTENDED_SESSION

A user may gain unauthorized
access to an unattended session.

O.ROBUST_TOE_ACCESS

The TOE will provide mechanisms that control
a user’s logical access to the TOE and to
explicitly deny access to specific users when
appropriate.

O. ROBUST_TOE_ACCESS (FTA_SSL.1,
FTA_SSL.2, FTA_SSL.3) helps to mitigate
this threat by including mechanisms that
place controls on user’s sessions. Local
administrator’s sessions are locked and
remote sessions are dropped after a
Platform Administrator-defined time period
of inactivity. Locking the local
administrator’s session reduces the
opportunity of someone gaining
unauthorized access the session when the
console is unattended. Dropping the
connection of a remote session (after the
specified time period) reduces the risk of
someone accessing the remote machine
where the session was established, thus
gaining unauthorized access to the session.

 95

Threat/Policy Objectives Addressing the Threat Rationale

O.MEDIATE

The TOE must protect user data in accordance
with its security policy.

O.MEDIATE (FDP_ACC.2, FDP_ACF.1)
works to mitigate this threat by requiring
that objects in the directory are protected
using access control items. An access
control item contains information about
who is allowed to access an object, as well
as the allowed modes of access. The
settings present in the access control item
selected in the access control decision
process determine whether or not a user is
authorized to access the object. It should be
noted that multiple security policies can be
(but do not have to be) in place in a single
TOE, meaning that the process by which the
target ACI is selected can be different for
two different objects. It is required,
however, that all objects be covered by this
policy. Note that O.SELF_PROTECTION
(FPT_RVM.1) ensures that this access
control mechanism is always invoked, thus
ensuring that users cannot bypass the
mechanism to access data for which they
are not authorized.

T.UNAUTHORIZED_ACCESS

A user may gain access to user
data for which they are not
authorized according to the TOE
security policy.

O.USER_GUIDANCE

The TOE will provide users with the
information necessary to correctly use the
security mechanisms.

O.USER_GUIDANCE (AGD_USR.1)
mitigates this threat by providing the user
the information necessary to use the
security mechanisms that control access to
user data in a secure manner. For instance,
the method by which the discretionary
access control mechanism (FDP_ACC.1,
FDP_ACF.1) is configured, and how to
apply it to the data the user owns, is
described in the user guidance. If this
information were not available to the user,
the information may be left unprotected, or
the user may mis-configure the controls and
unintentionally allow unauthorized access
to their data.

 96

Threat/Policy Objectives Addressing the Threat Rationale

T.UNIDENTIFIED_ACTIONS

The administrator may fail to
notice potential security
violations, thus limiting the
administrator’s ability to identify
and take action against a
possible security breach.

O.AUDIT_REVIEW

The TOE will provide the capability to
selectively view audit information, and alert the
administrator of identified potential security
violations.

O.AUDIT_REVIEW (FAU_SAA.1-NIAP-
0407, FAU_ARP.1,
FAU_ARP_ACK_DIR_(EXP).1, FAU_
SAR.1, FAU_SAR.3) helps to mitigate this
threat by providing a variety of mechanisms
for monitoring the use of the system. The
two basic ways audit review is performed is
through analysis of the audit trail produced
by the audit mechanism, and through the
use of an automated analysis and alarm
system.

For analyzing the audit trail, the TOE
requires an Auditor role. This role is
restricted to Audit record review and the
deletion of the audit trail for maintenance
purposes. A search and sort capability
provides an efficient mechanism for the
Audit Administrator to view pertinent audit
information. In addition to the local
Auditor role, the TOE also has the
capability to export the audit information to
an external audit analysis tool (such as an
intrusion detection system) for more
detailed or composite audit analysis.

The TOE’s audit analysis mechanism must
consist of a minimum set of configurable
audit events that could indicate a potential
security violation. Thresholds for these
events must be configurable by an
appropriate administrative role. By
configuring these auditable events, the TOE
monitors the occurrences of these events
(e.g. set number of authentication failures,
set number directory access failures, self-
test failures, etc.) and immediately notifies
an administrator once an event has occurred
or a set threshold has been met.

 97

Threat/Policy Objectives Addressing the Threat Rationale

 If a potential security violation has been
detected, the TOE displays a message that
identifies the potential security violation to
all administrative consoles. The consoles
include the local TOE console and any
active remote directory administrator
sessions. If an administrator is not currently
logged into the TOE, the message is stored
and immediately displayed the next time an
administrator logs into the TOE. This
message is displayed and will remain on the
screen until an administrator acknowledges
the message. At this point, all
administrators that have received the
message will receive notification that the
alarm has been acknowledged, who
acknowledged the alarm, and the time that it
was acknowledged.

In addition to displaying the potential
security violation, the message must contain
all audit records that generated the potential
security violation. By enforcing the
message content and display, this objective
provides assurance that a TOE administrator
will be notified of a potential security
violation.

O.MAINT_MODE

The TOE shall provide a mode from which
recovery or initial startup procedures can be
performed.

O.MAINT_MODE (FPT_RCV.2-NIAP-
0406) helps to mitigate this threat by
ensuring that the TOE does not continue to
operate in an insecure state when a
hardware or software failure occurs. After a
failure, the TOE enters a state that disallows
operations and requires an administrator to
follow documented procedures to return the
TOE to a secure state.

T.UNKNOWN_STATE

When the TOE is initially started
or restarted after a failure, the
security state of the TOE may be
unknown.

O.CORRECT_ TSF_OPERATION

The TOE will provide a capability to test the
TSF to ensure the correct operation of the TSF
in its operational environment.

O.CORRECT_TSF_OPERATION
(FPT_TST_(EXP).4, FPT_TST. _(EXP).5)
counters this threat by ensuring that the TSF
runs a suite of tests to successfully
demonstrate the correct operation of the
TSF (hardware and software) and the TSF’s
cryptographic components at initial startup
of the TOE. In addition to ensuring that the
TOE’s security state can be verified, an
administrator can verify the integrity of the
TSF’s data and stored code as well as the
TSF’s cryptographic data and stored code
using the TOE-provided cryptographic
mechanisms.

 98

Threat/Policy Objectives Addressing the Threat Rationale

O.SOUND_DESIGN

The TOE will be designed using sound design
principles and techniques. The TOE design,
design principles and design techniques will be
adequately and accurately documented.

O.SOUND_DESIGN (ADV_SPM.1) works
to mitigate this threat by requiring that the
TOE developers provide accurate and
complete design documentation of the
security mechanisms in the TOE, including
a security model. By providing this
documentation, the possible secure states of
the TOE are described, thus enabling the
administrator to return the TOE to one of
these states during the recovery process.

O. ROBUST_ADMIN_GUIDANCE

The TOE will provide administrators with the
necessary information for secure delivery and
management.

O. ROBUST_ADMIN_GUIDANCE
(ADO_IGS.1, AGD_ADM.1) provides
administrative guidance for the secure start-
up of the TOE as well as guidance to
configure and administer the TOE securely.
This guidance provides administrators with
the information necessary to ensure that the
TOE is started and initialized in a secure
manor. The guidance also provides
information about the corrective measure
necessary when a failure occurs (i.e., how to
bring the TOE back into a secure state).

P.ACCESS_BANNER

The TOE shall display an initial
banner describing restrictions of
use, legal agreements, or any
other appropriate information to
which users consent by
accessing the TOE.

O.DISPLAY_BANNER

The TOE will display an advisory warning
regarding use of the TOE.

O.DISPLAY_BANNER (FTA_TAB.1)
satisfies this policy by ensuring that the
TOE displays a Platform Administrator-
configurable banner that provides all users
with a warning about the unauthorized use
of the TOE. This is required to be
displayed before an interactive
administrative session, since it does not
make sense to display a banner for sessions
involving directory requests from users, and
those types of sessions are largely
automated.

 99

Threat/Policy Objectives Addressing the Threat Rationale

O.AUDIT_GENERATION

The TOE will provide the capability to detect
and create records of security-relevant events
associated with users.

O.AUDIT_GENERATION (FAU_GEN.1-
NIAP-0407, FAU_GEN.2-NIAP-410,
FIA_USB.1-NIAP-0415, FAU_SEL.1-
NIAP-0407) addresses this policy by
providing an audit mechanism to record the
actions of a specific user, as well as the
capability for an administrator to “pre-
select” audit events based on the user ID.
The audit event selection function is
configurable during run-time to ensure the
TOE is able to capture security-relevant
events given changes in threat conditions.
Additionally, the administrator’s ID is
recorded when any security relevant change
is made to the TOE (e.g. access rule
modification, start-stop of the audit
mechanism, establishment of a trusted
channel, etc.). Attributes used in the audit
record generation process are also required
to be bound to the subject, ensuring users
are held accountable

O.TIME_STAMPS

The TOE shall provide reliable time stamps
and the capability for the administrator to set
the time used for these time stamps.

O.TIME_STAMPS (FPT_STM.1,
FMT_MTD.1) plays a role in supporting
this policy by requiring the TOE to provide
a reliable time stamp (configured locally by
the Platform Administrator or via a trusted
IT entity, such as an NTP server). The audit
mechanism is required to include the
current date and time in each audit record.
All audit records that include the user ID
will also include the date and time that the
event occurred.

P.ACCOUNTABILITY

The authorized users of the TOE
shall be held accountable for
their actions within the TOE.

O.ROBUST_TOE_ACCESS

The TOE will provide mechanisms that control
a user’s logical access to the TOE and to
explicitly deny access to specific users when
appropriate.

O. ROBUST_TOE_ACCESS (FIA_UID.2,
FIA_UAU.2, FIA_UAU.5) supports this
policy by requiring the TOE to identify and
authenticate all authorized users prior to
allowing any TOE access or any TOE
mediated access on behalf of those users.
Note that although the TSF allows access by
anonymous users (FIA_UAU.1), this
objective (and hence the policy) does not
apply to such users because they are not
authenticated.

 100

Threat/Policy Objectives Addressing the Threat Rationale

O.ADMIN_ROLE

The TOE will provide administrator roles to
isolate administrative actions, and to make the
administrative functions available locally and
remotely.

O.ADMIN_ROLE (FMT_SMR.2) supports
this policy by requiring the TOE to provide
mechanisms (e.g., local authentication,
remote authentication, means to configure
and manage the TOE both remotely and
locally) that allow remote and local
administration of the TOE. This is not to
say that everything that can be done by a
local administrator must also be provided to
the remote administrator. In fact, it may be
desirable to have some functionality
restricted to the local administrator.

P.ADMIN_ACCESS

Administrators shall be able to
administer the TOE both locally
and remotely through protected
communications channels.

O.TRUSTED_PATH

The TOE will provide a means to ensure that
users are not communicating with some other
entity pretending to be the TOE when
supplying identification and authentication
data.

O.TRUSTED_PATH (FTP_TRP.1,
FTP_ITC.1) satisfies this policy by
requiring that each remote administrative
and management session for all trusted
users is authenticated and conducted via a
secure channel. Additionally, all trusted IT
entities (e.g., trusted peer directories,
intrusion detection systems) connect
through a protected channel, thus avoiding
disclosure and spoofing problems. This
objective works in conjunction with the IT
environment objective,
OE.TRUSTED_PATH, each providing one
end of the trusted channel.

O.CRYPTOGRAPHY

The TOE shall use NIST FIPS 140-2 validated
cryptographic services.

O.CRYPTOGRAPHY_VALIDATED

To be determined by the PP development
team in collaboration with the cryptography
support organization .

P.CRYPTOGRAPHY

The TOE shall use NIST FIPS
validated cryptography as a
baseline with additional NSA-
approved methods for key
management (i.e.; generation,
access, distribution, destruction,
handling, and storage of keys),
and for cryptographic operations
(i.e.; encryption, decryption,
signature, hashing, key
exchange, and random number
generation services). O.RESIDUAL_INFORMATION

The TOE will ensure that any information
contained in a protected resource is not
released when the resource is reallocated.

O.RESIDUAL_INFORMATION
(FDP_RIP.2) counters this threat by
ensuring that TSF data and user data is not
persistent when resources are released by
one user/process and allocated to another
user/process. This means that network
packets sent in response to a request will
not have residual data from another packet
(potentially from another user) due to the
padding of a packet

 101

Threat/Policy Objectives Addressing the Threat Rationale

P.VULNERABILITY_
ANALYSIS_TEST

The TOE must undergo
appropriate independent
vulnerability analysis and
penetration testing to
demonstrate that the TOE is
resistant to an attacker
possessing a medium attack
potential.

O.VULNERABILITY_ANALYSIS_ TEST

The TOE will undergo appropriate independent
vulnerability analysis and penetration testing to
demonstrate the design and implementation of
the TOE does not allow attackers with medium
attack potential to violate the TOE’s security
policies.

O.VULNERABILITY_ANALYSIS_TEST
(AVA_VLA.3) satisfies this policy by
ensuring that an independent analysis is
performed on the TOE and penetration
testing based on that analysis is performed.
Having an independent party perform the
analysis helps ensure objectivity and
eliminates preconceived notions of the
TOE’s design and implementation that may
otherwise affect the thoroughness of the
analysis. The level of analysis and testing
requires that an attacker with a moderate
attack potential cannot compromise the
TOE’s ability to enforce its security
policies.

 102

Appendix B: Mapping of Medium Robustness Objectives to
Requirement
(Back to TOC)

Sample rationale is provided below. The PP authors should examine various NIAP
evaluated PPs for examples of rationale.

Objectives
Requirements
Addressing the

Objective

Rationale

O.ADMIN_ROLE

The TOE will provide administrator roles to
isolate administrative actions, and to make
the administrative functions available locally
and remotely.

FMT_SMR
 FMT_SMR.2 requires that three roles exist for

administrative actions: the Security
Administrator, who is responsible for
configuring most security-relevant parameters
on the TOE; the Cryptographic Administrator,
who is responsible for managing the security
data that is critical to the cryptographic
operations; and the Auditor, who is responsible
for reading and deleting the audit trail. The
TSF is able to associate a human user with one
or more roles and these roles isolate
administrative functions in that the functions of
these roles do not overlap. It is true that the
design of some systems could enable a rogue
security administrator to manipulate
cryptographic data by, for instance, writing
directly to kernel memory. While this scenario
is a security concern, this objective does not
counter that aspect of T.ADMIN_ROGUE. If a
security administrator were to perform such an
action, the auditing requirements (along with the
audit trail protection requirements) afford some
measure of detectability of the rogue platform
administrator’s actions.

O.AUDIT_GENERATION

The TOE will provide the capability to detect
and create records of security-relevant events
associated with users.

FAU_GEN.1-NIAP-
0407
FAU_GEN.2-NIAP-
0410
FIA_USB.1-NIAP-
0415
FAU_SEL.1-NIAP-
0407

FAU_GEN.1-NIAP-0407 defines the set of
events that the TOE must be capable of
recording. This requirement ensures that an
administrator has the ability to audit any security
relevant event that takes place in the TOE. This
requirement also defines the information that
must be contained in the audit record for each
auditable event. There is a minimum of
information that must be present in every audit
record and this requirement defines that, as well
as the additional information that must be
recorded for each auditable event. This
requirement also places a requirement on the
level of detail that is recorded on any additional
security functional requirements an ST author

 103

Objectives
Requirements
Addressing the

Objective

Rationale

adds to this PP.

FAU_GEN.2-NIAP-410 ensures that the audit
records associate a user identity with the
auditable event. Although the FIA_ATD.1
requirements mandate that a “userid” be used to
represent a user identity, the TOE developer is
able to associate different types of user-ids with
different users in order to meet this objective.

FAU_SEL.1-NIAP-0407 allows the selected
administrator(s) to configure which auditable
events will be recorded in the audit trail. This
provides the administrator with the flexibility in
recording only those events that are deemed
necessary by site policy, thus reducing the
amount of resources consumed by the audit
mechanism and providing the ability to focus on
the actions of an individual user. In addition, the
requirement has been refined to require that the
audit event selection function is configurable
during run-time to ensure the TOE is able to
capture security-relevant events given changes
in threat conditions.
FIA_USB.1 plays a role is satisfying this
objective by requiring a binding of security
attributes associated with users that are
authenticated with the subjects that represent
them in the TOE. This only applies to
authenticated users, since the identity of
unauthenticated users cannot be confirmed.
Therefore, the audit trail may not always have
the proper identity of the subject that causes an
audit record to be generated (anonymous relying
parties).

O.AUDIT_PROTECTION

The TOE will provide the capability to
protect audit information.

FMT_MOF
FAU_SAR.2
FAU_STG.1-NIAP-
0429
FAU_STG.3
FAU_STG-NIAP-
0414-1

FMT_MOF.1 restricts the ability to control the
behavior of the audit and alarm mechanism to
the Security Administrator. The Security
Administrator is the only user that controls the
behavior of the events that generate alarms and
whether the alarm mechanism is enabled or
disabled.

FAU_SAR.2 restricts the ability to read the audit
trail to the Auditor, thus preventing the
disclosure of the audit data to any other user.
However, the TOE is not expected to prevent the
disclosure of audit data if it has been archived or
saved in another form (e.g., moved or copied to
an ordinary file).

The FAU_STG family dictates how the audit
trail is protected. FAU_STG.1-NIAP-0429
restricts the ability to delete audit records to the

 104

Objectives
Requirements
Addressing the

Objective

Rationale

Auditor; or if the option of overwriting old audit
records is chosen by the Platform/Directory
Administrator in FAU_STG.NIAP-0414-1, the
audit data may be deleted/overwritten. Since the
auditor is trusted to review the audit data, the
threat being countered is that the
platform/directory administrator does something
malicious and then attempts to conceal it by
configuring the audit log to overwrite old
records. Presumably the platform/directory
administrator would then attempt to fill up the
audit log in order to overwrite the thing they just
did, as well as the fact that the they reconfigured
the audit log overwrite action. The auditor
would hopefully notice this activity and detect
the fact that the platform/directory administrator
was performing illicit activities. The fact that
the platform/directory administrator does not
directly have the ability to delete the audit
records helps ensure that audit records are kept
until the Auditor deems they are no longer
necessary. FAU_STG.1-NIAP-0429 also
ensures that no one has the ability to modify
audit records (e.g., edit any of the information
contained in an audit record). This ensures the
integrity of the audit trail is maintained.

FAU_STG.3 requires that the administrators be
alerted when the audit trail exceeds a capacity
threshold established by the Security
Administrator. In addition, an audit record is cut
which will trigger the analysis performed in
FAU_SAA, resulting in an FAU_ARP alarm
being issued. This ensures that an administrator
has the opportunity to manage the audit trail
before it becomes full and the avoiding the
possible loss of audit data.

FAU_STG.NIAP-0414-1 allows the Security
Administrator to configure the TOE so that if the
audit trail does become full, either the TOE will
prevent any events from occurring (other than
actions taken by the administrator) that would
generate an audit record or the audit mechanism
will overwrite the oldest audit records with new
records.
FMT_SMF.1 requires the TOE to provide an
administrator with a facility to backup, recover
and archive audit data ensuring the ability to
recover corrupted audit records, and access to a
complete history of audit information.

O.AUDIT_REVIEW

The TOE will provide the capability to

FAU_ARP.1
FAU_ARP_ACK_(E
XP).1

FAU_SAA.1-NIAP-0407 defines the events (or
rules) that indicate a potential security violation
and will generate an alarm The triggers for

 105

Objectives
Requirements
Addressing the

Objective

Rationale

selectively view audit information, and alert
the administrator of identified potential
security violations.

FAU_SAA.1-NIAP-
0407
FAU_SAR.1
FAU_SAR.3

and will generate an alarm. The triggers for
these events are largely configurable by the
Security Administrator. Some rules are not
configurable, or configurable by the
cryptographic administrator.

FAU_ARP.1 requires that the alarm be
displayed at the local administrative console and
at the remote administrative console(s) when
auditor and security administrative session(s)
exists. For alarms at remote consoles, the alarm
is sent either during an established session or
upon session establishment (as long as the alarm
has not been acknowledged). This is required to
increase the likelihood that the alarm will be
received as soon as possible. This requirement
also dictates the information that must be
displayed with the alarm. The potential security
violation is identified in the alarm, as are the
contents of the audit records of the events that
accumulated and triggered the alarm. The
information in the audit records is necessary it
allows the administrators to react to the potential
security violation without having to search
through the audit trail looking for the related
events.

FAU_ARP_ACK_(EXP).1 requires that an
alarm generated by the mechanism that
implements the FAU_ARP requirement be
maintained until an administrator acknowledges
it. This ensures that the alarm message will not
be obstructed and the administrators will be
alerted of a potential security violation.
Additionally, this requires that the
acknowledgement be transmitted to users that
received the alarm, thus ensuring that that set of
administrators knows that the user specified in
the acknowledgement message has addressed
the alarm.

FAU_SAR.1 (both iterations) is used to provide
both the auditor and an external audit analysis
function the capability to read all the audit data
contained in the audit trail. This requirement
also mandates the audit information be presented
in a manner that is suitable for the end user
(auditor or external system) to interpret the audit
trail. It is expected that the audit information be
presented in such a way that the end user can
examine an audit record and have the
appropriate information (that required by
FAU_GEN.2-NIAP-410) presented together to
facilitate the analysis of the audit review.

 106

Objectives
Requirements
Addressing the

Objective

Rationale

Ensuring the audit data are presented in an
interpretable format will enhance the ability of
the entity performing the analysis to identify
potential security violations.
FAU_SAR.3 complements FAU_SAR.1 by
providing the administrators the flexibility to
specify criteria that can be used to search or sort
the audit records residing in the audit trail.
FAU_SAR.3 requires the administrators be able
to establish the audit review criteria based on a
userid and role so that the actions of a user can
be readily identified and analyzed. Allowing the
administrators to perform searches or sort the
audit records based on dates and times provides
the capability to facilitate the administrator’s
review of incidents that may have taken place at
a certain time. It is important to note that the
intent of sorting in this requirement is to allow
the administrators the capability to organize or
group the records associated with a given
criteria.

O.CHANGE_MANAGEMENT

The configuration of, and all changes to, the
TOE and its development evidence will be
analyzed, tracked, and controlled throughout
the TOE’s development.

ACM_AUT.1
ACM_CAP.4
ACM_SCP.2
ALC_DVS.1
ALC_FLR.2
ALC_LCD.1

ACM_CAP.4 contributes to this objective by
requiring the developer have a configuration
management plan that describes how changes to
the TOE and its evaluation deliverables are
managed. The developer is also required to
employ a configuration management system that
operates in accordance with the CM plan and
provides the capability to control who on the
development staff can make changes to the TOE
and its developed evidence. This requirement
also ensures that authorized changes to the TOE
have been analyzed and the developer’s
acceptance plan describes how this analysis is
performed and how decisions to incorporate the
changes to the TOE are made

ACM_SCP.2 is necessary to define what items
must be under the control of the CM system.
This requirement ensures that the TOE
implementation representation, design
documentation, test documentation (including
the executable test suite), user and administrator
guidance, CM documentation and security flaws
are tracked by the CM system.

ALC_DVS.1 requires the developer describe the
security measures they employ to ensure the
integrity and confidentiality of the TOE are
maintained. The physical, procedural, and
personnel security measures the developer uses
provides an added level of control over who and
how changes are made to the TOE and its

 107

Objectives
Requirements
Addressing the

Objective

Rationale

associated evidence.

ALC_FLR.2 plays a role in satisfying the
"analyzed" portion of this objective by requiring
the developer to have procedures that address
flaws that have been discovered in the product,
either through developer actions (e.g., developer
testing) or those discovered by others. The flaw
remediation process used by the developer
corrects any discovered flaws and performs an
analysis to ensure new flaws are not created
while fixing the discovered flaws.

ALC_LCD.1 requires the developer to document
the life-cycle model used in the development
and maintenance of the TOE. This life-cycle
model describes the procedural aspects
regarding the development of the TOE, such as
design methods, code or documentation reviews,
how changes to the TOE are reviewed and
accepted or rejected.
ACM_AUT.1 complements ACM_CAP.4, by
requiring that the CM system use an automated
means to control changes made to the TOE. If
automated tools are used by the developer to
analyze, or track changes made to the TOE,
those automated tools must be described. This
aids in understanding how the CM system
enforces the control over changes made to the
TOE.

O.CORRECT_ TSF_OPERATION

The TOE will provide a capability to test the
TSF to ensure the correct operation of the
TSF in its operational environment.

FPT_TST_(EXP).4,
FPT_TST_(EXP).5

O_CORRECT_TSF_OPERATION requires two
security functional requirements in the FPT
class, FPT_TST. These functional requirements
provide the end user with the capability to
ensure the TOE’s security mechanisms continue
to operate correctly in the field.
FPT_TST_(EXP).4 has been created to ensure
end user tests exist to demonstrate the correct
operation of the security mechanisms required
by the TOE that are provided by the hardware
and that the TOE’s software and TSF data has
not been corrupted. Hardware failures could
render a TOE’s software ineffective in enforcing
its security policies and this requirement
provides the end user the ability to discover any
failures in the hardware security mechanisms.
FPT_TST_(EXP).4 is necessary to ensure the
correctness of the TSF software and TSF data. If
TSF software is corrupted it is possible that the
TSF would no longer be able to enforce the
security policies. This also holds true for TSF
data, if TSF data is corrupt the TOE may not
correctly enforce its security policies.

 108

Objectives
Requirements
Addressing the

Objective

Rationale

O.DISPLAY_BANNER

The TOE will display an advisory warning
regarding use of the TOE.

FTA_TAB.1 FTA_TAB.1 meets this objective by requiring
the TOE display a Platform Administrator-
defined banner before an administrator can
establish an interactive session. This banner is
under complete control of the Platform
Administrator in which they specify any
warnings regarding unauthorized use of the TOE
and remove any product or version information
if they desire.

O.DOCUMENT_KEY_LEAKAGE

The bandwidth of channels that can be used
to compromise key material shall be
documented.

AVA_CCA_(EXP).2 AVA_CCA_(EXP).2 requires that a covert
channel analysis be performed on the entire
TOE to determine the bandwidth of possible
cryptographic key leakage. While there are no
requirements to limit the bandwidth, the results
of this analysis will provide useful guidance on
what the specified lifetime of the cryptographic
keys should be in order to reduce the damage
due to a key compromise.

O.MAINT_MODE

The TOE shall provide a mode from which
recovery or initial startup procedures can be
performed.

FPT_RCV.2-NIAP-
0406

This objective is met by using the FPT_RCV.2-
NIAP-0406 requirement, which ensures that the
TOE does not continue to operate in an insecure
state when a hardware or software failure
occurs. Upon the failure of the TSF self-tests the
TOE will no longer be assured of enforcing its
security policies. Therefore, the TOE enters a
state that operations cease and requires an
administrator to follow documented procedures
that instruct them on to return the TOE to a
secure state. These procedures may include
running diagnostics of the hardware, or utilities
that may correct any integrity problems found
with the TSF data or code. Solely specifying that
the administrator reload and install the TOE
software from scratch, while might be required
in some cases, does not meet the intent of this
requirement.

O.MANAGE

The TOE will provide all the functions and
facilities necessary to support the
administrators in their management of the
security of the TOE, and restrict these
functions and facilities from unauthorized
use.

FMT_MTD
FMT_MSA.1
FMT_MOF.1
FMT_SMF.1

The FMT requirements are used to satisfy this
management objective, as well as other
objectives that specify the control of
functionality. The requirement’s rationale for
this objective focuses on the administrator’s
capability to perform management functions in
order to control the behavior of security
functions.

FMT_MSA.1 provides the Security
Administrator the capability to manipulate the
security attributes of the objects in their scope of
control that determine the access policy.

There are several functions in the TSF that need
to be enabled or disabled: either in a producer
role or a consumer role; the ability to detect

 109

Objectives
Requirements
Addressing the

Objective

Rationale

attempts to replay operations sent by a relying
party; and the ability to enable the cryptographic
module self-tests to be run after generation of a
key. The use of these functions is specified and
restricted by the FMT_MOF.1 iterations.

The following are examples of iterations of
FMT_MTD.1 that were used by Protection
Profile authors to satisfy some of the functions
of O.MANAGE:

The requirement FMT_MTD.1(1) is intended to
be used by the ST author, with possible
iterations, to address TSF data that has not
already been specified by other FMT
requirements. This is necessary because the ST
author may add TSF data in assignments that
cannot be addressed ahead of time by the PP
authors. This requirement specifies that the
manipulation of these data be restricted to the
security administrator.

FMT_MTD.1(2) provides the Cryptographic
Administrator, and only the Cryptographic
Administrator, the ability to modify the
cryptographic security data. This allows the
Cryptographic Administrator to change the
critical data that affects the TOE’s ability to
perform its cryptographic functions properly.

FMT_MTD.1(3) provides the capability of
setting the date and time that is used to generate
time stamps to the Security Administrator or a
trusted IT entity (authorized data manager). It is
important to allow this functionality, due to
clock drift and other circumstances, but the
capability must be restricted. A trusted IT entity
is allowed in the selection made by the ST
author to take in account the use of an NTP
server or some other service that provides time
information without human intervention.

FMT_MTD.1(4) addresses the capabilities of
data managers, who have responsibilities for
security data management for sub-portions of
the set of TSF data (for example, the platform
clock time, sub-hierarchies of the directory).
The scope of a data manager’s responsibility is
set by a security administrator, but they are
expected to manage the entities in their scope of
control without reliance on the security
administrator.
FMT_MTD.2(1), FMT_MTD.2(2) restrict the
setting of limits on the processor time and
network connection resources, respectively, to

 110

Objectives
Requirements
Addressing the

Objective

Rationale

an administrator. This capability allows an
administrator to control the resources consumed
by to provide a flexible policy with respect to
denial of service attacks.
The requirement FMT_SMF.1 was introduced as
an international interpretation. This requirement
specifies functionality that must be provided to
administrators of the TOE. If the PP author
includes this requirement care must be taken to
use the other FMT requirements to specify how
the functionality is restricted and to which role
the functionality is provided.

O.MEDIATE

The TOE must protect user data in
accordance with its security policy.

FDP_ACC.2
FDP_ACF_1 The FDP_ACC.2 and FDP_ACF.1 requirements

were chosen to define the policies, the subjects,
objects, and operations for how and when
mediation of access to the user data takes place.
Because of the A.NO_GENERAL_PURPOSE
assumption the no access control policy (for
relying parties) needs to be defined for platform
resources.

FDP_ACC.2 specifies that the subjects under
control of the policy are to be defined, and that
all operations that involve access to (minimally)
the data are controlled by the policy. These
objects contain the user data to be protected.
FDP_ACF.1 details the manner in which the
user data are to be protected. The basics called
for by the requirement is to match a set of
attributes associated with a subject to a set of
“access control items” associated with the object
they wish to access; all applicable ACIs need to
grant access in order for the subject to perform
the operation on the object. The details of how
the ACIs are collected and the specific
operations supported are specified in the ST, and
with the attributes define the security policy to
be enforced. Setting the attributes
(implementing the security policy) is a function
of the administrator or system manager.

O.REPLAY_DETECTION

The TOE will provide a means to detect and
reject the replay of authentication data as
well as other TSF data and security attributes.

FPT_RPL.1 The O.REPLAY_DETECTION objective is
satisfied by FPT_RPL.1(1), which requires the
TOE to detect and reject the attempted replay of
authentication data from a remote user
(administrator or relying party). This is
sufficient to meet the objective because no
untrusted users have local access to the TOE,
thus there is no way to capture nor replay
authentication data for a local session.

O.RESIDUAL_INFORMATION

The TOE will ensure that any information
contained in a protected resource is not

FCS_CKM_(EXP).2
FCS_CKM.4
FDP_RIP.2

FDP_RIP.2 is used to ensure the contents of
resources are not available to subjects other than
those explicitly granted access to the data. For
this TOE it is critical that the memory used to

 111

Objectives
Requirements
Addressing the

Objective

Rationale

released when the resource is reallocated. build network packets containing replies to
relying party requests is either cleared or that
some buffer management scheme be employed
to prevent the contents of a packet being
disclosed in a subsequent packet (e.g., if padding
is used in the construction of a packet, it must
not contain another user’s data or TSF data).

O.RESOURCE_SHARING

The TOE shall provide mechanisms that
mitigate attempts to exhaust <specific types
of resources which the TOE protects>
resources provided by the TOE (e.g.,
examples of resources that apply to
technology).

FRU_RSA.1
FMT_MTD.2
FMT_MOF.1

The following are examples of iterations of
FMT_MTD.1 and FRU_RSA.1 that were used
by Protection Profile authors to satisfy some of
the functions of O.RESOURCE_SHARING:

While an availability security policy does not
explicitly exist, FRU_RSA.1 is used to mitigate
potential resource exhaustion attempts. In order
to mitigate the CPU exhaustion attempt,
FRU_RSA.1(1) is included. This requires that
the CPU time being consumed by a relying party
must be limited to an amount specified by the
security administrator (FMT_MTD.2(1)), and
actions taken when an attempt is made are
specified in FMT_MTD.2(1). This requirement
takes into account all CPU resources being
consumed by a user (relying party), and not just
a single subject.

FRU_RSA.1(2) was used to reduce the impact
of an attempt being made to exhaust transport-
layer representation implementation artifacts
(e.g., the TCP “half-open connection” attack).
This requirement indicates that a time period
must exist when maximum quota (which is
defined by the ST) is met or surpassed.
Although this requirement (unlike the two
previous requirements) does not mandate that
the administrator be able to set this time period,
FMT_MTD.2(2) restricts this functionality
should the TOE implement it. FMT_MTD.2(2)
also indicates (when filled in by the ST author)
what action is to be taken when the quota is
reached.
FMT_MOF.1 dictates the functionality required
to manage the security functions of the TOE.
The ability to control this function is limited to
the Security Administrator and provides this role
the capability of enabling or disabling the
function. This requirement also provides the
Security Administrator with the capability to
modify the behavior of the function that
indicates a potential sharing violation. So as to
ensure the mechanisms are configured as
intended, the Security Administrator has the
ability to view the conditions under which an

 112

Objectives
Requirements
Addressing the

Objective

Rationale

sharing alarm will be generated, and if alarm
generation is enabled.

O. ADMIN_GUIDANCE

The TOE will provide administrators with the
necessary information for secure delivery and
management.

ADO_DEL.2
ADO_IGS.1
AGD_ADM.1
AGD_USR.1
AVA_MSU.2

ADO_DEL.2 ensures that the administrator is
provided documentation that instructs them how
to ensure the delivery of the TOE, in whole or in
parts, has not been tampered with or corrupted
during delivery. This requirement ensures the
administrator has the ability to begin their TOE
installation with a clean (e.g., malicious code
has not been inserted once it has left the
developer’s control) version of the TOE, which
is necessary for secure management of the TOE.

The ADO_IGS.1 requirement ensures the
administrator has the information necessary to
install the TOE in the evaluated configuration.
Often times a vendor’s product contains
software that is not part of the TOE and has not
been evaluated. The Installation, Generation and
Startup (IGS) documentation ensures that once
the administrator has followed the installation
and configuration guidance the result is a TOE
in a secure configuration.

The AGD_ADM.1 requirement mandates the
developer provide the administrator with
guidance on how to operate the TOE in a secure
manner. This includes describing the interfaces
the administrator uses in managing the TOE,
security parameters that are configurable by the
administrator, how to configure the TOE’s rule
set and the implications of any dependencies of
individual rules. The documentation also
provides a description of how to setup and
review the auditing features of the TOE.

The AGD_USR.1 is intended for non-
administrative users, but could be used to
provide guidance on security that is common to
both administrators and non-administrators (e.g.,
password management guidelines). Since the
non-administrative users of this TOE are limited
to relying parties it is expected that the user
guidance would discuss how the data validation
authentication mechanism is used, and any
instructions on authenticating to the TOE. The
description of the use of these mechanisms
would not have to be repeated in the
administrator's guide.
 AVA_MSU.2 ensures that the guidance
documentation is complete and can be followed
unambiguously to ensure the TOE is not
misconfigured in an insecure state due to

 113

Objectives
Requirements
Addressing the

Objective

Rationale

confusing guidance.

O.ROBUST_TOE_ACCESS

The TOE will provide mechanisms that
control a user’s logical access to the TOE and
to explicitly deny access to specific users
when appropriate.

FIA_UID.2
FIA_AFL.1-NIAP-
O425
FIA_ATD.1
FIA_UAU.1
FIA_UAU.2
FIA_UAU.5
FTA_TSE.1
AVA_SOF
FTA_SSL.1
FTA_SSL.2
FTA_SSL.3
AVA_SOF.1

The following are examples of iterations of
FIA_UAU.1 that were used by Protection
Profile authors to satisfy some of the functions
of O.ROBUST_TOE_ACCESS:

FIA_UID.2 plays a small role in satisfying this
objective by ensuring that every user is
identified before the TOE performs any
mediated functions.

FIA_ATD.1 defines the attributes of users,
including a userid that is used to by the TOE to
determine a user’s identity and enforce what
type of access the user has to the TOE (e.g., the
TOE associates a userid with any role(s) they
may assume). This requirement allows a human
user to have more than one user identity
assigned, so that a single human user could
assume all the roles necessary to manage the
TOE. In order to ensure a separation of roles,
this PP requires a single role to be associated
with a user id. This is inconvenient in that the
administrator would be required to log in with a
different user id each time they wish to assume a
different role, but this helps mitigate the risk that
could occur if an administrator were to execute
malicious code.

FIA_UAU.1(1) contributes to this objective by
limiting the services that are provided by the
TOE to unauthenticated users. Management
requirements and the unauthenticated
information flow policy requirement provide
additional control on these services.

FIA_UAU.1(2) identifies the services that are
provided by the TOE that do not require
authentication. The inclusion of this requirement
does not restrict who has logical access to the
TOE, and therefore poses additional risk
exposure.

FIA_UAU.2 requires that administrators
authorized IT entities and other users
authenticate themselves to the TOE before
performing administrative duties (including
those performed by authorized IT entities (e.g.,
NTP server)), or using the services identified in
this requirement..

In order to control logical access to the TOE an
authentication mechanism is required. The
explicit requirement FIA_UAU_(EXP).5
mandates that the TOE provide a local

 114

Objectives
Requirements
Addressing the

Objective

Rationale

authentication mechanism. This requirement
also affords the ST author the opportunity to add
additional authentication mechanisms (e.g.,
single-use, certificates) if they desire.

Local authentication is required to ensure
someone that has physical access to the TOE
and has not been granted logical access (e.g., a
janitor) cannot gain unauthorized logical access
to the TOE.

The AVA_SOF.1 requirement is applied to the
local authentication mechanism. For this TOE,
the strength of function specified is medium.
This requirement ensures the developer has
performed an analysis of the authentication
mechanism to ensure the probability of guessing
a user’s authentication data would require a
high-attack potential, as defined in Annex B of
the CEM.

FTA_TSE.1.1 contributes to this objective by
limiting a user’s ability to logically access the
TOE. This requirement provides the Security
Administrator the ability to control when (e.g.,
time and day(s) of the week) and where (e.g.,
from a specific network address) remote
administrators can access the TOE.

FIA_AFL.1-NIAP-0425 provides a detection
mechanism for unsuccessful authentication
attempts by remote administrators, authenticated
proxy users and authorized IT entities. The
requirement enables a Security Administrator
settable threshold that prevents unauthorized
users from gaining access to authorized user’s
account by guessing authentication data by
locking the targeted account until the Security
Administrator takes some action (e.g., re-enables
the account) or for some Security Administrator
defined time period. Thus, limiting an
unauthorized user’s ability to gain unauthorized
access to the TOE.
The FTA_SSL family partially satisfies the O.
TOE_ACCESS objective by ensuring that user’s
sessions are afforded some level of protection.
FTA_SSL.1 provides the Security Administrator
the capability to specify a time interval of
inactivity in which an unattended local
administrative session would be locked and will
require the administrator responsible for that
session to re-authenticate before the session can
be used to access TOE resources. FTA_SSL.2
provides administrators the ability to lock their
local administrative session. This component

 115

Objectives
Requirements
Addressing the

Objective

Rationale

allows administrators to protect their session
immediately, rather than waiting for the time-out
period and minimizes their session’s risk of
exposure. FTA_SSL.3 takes into account remote
sessions. After a Security Administrator defined
time interval of inactivity remote sessions will
be terminated, this includes user proxy sessions
and remote administrative sessions. This
component is especially necessary, since remote
sessions are not typically afforded the same
physical protections that local sessions are
provided.

O.SELF_PROTECTION

The TSF will maintain a domain for its own
execution that protects itself and its resources
from external interference, tampering or
unauthorized disclosure.

FPT_SEP.2
FPT_RVM.1 FPT_SEP was chosen to ensure the TSF

provides a domain that protects itself from
untrusted users. If the TSF cannot protect itself
it cannot be relied upon to enforce its security
policies. FPT_SEP.1 could have been used to
address the previous notion, however,
FPT_SEP.2 was used to require that the
cryptographic module be provided its own
address space. This is necessary to reduce the
impact of programming errors in the remaining
portions of the TSF on the cryptographic
module.
The inclusion of FPT_RVM.1 ensures that the
TSF makes policy decisions on all interfaces
that perform operations on subjects and objects
that are scoped by the policies. Without this
non-bypassability requirement, the TSF could
not be relied upon to completely enforce the
security policies, since an interface(s) may
otherwise exist that would provide a user with
access to TOE resources (including TSF data
and executable code) regardless of the defined
policies. This includes controlling the
accessibility to interfaces, as well as what access
control is provided within the interfaces.

O.SOUND_DESIGN

The TOE will be designed using sound
design principles and techniques. The TOE
design, design principles and design
techniques will be adequately and accurately
documented.

ADV_FSP_(EXP).1
ADV_HLD_(EXP).1
ADV_INT_(EXP).1
ADV_LLD_(EXP).1
ADV_ARC_(EXP).1
ADV_RCR.1
ADV_SPM.1

There are two different perspectives for this
objective. One is from the developer’s point of
view and the other is from the evaluator’s. The
ADV class of requirements is levied to aide in
the understanding of the design for both parties,
which ultimately helps to ensure the design is
sound.

ADV_INT_(EXP).1 ensures that the design of
the TOE has been performed using good
software engineering design principles that
require a modular design of the TSF. Modular
code increases the developer’s understanding of
the interactions within the TSF, which in turn,
potentially reduces the amount of errors in the

 116

Objectives
Requirements
Addressing the

Objective

Rationale

design. Having a modular design is imperative
for evaluator’s to gain an appropriate level of
understanding of the TOE’s design in a
relatively short amount of time. The appropriate
level of understanding is dictated by other
assurance requirements in this PP (e.g.,
ATE_DPT.2, AVA_CCA_(EXP).2,
AVA_VLA.3).

ADV_SPM.1 requires the developer to provide
an informal model of the security policies of the
TOE. Modeling these policies helps understand
and reduce the unintended side effects that occur
during the TOE’s operation that might adversely
affect the TOE’s ability to enforce its security
policies.

ADV_FSP_(EXP).1 requires that the interfaces
to the TSF be completely specified. In this TOE,
a complete specification of the network interface
(including the network interface card) is critical
in understanding what functionality is presented
to untrusted users and how that functionality fits
into the enforcement of security policies. Some
network protocols have inherent flaws and users
have the ability to provide the TOE with
network packets crafted to take advantage of
these flaws. The routines/functions that process
the fields in the network protocols allowed (e.g.,
TCP, UPD, ICMP, directory-specific protocols
such as LDAP) must fully specified: the
acceptable parameters, the errors that can be
generated, and what, if any, exceptions exist in
the processing. The functional specification of
the hardware interface (e.g., network interface
card) is also extremely critical. Any processing
that is externally visible performed by NIC must
be specified in the functional specification.
Having a complete understanding of what is
available at the TSF interface allows one to
analyze this functionality in the context of
design flaws.
ADV_HLD_(EXP).1 requires that a high-level
design of the TOE be provided. This level of
design describes the architecture of the TOE in
terms of subsystems. It identifies which
subsystems are responsible for making and
enforcing security relevant (e.g., anything
relating to an SFR) decisions and provides a
description, at a high level, of how those
decisions are made and enforced. Having this
level of description helps provide a general
understanding of how the TOE works, without
getting buried in details, and may allow the

 117

Objectives
Requirements
Addressing the

Objective

Rationale

reader to discover flaws in the design.
ADV_ARC_(EXP).1 addresses the non-
bypassability (FPT_RVM) and domain
separation (FPT_SEP) aspects of the TSF, since
these need to be analyzed differently from other
functional requirements. The low-level design,
as required by ADV_LLD_(EXP).1, provides
the reader with the details of the TOE’s design
and describes at a module level how the design
of the TOE addresses the SFRs. This level of
description provides the detail of how modules
interact within the TOE and if a flaw exists in
the TOE’s design, it is more likely to be found
here rather than the high-level design. This
requirement also mandates that the interfaces
presented by modules be specified. Having
knowledge of the parameters a module accepts,
the errors that can be returned and a description
of how the module works to support the security
policies allows the design to be understood at its
lowest level.
ADV_RCR.1 is used to ensure that the levels of
decomposition of the TOE’s design are
consistent with one another. This is important,
since design decisions that are analyzed and
made at one level (e.g., functional specification)
that are not correctly designed at a lower level
may lead to a design flaw. This requirement
helps in the design analysis to ensure design
decisions are realized at all levels of the design.

O.SOUND_IMPLEMENTATION

The implementation of the TOE will be an
accurate instantiation of its design, and is
adequately and accurately documented.

ADV_IMP.2
ADV_INT_(EXP).1
ADV_LLD_(EXP).1
ADV_ARC_(EXP).1
ADV_RCR.1
ALC_TAT.1

While ADV_LLD_(EXP).1 (and
ADV_ARC_(EXP).1 for the FPT_SEP and
FPT_RVM aspects of the TSF) is used to aide in
ensuring that the TOE’s design is sound, it also
contributes to ensuring the implementation is
correctly realized from the design. It is expected
that evaluators will use the low-level design as
an aide in understanding the implementation
representation. The low-level design
requirements ensure the evaluators have enough
information to intelligently analyze (e.g., the
documented interface descriptions of the
modules match the entry points in the module,
error codes returned by the functions in the
module are consistent with those identified in
the documentation) the implementation and
ensure it is consistent with the design.

While evaluators have the ability to “negotiate”
the subset in ADV_IMP.1, ADV_IMP.2 was
chosen to ensure evaluators have full access to
the source code. If the evaluators are limited in
their ability to analyze source code they may not

 118

Objectives
Requirements
Addressing the

Objective

Rationale

be able to determine the accuracy of the
implementation or the adequacy of the
documentation. Often times it is difficult for an
evaluator to identify the complete sample of
code they wish to analyze. Often times looking
at code in one subsystem may lead the evaluator
to discover code they should look at in another
subsystem. Rather than require the evaluator to
“re-negotiate” another sample of code, the
complete implementation representation is
required.

When performing the activities associated with
the ADV_INT_(EXP).1 requirement, the
evaluators will ensure that the architecture of the
implementation is modular and consistent with
the architecture presented in the low-level
design. Having a modular implementation
provides the evaluators with the ability to more
easily assess the accuracy of the
implementation, with respect to the design. If
the implementation is overly complex (e.g.,
circular dependencies, not well understood
coupling, reliance on side-effects) the evaluator
may not have the ability to assess the accuracy
of the implementation.

ALC_TAT.1 provides evaluators with
information necessary to understand the
implementation representation and what the
resulting implementation will consist of. Critical
areas (e.g., the use of libraries, what definitions
are used, compiler options) are documented so
the evaluator can determine how the
implementation representation is to be analyzed.
ADV_RCR.1 is used here to provide the
correspondence of the lowest level of
decomposition (e.g., source code) to the
adjoining level, low-level design. The
correspondence analysis is used by the evaluator
as a tool when determining if the low-level
design is correctly reflected in the
implementation representation

O.THOROUGH_FUNCTIONAL_TESTING

The TOE will undergo appropriate security
functional testing that demonstrates the TSF
satisfies the security functional requirements.

ATE_COV.2
ATE_FUN.1
ATE_IND.2
ATE_DPT.2

In order to satisfy
O.THOROUGH_FUNCTIONAL_TESTING,
the ATE class of requirements is necessary. The
component ATE_FUN.1 requires the developer
to provide the necessary test documentation to
allow for an independent analysis of the
developer’s security functional test coverage. In
addition, the developer must provide the test
suite executables and source code, which are
used for independently verifying the test suite
results and in support of the test coverage

 119

Objectives
Requirements
Addressing the

Objective

Rationale

analysis activities. ATE_COV.2 requires the
developer to provide a test coverage analysis
that demonstrates the TSFI are completely
addressed by the developer’s test suite. While
exhaustive testing of the TSFI is not required,
this component ensures that the security
functionality of each TSFI is addressed. This
component also requires an independent
confirmation of the completeness of the test
suite, which aids in ensuring that correct security
relevant functionality of a TSFI is demonstrated
through the testing effort. ATE_DPT.2 requires
the developer to provide a test coverage analysis
that demonstrates depth of coverage of the test
suite. This component complements
ATE_COV.2 by ensuring that the developer
takes into account the high-level and low-level
design when developing their test suite. Since
exhaustive testing of the TSFI is not required,
ATE_DPT.2 ensures that subtleties in TSF
behavior that are not readily apparent in the
functional specification are addressed in the test
suite. ATE_IND.2 requires an independent
confirmation of the developer’s test results, by
mandating a subset of the test suite be run by an
independent party. This component also requires
an independent party to attempt to craft
functional tests that address functional behavior
that is not demonstrated in the developer’s test
suite. Upon successful adherence to these
requirements, the TOE’s conformance to the
specified security functional requirements will
have been demonstrated.

O.TIME_STAMPS

The TOE shall provide reliable time stamps
and the capability for the administrator to set
the time used for these time stamps.

FPT_STM.1
FMT_MTD.1 FPT_STM.1 requires that the TOE be able to

provide reliable time stamps for its own use and
therefore, partially satisfies this objective. Time
stamps include date and time and are reliable in
that they are always available to the TOE, and
the clock must be monotonically increasing.
The following is an examples of an iteration of
FMT_MTD.1 that was used by aProtection
Profile author to satisfy the function of
O.TIME_STAMPS. FMT_MTD.1(3) satisfies
the rest of this objective by providing the
capability to set the time used for generating
time stamps to either the Security Administrator,
trusted IT entity, or both. The authorized IT
entity was included as an option for the possible
use of an NTP server to set the TOE’s time.

O.TRUSTED_PATH

The TOE will provide a means to ensure that
users are not communicating with some other

FTP_TRP
FTP_ITC

FTP_TRP.1.1 requires the TOE to provide a
mechanism that creates a distinct
communication path that protects the data that

 120

Objectives
Requirements
Addressing the

Objective

Rationale

users are not communicating with some other
entity pretending to be the TOE when
supplying identification and authentication
data.

traverses this path from disclosure (first
iteration) or modification (second iteration).
This requirement ensures that the TOE can
identify the end points and ensures that a user
cannot insert themselves between the user and
the TOE, by requiring that the means used for
invoking the communication path cannot be
intercepted and allow a “man-in-the-middle-
attack” (this does not prevent someone from
capturing the traffic and replaying it at a later
time – see FPT_RPL.1). Since the user invokes
the trusted path (FTP_TRP.1.2) mechanism they
can be assured they are communicating with the
TOE. FTP_TRP.1.3 mandates that the trusted
path be the only means available for providing
identification and authentication information,
therefore ensuring a user’s authentication data
will not be compromised when performing
authentication functions. Furthermore, the
remote administrator’s communication path is
encrypted during the entire session.

The following are examples of iterations of
FTP_ITC.1 and FTP_ITC.1 that were used by
Protection Profile authors to satisfy some of the
functions of O.TRUSTED_PATH.
FTP_ITC.1(1) and FTP_ITC.1(2) are similar to
FTP_TRP.1(1) and FTP_TRP.1(2), in that they
require a mechanism that creates a distinct
communication path with the same
characteristics, however FTP_ITC.1(1) and
FTP_ITC.1(2) is used to protect
communications between IT entities, rather than
between a human user and an IT entity.
FTP_ITC.1.3 requires the TOE to initiate the
trusted channel, which ensures that the TOE has
established a communication path with an
authorized IT entity and not some other entity
pretending to be an authorized IT entity.

O.USER_GUIDANCE

The TOE will provide users with the
information necessary to correctly use the
security mechanisms.

AGD_USR.1 The user guidance required by AGD_USR.1
meets the objective by describing the
discretionary access controls available to the
user, and how to set the attributes pertaining to
the mechanism. This guidance also instructs the
user how to log on to the TOE, and how to
choose passwords that will not be easily
compromised through a brute force attack.

O.VULNERABILITY_ANALYSIS_TEST

The TOE will undergo appropriate
independent vulnerability analysis and
penetration testing to demonstrate the design
and implementation of the TOE does not

AVA_VLA.3 To maintain consistency with the overall
assurance goals of this TOE,
O.VULNERABILITY_ANALYSIS_TEST
requires the AVA_VLA.3 component to provide
the necessary level of confidence that
vulnerabilities do not exist in the TOE that could

 121

Objectives
Requirements
Addressing the

Objective

Rationale

allow attackers with medium attack potential
to violate the TOE’s security policies.

cause the security policies to be violated.
AVA_VLA.3 requires the developer to perform
a systematic search for potential vulnerabilities
in all the TOE deliverables. For those
vulnerabilities that are not eliminated, a
rationale must be provided that describes why
these vulnerabilities cannot be exploited by a
threat agent with a moderate attack potential,
which is in keeping with the desired assurance
level of this TOE. As with the functional testing,
a key element in this component is that an
independent assessment of the completeness of
the developer’s analysis is made, and more
importantly, an independent vulnerability
analysis coupled with testing of the TOE is
performed. This component provides the
confidence that security flaws do not exist in the
TOE that could be exploited by a threat agent of
moderate (or lower) attack potential to violate
the TOE’s security policies.

 122

Appendix C: Sample PP Mapping Spreadsheet
(Back to TOC)

As mentioned in the main body of the this guidance, it is helpful to keep track of the
mapping between the threats/policies in the PP, the objectives that contribute to the
mitigation of each threat and implementation of each policy, and the specific
requirements from each objective that apply to each threat or component. While the
PPRB recommends that the PP authors make a working copy of Table 7 and update it
while they are working on the PP, Table 7 takes up many pages and it is sometimes
difficult to get an overall view of the mappings. The PPRB has found that a spreadsheet
provides this condensed view and proved useful in writing consistent PP according to the
Medium Robustness Consistency Manual. As noted in the main text of this guidance, the
spreadsheet is nothing more than Table 7 without the notes column or all of the text
associated with each threat and objective. Additionally, it is not expected that the
spreadsheet be part of the PP; it is instead a tool for the PP authors to use or not, as they
wish. An example spreadsheet that is associated with this consistency manual is provided
below.

Threats/Policies Objectives Common Criteria Function and Security Requirements

T.ADMIN_ERROR
O.ROBUST_ADMIN_GU
IDEANCE ADO_DEL.2 ADO_IGS.1 AGD_ADM.1 AGD_USR.1 AVA_MSU.2

 O.ADMIN_ROLE FMT_SMR

 O.MANAGE FMT_MTD

T.ADMIN_ROGUE O.ADMIN_ROLE FMT_SMR

T.AUDIT_COMPROM
ISE

O.AUDIT_PROTECTIO
N FAU_SAR.2

FAU_STG.1-
NIAP-0429 FAU_STG.3

FAU_STG.NIA
P-0414-1

O.RESIDUAL_INFORM
ATION FDP_RIP.2

 O.SELF_PROTECTION FPT_SEP.2 FPT_RVM.1

T.CRYPTO_COMPR
OMISE

O.RESIDUAL_INFORM
ATION

To Be
determined by
the PP
developers

 O.SELF_PROTECTION

O.DOCUMENT_KEY_L
EAKAGE

T.EAVESDROP
O.PROTECT_IN_TRAN
SIT FDP_ITT.1 FPT_ITT.1

T.MASQUERADE
O.ROBUST_TOE_ACC
ESS

FIA_AFL.1-
NIAP-0425 FIA_ATD.1 FIA_UID FIA_UAU FTA_TSE.1 AVA_SOF

T.FLAWED_IMPLEM
ENTATION

O.CHANGE_MANAGEM
ENT ACM_AUT.1 ACM_CAP.4 ACM_SCP.2 ALC_DVS.1 ALC_FLR.2 ALC_LCD.1

O.THOROUGH_FUNCT
IONAL_TESTING ARE_COV.2 ATE_FUN.1 ATE_DPT.2 ATE_IND.2

FMT_MOF

 123

Threats/Policies Objectives Common Criteria Function and Security Requirements

O.SOUND_IMPLEMENT
ATION ADV_FSP.2 ADV_HLD.2 ADV_INT.1 ADV_LLD.1 ADV_RCR.1

ADV_SPM.
1

O.VULNERABILITY_AN
ALYSIS_TEST AVA_VLA.3

T.POOR_TEST
O.CORRECT_
TSF_OPERATION FPT_AMT.1 FPT_TST

O.THOROUGH_FUNCT
IONAL_TESTING ATE_COV.2 ATE_FUN.1 ATE_IND.2 ATE_DPT.2

O.VULNERABILITY_AN
ALYSIS_TEST AVA_VLA.3

T.REPLAY
O.REPLAY_DETECTIO
N FPT_RPL.1

T.RESIDUAL_DATA
O.RESIDUAL_INFORM
ATION FDP_RIP.2

FCS_CKM_(EXP
).2 FCS_CKM.4

T.RESOURCE_EXHA
USTION

O.RESOURCE_SHARIN
G FRU_RSA.1 FMT_MTD.2 FMT_MOF.1

T.SPOOFING O.TRUSTED_PATH FTP_TRP FTP_ITC
T.MALICIOUS_TSF_
COMPROMISE

O.RESIDUAL_INFORM
ATION FDP_RIP.2

FCS_CKM_(EXP
).2 FCS_CKM.4

 O.SELF_PROTECTION FPT_SEP.2 FPT_RVM.1

 O.MANAGE FMT_MTD.1 FMT_MSA.1 FMT_MOF.1 FMT_SMF.1

 O.DISPLAY_BANNER FTA_TAB.1

 O.TRUSTED_PATH FTP_TRP FTP_ITC

T.UNATTENDED_SE
SSION

O.ROBUST_TOE_ACC
ESS FTA_SSL.1 FTA_SSL.2 FTA_SSL.3 AVA_SOF.1

T.UNAUTHORIZED_
ACCESS O.MEDIATE FDP_ACC FDP_ACF FDP.IFF

T.UNIDENTIFIED_AC
TIONS O.AUDIT_REVIEW FAU_ARP.1

FAU_ARP_ACK
_(EXP).1

FAU_SAA.1-
NIAP-0407 FAU_SAR.1 FAU_SAR.3

T.UNKNOWN_STAT
E O.MAINT_MODE

FPT_RCV.2-
NIAP-0406

O.CORRECT_TSF_OE
RATION FPT_AMT.1 FPT_TST

 O.SOUND_DESIGN ADV_SPM.1

O.ROBUST_ADMIN_GU
IDEANCE ADO_IGS.1 AGD_ADM.1

P.ACCESS_BANNER O.DISPLAY_BANNER FTA_TAB.1

P.ACCOUNTABILITY
O.AUDIT_GENERATIO
N

FAU_GEN.1-
NIAP-0407

FAU_GEN.2-
NIAP-410

FIA_USB.1-
NIAP-0415

FAU_SEL.1-
NIAP-0407

 O.TIME_STAMPS FPT_STM.1 FMT_MTD.1

O.ROBUST_TOE_ACC
ESS FIA_UID

P.ADMIN_ACCESS O.ADMIN_ROLE FMT_SMR

 124

Threats/Policies Objectives Common Criteria Function and Security Requirements

 O.TRUSTED_PATH FTP_TRP FTP_ITC

P.CRYPTOGRAPHY O.CRYPTOGRAPHY

To be detmined
by the PP
developer

In collaboration
with
cryptographic
support
organization

O.RESIDUAL_INFORM
ATION

P.VULNERABILITY_
ANALYSIS_TEST

O.VULNERABILITY_AN
ALYSIS_TEST AVA_VLA.3

 125

Appendix D: Explanatory Material for Explicit Assurance
Requirements

PP Appendix for ADV_INT_EXP

(Back to TOC)

This explicit component was created to levy different modularity metrics on the SFP-
enforcing modules and non-SFP-enforcing modules.

 The parts of the TSF that implement an SFP (in this component, SFP-
enforcing is used to designate modules that enforce an SFP) that is determined and
assigned by the PP/ST author, are those modules that interact (defined in the coupling
analysis) with the module or modules that provide the TSFI for that SFP with justified
exceptions. The intent is that all of the modules that play an SFR related role (as opposed
to modules that provide infrastructure support, such as scheduling, reading binary data
from the disk) in enforcing an SFP are identified as SFP-enforcing. The remaining
modules in the TSF are deemed non-SFP-enforcing modules, since they could be TSP-
enforcing (e.g., enforcing a policy not assigned to this component), as well as TSP-
supporting.

 Objectives

This component addresses the internal structure of the software TSF. The SFP-enforcing
modules require stricter adherence to the coupling and cohesion metrics than the metrics
levied on the non-SFP-enforcing modules due to their key role in policy enforcement.
While the non-SFP-enforcing modules also play a role in enforcing policy, their role is
not as critical as the SFP-enforcing modules, therefore, the degree of coupling and
cohesion required of these modules is not as restrictive. It is expected that all of the TSF
modules are designed using good software engineering practice, whether they are
developed by the developer or incorporated as a third party implementation into the TSF.

Requirements are presented for modular decomposition of the SFP-enforcing and non-
SFP-enforcing functionality within the TSF. These requirements, when applied to the
internal structure of the TSF, should result in improvements that aid both the developer
and the evaluator in understanding the TSF, and also provides the basis for designing and
evaluating test suites. Further, improving understandability of the TSF should assist the
developer in simplifying its maintainability. The principal goal achieved by inclusion of
the requirements from the ADV_INT class in a PP/ST is understandability of the TSF.

Modular design aids in achieving understandability by clarifying what dependencies and
interactions a module has on other modules (coupling), by including in a module only
tasks that are strongly related to each other (cohesion), and by illuminating the design of
a module by using internal structuring and reduced complexity. The use of modular
design reduces the interdependence between elements of the TSF and thus reduces the
risk that a change or error in one module will have effects throughout the TOE. Its use
enhances clarity of design and provides for increased assurance that unexpected effects

 126

do not occur. Additional desirable properties of modular decomposition are a reduction in
the amount of redundant or unneeded code.

The incorporation of modular decomposition into the design and implementation process
must be accompanied by sound software engineering considerations. A practical, useful
software system will usually entail some undesirable coupling among modules, some
modules that include loosely-related functions, and some subtlety or complexity in a
module’s design. These deviations from the ideals of modular decomposition are often
deemed necessary to achieve some goal or constraint, be it related to performance,
compatibility, future planned functionality, or some other factors, and may be acceptable,
based on the developer’s justification for them. In applying the requirements of this class,
due consideration must be given to sound software engineering principles; however, the
overall objective of achieving understandability must be achieved.

Another key component to reducing complexity is the use of coding standards. Coding
standards are used as a reference to ensure programmers generate code that can be easily
understood by individuals (e.g., code maintainers, code reviewers, evaluators) that are not
intimately familiar with the nuances of the functions performed by the code. For
example, coding standards ensure that meaningful names are given to variables and data
structures, the code has a structure that is similar to code developed by other
programmers, loops used in the code are understandable (e.g., leaving a loop to another
section of code and returning is undesirable), the use of pointers to variables/data
structures is straightforward, and the code is suitably commented (inline and/or by a
preamble). The use of coding standards helps to eliminate errors in code development and
maintenance, and assists the development team in performing code walk-throughs. Some
aspects of coding standards are specific to a given program language (e.g., the C
language may have a different standard than the Java language or assembly level code). It
is expected that the coding standards are appropriately followed for the employed
programming language(s). The requirements in this component allow for exceptions to
the adherence of coding standards that may be necessary for reasons of performance, or
some other factors, but these deviations must be justified (on a per module basis) as to
why they are necessary. Any justification provided must address why the deviation does
not unduly introduce complexity into the module, since ultimately, the goal of adhering
to coding standards is to improve clarity.

Design complexity minimization is a key characteristic of a reference validation
mechanism, the purpose of which is to arrive at a TSF that is easily understood so that it
can be completely analyzed. (There are other important characteristics of a reference
validation mechanism, such as TSF self-protection and TSP non-bypassability; these
other characteristics are covered by requirements from other classes.)

 Application notes

Several of the elements within this component refer to the architectural description. The
architectural description is at a similar level of abstraction as the low-level design, in that
it is concerned with the modules of the TSF. Whereas the low-level design describes the
design of the modules of the TSF, the purpose of the architectural description is to
provide evidence of modular decomposition of the TSF. Both the low-level design and
the implementation representation are required to be in compliance with the architectural

 127

description, to provide assurance that these TSF representations possess the required
modular decomposition.

This component requires the PP or ST author to fill in an assignment with the SFPs that
are felt to be critical to the TOE and therefore their resulting design and implementation
require stricter metrics for modularity. The SFPs can be those explicitly identified in the
CC (i.e., FDP_ACC, FDP_IFF) by simply placing the appropriate label as specified in
those requirements, or other policies determined by the PP/ST author (e.g., I&A, Audit),
in which case, the PP/ST author should explicitly identify all of the SFRs that they intend
to satisfy a policy that is not explicitly stated in the CC. This is necessary since currently
a convention does not exist to place a convenient label on these policies.

The requirements in this component refer to SFP-enforcing and non-SFP-enforcing
portions of the TSF. The non-SFP-enforcing portions of the TSF consist of the TSP-
supporting modules and TSP-enforcing modules that do not play a role in the
enforcement of the SFP(s) identified in ADV_INT_(EXP).1.4D as depicted in the Figure
D1, where is this example, non-SFP-enforcing is everything in the TSF other than the
SFP-enforcing functions.

TSF Boundary

Figure D1. SFP-enforcing may only be a subset of TSP-enforcing functions.

SFP-Enforcing TSP-Enforcing

TSP-Supporting

The developer is required to identify the modules that are SFP-enforcing and implicitly
the remaining modules, which will be non-SFP-enforcing. As stated earlier, the SFP-
enforcing modules are those modules that interact with the module or modules that
provide the TSFI for that SFP with justified exceptions. The justification of the non-SFP-
enforcing modules (ADV_INT_(EXP).1.3C) is required only for those modules that
interact with SFP-enforcing modules and not for all non-SFP-enforcing modules. As
depicted in the Figure D2 below, if a TSFI has already been designated as non-SFP-
enforcing then the designation of the modules interacting with the module providing the
TSFI do not have to be justified (e.g., modules X, Y, Z). The justification of the
designation is only necessary for the module(s) that interact with a module that provides a
TSFI that is SFP-enforcing (e.g., modules D, E, F (since it is writing to a global variable
that Module A is reading, but in this example, it is not an SFP-enforcing variable).

 128

Figure D2. Example of non-SFP-enforcing modules requiring justification.

Global

Module F

Module E

Non-SFP-enforcing module requiring no justification

Non-SFP-enforcing module requiring justification

Module B

Module A

TSFI SFP-enforcing

Module X

Module Y

Module Z Module D Module C

TSFI non-SFP-enforcing

T
S
F

B
o
u
n
d
a
r
y

The modules identified in the architectural description are the same as the modules
identified in the low-level design.

Terms, definitions and background

 The following terms are used in the requirements for software internal
structuring. Some of these are derived from the Institute of Electrical and Electronics
Engineers Glossary of software engineering terminology, IEEE Std 610.12-1990.

 module: one or more source code files that cannot be decomposed into
smaller compliable units.

 modular decomposition: the process of breaking a system into components
to facilitate design and development.

 129

 cohesion (also called module strength): the manner and degree to which
the tasks performed by a single software module are related to one another; types of

cohesion include coincidental, communicational, functional, logical, sequential, and
temporal. These types of cohesion are characterized below, listed in the order of
decreasing desirability.

 functional cohesion: a module with this characteristic performs activities
related to a single purpose. A functionally cohesive module transforms a single type of
input into a single type of output, such as a stack manager or a queue manager.

 sequential cohesion: a module with this characteristic contains functions
each of whose output is input for the following function in the module. An example of a
sequentially cohesive module is one that contains the functions to write audit records and
to maintain a running count of the accumulated number of audit violations of a specified
type.

 communicational cohesion: a module with this characteristic contains
functions that produce output for, or use output from, other functions within the module.
An example of a communicationally cohesive module is an access check module that
includes mandatory, discretionary, and capability checks.

 temporal cohesion: a module with this characteristic contains functions
that need to be executed at about the same time. Examples of temporally cohesive
modules include initialization, recovery, and shutdown modules.

 logical (or procedural) cohesion: a module with this characteristic
performs similar activities on different data structures. A module exhibits logical
cohesion if its functions perform related, but different, operations on different inputs.

 coincidental cohesion: a module with this characteristic performs
unrelated, or loosely related activities.

 coupling: the manner and degree of interdependence between software
modules; types of coupling include call, common and content coupling. These types of
coupling are characterized below, listed in the order of decreasing desirability

 call: two modules are call coupled if they communicate strictly through
the use of their documented function calls; examples of call coupling are data, stamp, and
control, which are defined below.

- data: two modules are data coupled if they communicate
strictly through the use of call parameters that represent single data
items.
- stamp: two modules are stamp coupled if they communicate
through the use of call parameters that comprise multiple fields or
that have meaningful internal structures.

 130

- control: two modules are control coupled if one passes
information that is intended to influence the internal logic of the
other.

 common: two modules are common coupled if they share a common data
area or a common system resource. Global variables indicate that modules using
those global variables are common coupled.9

 Common coupling through global variables is generally allowed, but only to a
limited degree. For example, variables that are placed into a global area, but are used by only
a single module, are inappropriately placed, and should be removed. Other factors that need
to be considered in assessing the suitability of global variables are:

The number of modules that modify a global variable: In general, only a single
module should be allocated the responsibility for controlling the contents of a
global variable, but there may be situations in which a second module may
share that responsibility; in such a case, sufficient justification must be
provided. It is unacceptable for this responsibility to be shared by more than
two modules. (In making this assessment, care should be given to determining
the module actually responsible for the contents of the variable; for example, if
a single routine is used to modify the variable, but that routine simply
performs the modification requested by its caller, it is the calling module that
is responsible, and there may be more than one such module). Further, as part
of the complexity determination, if two modules are responsible for the
contents of a global variable, there should be clear indications of how the
modifications are coordinated between them.

The number of modules that reference a global variable: Although there is
generally no limit on the number of modules that reference a global variable,
cases in which many modules make such a reference should be examined for
validity and necessity.

 content: two modules are content coupled if one can make direct reference to
the internals of the other (e.g. modifying code of, or referencing labels internal to, the other
module). The result is that some or all of the content of one module are effectively included
in the other. Content coupling can be thought of as using unadvertised module interfaces; this
is in contrast to call coupling, which uses only advertised module interfaces.

 call tree: a diagram that identifies the modules in a system and shows which
modules call one another. All the modules named in a call tree that originates with (i.e., is
rooted by) a specific module are the modules that directly or indirectly implement the
functions of the originating module.

9 It can be argued that modules sharing definitions, such as data structure definitions, are common

coupled. However, for the purposes of this analysis, shared definitions are considered acceptable,
but are subject to the cohesion analysis.

 131

 software engineering: the application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of software; that is, the application
of engineering to software. As with engineering practices in general, some amount of
judgment must be used in applying engineering principles. Many factors affect choices, not
just the application of measures of modular decomposition, layering, and minimization. For
example, a developer may design a system with future applications in mind that will not be
implemented initially. The developer may choose to include some logic to handle these
future applications without fully implementing them; further, the developer may include
some calls to as-yet unimplemented modules, leaving call stubs. The developer’s justification
for such deviations from well-structured programs will have to be assessed using judgment,
as well as the application of good software engineering discipline.

 complexity: this is a measure of how difficult software is to understand, and
thus to analyze, test, and maintain. Reducing complexity is the ultimate goal for using
modular decomposition, layering and minimization. Controlling coupling and cohesion
contributes significantly to this goal.

A good deal of effort in the software engineering field has been expended in attempting to
develop metrics to measure the complexity of source code. Most of these metrics use easily
computed properties of the source code, such as the number of operators and operands, the
complexity of the control flow graph (cyclomatic complexity), the number of lines of source
code, the ratio of comments to executable code, and similar measures. Coding standards have
been found to be a useful tool in generating code that is more readily understood.

While this component calls for the evaluator to perform a complexity analysis, it is expected
that the developer will provide support for the claims that the modules are not overly complex
(ADV_INT_(EXP).1.3D, ADV_INT_(EXP).1.6D, ADV_INT_(EXP).1.9C). This support
could include the developer’s programming standards, and an indication that all modules meet
the standard (or that there are some exceptions that are justified by software engineering
arguments). It could include the results of tools used to measure some of the properties of the
source code. Or it could include other support that the developer finds appropriate.

PP Appendix for ADV_FSP_(EXP).1 (Back to TOC)

The functional specification is a description of the user-visible interface to the TSF. It
contains an instantiation of the TOE security functional requirements. The functional
specification has to completely address all of the user-visible TOE security functional
requirements.

Application Notes

A description of the TSF interfaces (TSFI) provides fundamental evidence on which
assurance in the TOE can be built. Fundamentally, the functional specification provides a
description of what the TSF provides to users (as opposed to the high-level design and
low-level design, which provide a description of how the functionality is provided).
Further, the functional specification provides this information in the form of interface
(TSFI) documentation.

 132

In order to identify the software interfaces to the TSF, the parts of the TOE that make up
the TSF must be identified. This identification is formally a part of ADV_HLD_EXP
analysis. In this analysis, a portion of the TOE is considered to be in the TSF under two
conditions:

1. The software contributes to the satisfaction of security functionality specified by a
functional requirement in the ST. This is typically all software that runs in a
privileged state of the underlying hardware, as well as software that runs in
unprivileged states that performs security functionality.

2. The software used by administrators in order to perform security management
activities specified in the guidance documentation. These activities are a superset
of those specified by any FMT_* functional requirements in the ST.

Identification of the TSFI is a complex undertaking. The TSF is providing services and
resources, and so the TSFI are interfaces to the security services/resources the TSF is
providing. This is especially relevant for TSFs that have dependencies on the IT
environment, because not only is the TSF providing security services (and thus exposing
TSFI), but it is also using services of the IT environment. While these are (using the
general term) interfaces between the TSF and the IT environment, they are not TSFI.
Nonetheless, it is vital to document their existence to integrators and consumers of the
system, and thus documentation requirements for these interfaces are specified in
ADV_ING.

 133

This concept (and concepts to be discussed in the following paragraphs) is illustrated in the
following figure.

The figure above illustrates a TOE (a database management system) that has
dependencies on the IT environment. The shaded boxes represent the TSF, while the un-
shaded boxes represent IT entities in the environment. The TSF comprises the database
engine and management GUIs (represented by the box labeled “DB”) and a kernel
module that runs as part of the OS that performs some security function (represented by
the box labeled “PLG”). The TSF kernel module has entry points defined by the OS
specification that the OS will call to invoke some function (this could be a device driver,
or an authentication module, etc.). The key is that this pluggable kernel module is
providing security services specified by functional requirements in the ST. The IT
environment consists of the operating system (represented by the box labeled “OS”)
itself, as well as an external server (labeled SRV). This external server, like the OS,
provides a service that the TSF depends on, and thus needs to be in the IT environment.
Interfaces in the figure are labeled Ax for TSFI, and Bx for interfaces to be documented
in AGD_ING. Each of these groups of interfaces is now discussed.

Interface group A1 represents the prototypical set of TSFI. These are interfaces used to
directly access the database and its security functionality and resources.

Interface group A2 represent the TSFI that the OS invokes to obtain the functionality
provided by the pluggable module. These are contrasted with interface group B3, which
represent calls that the pluggable module makes to obtain services from the IT
environment.

Interface group A3 represents TSFI that “pass through” the IT environment. In this case,
the DBMS communicates over the network using a proprietary application-level protocol.
While the IT environment is responsible for providing various supporting protocols (e.g.,
Ethernet, IP, TCP), the application layer protocol that is used to obtain services from the
DBMS is a TSFI and must be documented as such. The dotted line indicates return

 134

values/services from the TSF over the network connection.

Non-TSFI interfaces pictured are labeled Bx. Interface group B1 is the most complex of
these, because the architecture of the system and environmental assumptions and
conditions will drive its analysis. In the first case, assume that, either through an
environmental assumption or an IT environmental requirement, the network link between
the DB and SRV is protected (it could be on a separate subnet, or it could be protected by
a firewall such that only the DB could connect to the port on the SRV) such that only the
DB has access to the SRV. In this case, the interface needs only to be documented in the
integrator guidance, since untrusted users are unable to gain access.

However, consider the case where SRV is now just “somewhere on the network”, and
now the port that the DB opens up to communicate with the SRV is “exposed” to
untrusted users. In this case, while the interface presented by the DB (the TSF) still only
needs to be documented in the integrator guidance, additional considerations with respect
to vulnerabilities may need to be documented as part of the AVA_VLA activity because
of this exposure.

In the course of performing its functions, the DB will make system calls down to the OS.
This is represented by interface group B2. While these calls are not part of the TSFI, they
are an interface that needs to be documented in the integrator guidance.

Interface group B3, mentioned previously in connection with interface group A2, is
similar to interface group B2 in that these are calls made by the TSF to the IT
environment to perform services for the TSF.

Having discussed the interfaces in general, the types of TSFI are now discussed in more
detail. This discussion categorizes the TSFI into the two categories mentioned previously:
TSFI to software directly implementing the SFRs, and TSFI used by administrators.

TSFI in the first category are varied in their appearance in a TOE. Most commonly
interfaces are thought of as those described in terms of Application Programming
Interfaces (APIs), such as kernel calls in a Unix-like operating system. However,
interfaces also may be described in terms of menu choices, check boxes, and edit boxes
in a GUI; parameter files (the *.INI files and the registry for Microsoft Windows
systems); and network communication protocols at all levels of the protocol stack.

TSFI in the second category are more complex. While there are three cases that need to
be considered (discussed below), for all cases there is an “additional” requirement that
the functions that an administrator uses to perform their duties—as documented in
administrative guidance—also are part of the TSFI and must be documented and shown
to work correctly. The individual cases are as follows:

The administrative tool used is also accessible to untrusted users, and runs
with some “privilege” itself. In this case the TSFI to be described are
similar to those in the first category because the tool itself is privileged.

The administrative tool uses the privileges of the invoker to perform its
tasks. In this case, the interfaces supporting the activities that the

 135

administrator is directed to do by the administrative guidance
(AGD_ADM, including FMT_* actions) are part of the TSFI. Other
interfaces supported by the tool that the administrator is directed not to use
(and thus play no role in supporting the TSP), but that are accessible to
non-administrators, are not part of the TSFI because there are no
privileges associated with their use. Note that this case differs from the
previous one in that the tool does not run with privilege, and therefore is
not in and of itself interesting from a security point of view. Also note that
when FPT_SEP is included in the ST, the executable image of such tools
need to be protected so that an untrusted user cannot replace the tool with
a “trojan” tool.

The administrative tool is only accessible to administrative users. In this
case the TSFI are identified in the same manner as the previous case.
Unlike the previous case, however, the evaluator ascertains that an
untrusted user is unable to invoke the tool when FPT_SEP is included in
the ST.

It is also important to note that some TOEs will have interfaces that one might consider
part of the TSFI, but environmental factors remove them from consideration (an example
is the case of interface group B1 discussed earlier). Most of these examples are for TOEs
to which untrusted users have restricted access. For example, consider a firewall that
untrusted users only have access to via the network interfaces, and further that the
network interfaces available only support packet-passing (no remote administration, no
firewall-provided services such as telnet). Further suppose that the firewall had a
command-line interface that logged-in administrators could use to administer the system,
or they could use a GUI-based tool that essentially translated the GUI-based checkboxes,
textboxes, etc., into scripts that invoked the command-line utilities. Finally, suppose that
the administrators were directed in the administrative guidance to use the GUI-based tool
in administering the firewall. In this case, the command-line interface does not have to be
documented because it is inaccessible to untrusted users, and because the administrators
are instructed not use it.

The term “administrator” above is used in the sense of an entity that has complete trust
with respect to all policies implemented by the TSF. There may be entities that are trusted
with respect to some policies (e.g., audit) and not to others (e.g., a flow control policy). In
these cases, even though the entity may be referred to as an “administrator”, they need to
be treated as untrusted users with respect to policies to which they have no administrative
access. So, in the previous firewall example, if there was an auditor role that was allowed
direct log-on to the firewall machine, the command-line interfaces not related to audit are
now part of the TSFI, because they are accessible to a user that is not trusted with respect
to the policies the interfaces provide access to. The point is that such interfaces need to be
addressed in the same manner as previously discussed.

Hardware interfaces exist as well. Functions provided by the BIOS of various devices
may be visible through a “wrapper” interface such as the IOCTLs in a Unix operating
system. If the TOE is or includes a hardware device (e.g., a network interface card), the
bus interface signals, as well as the interface seen at the network port, must be considered
“interfaces.” Switches that can change the behavior of the hardware are also part of the

 136

interface.

As indicated above, an interface exists at the TSF boundary if it can be used (by an
administrator; untrusted user; or another TOE) to affect the behavior of the TSF. The
requirements in this family apply to all types of TSFI, not just APIs.

All TSFI are security relevant, but some interfaces (or aspects of interfaces) are more
critical and require more analysis than other interfaces. If an interface plays a role in
enforcing any security policy on the system, then that interface is security enforcing.
Such policies are not limited to the access control policies, but also refer to any
functionality provided by one of the SFRs contained in the ST (with exceptions for
FPT_SEP and FPT_RVM as detailed below). Note that it is possible that an interface
may have various effects and exceptions, some of which may be security enforcing and
some of which may not.

FPT_SEP and FPT_RVM are SFRs that require a different type of analysis from other
SFRs. These requirements are architecturally related, and their implementation (or lack
thereof) is not easily (or efficiently) testable at the TSFI. From a terminology standpoint,
although implementation (and the associated analysis) of FPT_SEP and FPT_RVM is
critical to the trustworthiness of the system, these two SFRs will not be considered as
SFRs that are applicable when determining the set of security-enforcing TSFIs as defined
in the previous paragraph.

Interfaces (or parts of an interface) that need only to function correctly in order for the
security policies of the system to be preserved are termed security supporting. A security
supporting interface typically plays a role in supporting the architectural requirements
(FPT_SEP or FPT_RVM), meaning that as long as it can be shown that it does not allow
the TSF to be compromised or bypassed no further analysis against SFRs is required. In
order for an interface to be security supporting it must have no security enforcing aspects.
In contrast, a security enforcing interface may have security supporting aspects (for
example, the ability to set the system clock may be a security enforcing aspect of an
interface, but if that same interface is used to display the system date that effect may only
be security supporting).

A key aspect for the assurance associated with this component is the concept of the
evaluator being able to verify that the developer has correctly categorized the security
enforcing and security supporting interfaces. The requirements are structured such that
the information required for security supporting interfaces is the minimum necessary in
order for the evaluator to make this determination in an effective manner.

For the purposes of the requirements, interfaces are specified (in varying degrees of
detail) in terms of their parameters, parameter descriptions, effects, exceptions, and error
messages. Additionally, the purpose of each interface, and the way in which the interface
is used (both from the point of view of the external stimulus (e.g., the programmer calling
the API, the administrator changing a setting in the registry) and the effect on the TSFI
that stimulus has) must be specified. This description of method of use must also specify
how those administrative interfaces that are unable to be successfully invoked by
untrusted users (case “c” mentioned above) are protected.

 137

Parameters are explicit inputs to and outputs from an interface that control the behavior
of that interface. For examples, parameters are the arguments supplied to an API; the
various fields in a packet for a given network protocol; the individual key values in the
Windows Registry; the signals across a set of pins on a chip; etc.

A parameter description tells what the parameter is in some meaningful way. For
instance, the interface “foo(i)” could be described as having “parameter i which is an
integer”; this is not an acceptable parameter description. A description such as
“parameter i is an integer that indicates the number of users currently logged in to the
system.” is required.

Effects of an interface describe what the interface does. The effects that need to be
described in an FSP are those that are visible at any external interface, not necessarily
limited to the one being specified. For instance, the sole effect of an API call is not just
the error code it returns. Also, depending on the parameters of an interface, there may be
many different effects (for instance, an API might have the first parameter be a
“subcommand”, and the following parameters be specific to that subcommand. The
IOCTL API in some Unix systems is an example of such an interface).

Exceptions refer to the processing associated with “special checks” that may be
performed by an interface. An example would be an interface that has a certain set of
effects for all users except the Superuser; this would be an exception to the normal effect
of the interface. Use of a privilege for some kind of special effect would also be covered
in this topic.

Documenting the errors associated with the TSF is not as straightforward as it might
appear, and deserves some discussion. A general principle is that errors generated by the
TSF that are visible to the user should be documented. These errors can be the direct
result of invoking a TSFI (an API call that returns an error); an indirect error that is easily
tied to a TSFI (setting a parameter in a configuration that is error-checked when read,
returning an immediate notification); or an indirect error that is not easily tied to a TSFI
(setting a parameter that, in combination with certain system states, generates an error
condition that occurs at a later time. An example might be resource exhaustion of a TSF
resource due to setting a parameter to too low of a value).

Errors can take many forms, depending on the interface being described. For an API, the
interface itself may return an error code; set a global error condition, or set a certain
parameter with an error code. For a configuration file, an incorrectly configured
parameter may cause an error message to be written to a log file. For a hardware PCI
card, an error condition may raise a signal on the bus, or trigger an exception condition to
the CPU.

For the purposes of the requirements, errors are divided into two categories. The first
category includes direct errors, which are directly related to a TSFI; examples are API
calls and parameter-checking for configuration files. For this category of errors, the
functional specification must document all of the errors that can be returned as a result of
invoking a security-enforcing aspect of the interface such that a reader should be able to
associate an interface with the errors it is capable of generating. The second category
includes indirect errors, which are errors that are not directly tied to the invocation of a

 138

TSFI, but which are reported to the user as a result of processing that occurs in the TSF.
It should be noted that while the condition that causes the indirect error can be
documented; it is generally much harder to document all the ways in which that condition
can occur.10 Because of the difficulty associated with documenting all of the ways to
cause an error, and because of the cost of documenting all indirect errors compared to the
benefit of having them documented, indirect errors are not required to be documented.

The ADV_FSP_(EXP).1.2E element defines a requirement that the evaluator determines
that the functional specification is an accurate and complete instantiation of the TOE
security functional requirements. This provides a direct correspondence between the TOE
security functional requirements and the functional specification, in addition to the
pairwise correspondences required by the ADV_RCR family. Although the evaluator
may use the evidence provided in ADV_RCR as an input to making this determination,
ADV_RCR cannot be the basis for a positive finding in this area. The requirement for
completeness is intended to be relative to the level of abstraction of the functional
specification.

PP Appendix for ADV_HLD_(EXP).1 (Back to TOC)

The high-level design of a TOE provides both context for a description of the TSF, and a
thorough description of the TSF in terms of major structural units (i.e. subsystems). It
relates these units to the functions that they provide. The high-level design requirements
are intended to provide assurance that the TOE provides an architecture appropriate to
implement the security-enforcing TOE security functional requirements.

To provide context for the description of the TSF, the high-level design describes the
entire TOE at a high level. From this description the reader should be able to distinguish
between the subsystems that are part of the TSF and those that are not. The remainder of
the high-level design document then describes the TSF in more detail.

The high-level design refines the functional specification into subsystem descriptions.
The functional specification provides a description of what the TSF does at its interface;
the high-level design provides more insight into the TSF by describing how the TSF
works in order to perform the functions specified at the TSFI. For each subsystem of the
TSF, the high-level design identifies the TSFI implemented in the subsystem, describes
the purpose of the subsystem and how the implementation of the TSFI (or portions of the
TSFI) is designed. The interrelationships of subsystems are also defined in the high-level
design. These interrelationships will be represented as data flows, control flows, etc.
among the subsystems. It should be noted that this description is at a high level; low-level
implementation detail is not necessary at this level of abstraction.

The developer is expected to describe the design of the TSF in terms of subsystems. The

10This may even be impossible, if the error message is for a condition that the programmer does
not expect to occur, but is inserted as part of “defensive programming.”

 139

term “subsystem” is used here to express the idea of decomposing the TSF into a
relatively small number of parts. While the developer is not required to actually have
“subsystems”, the developer is expected to represent a similar level of decomposition.
For example, a design may be similarly decomposed using “layers”, “domains”, or
“servers”.

A security enforcing subsystem is a subsystem that provides mechanisms for enforcing an
element of the TSP, or directly supports a subsystem that is responsible for enforcing the
TSP. If a subsystem provides a security-enforcing interface, then the subsystem is
security enforcing. If a subsystem does not provide any security enforcing TSFIs, its
mechanisms still must preserve the security of the TSF; such subsystems are termed
security supporting.

As was the case with ADV_FSP_EXP, the set of SFRs that determine the TSP for the
purposes of this component do not include FPT_SEP and FPT_RVM. Those two
architectural functional requirements require a different type of analysis than that needed
for all other SFRs. A security-enforcing subsystem is one that is designed to implement
an SFR other than FPT_SEP and FPT_RVM; the design information and justification for
the FPT_SEP and FPT_RVM requirements is given as a result of the ADV_ARC_EXP
component.

The ADV_HLD_EXP component requires that the developer must identify all
subsystems of the TSF (not just the security-enforcing ones). In general, the component
requires that the security-enforcing aspects of the subsystems be described in more detail
than the security-supporting aspects. The descriptions for the security-enforcing aspects
should provide the reader with enough information to determine how the implementation
of the SFRs is designed, while the description for the security-supporting aspects should
provide the reader enough assurance to determine that 1) all security-enforcing behavior
has been identified and 2) the subsystems or portions of subsystems that are security
supporting have been correctly classified.

The ADV_HLD_(EXP).1.2E element for this component defines a requirement that the
evaluator determine that the high-level design is an accurate and complete instantiation of
the user-visible TOE security functional requirements. This provides a direct
correspondence between the TOE security functional requirements and the high-level
design, in addition to the pair wise correspondences required by the ADV_RCR family.
Although the evaluator may use the evidence provided in ADV_RCR as an input to
making this determination, ADV_RCR cannot be the basis for a positive finding in this
area. The requirement for completeness is intended to be relative to the level of
abstraction of the high-level design. Note that for this element FPT_SEP and FPT_RVM
are not explicitly analyzed; the analysis for those requirements is done as part of the
activity for the ADV_ARC_EXP component.

PP Appendix for ADV_LLD_(EXP).1 (Back to TOC)

The low-level design of a TOE provides a description of the internal workings of the TSF
in terms of modules, global data, and their interrelationships. The low-level design is a

 140

description of how the TSF is implemented to perform its functions, rather than what the
TSF provides as is specified in the FSP. The low-level design is closely tied to the actual
implementation of the TSF, unlike the high-level design, which could be implementation-
independent. The primary goal of the low-level design is an aid in understanding the
implementation of the TSF, both by reviewing the text of the low-level design as well as
a guide when examining the implementation representation (source code).

A module is generally a relatively small architectural unit that exhibits properties
discussed in ADV_INT_(EXP). A “module” in terms in of the ADV_LLD_EXP
requirement refers to the same entity as a “module” for the ADV_INT_EXP requirement.

A security-enforcing module is a module that directly implements a security-enforcing
TSFI. While this could, for example, include all modules in the call-tree of a security-
enforcing module, typically there will be some modules in the call-tree of a security-
enforcing module that are not themselves security enforcing. If a module of the TSF is
not security enforcing, its implementation still must preserve the security of the TSF;
such modules are termed security supporting.

A description of a security-enforcing module in the low-level design should be of
sufficient detail so that one could create an implementation of the module from the low-
level design, and that implementation would

1. be identical to the actual TSF implementation in terms of the interfaces presented
and used by the module, and

2. be algorithmically identical to the implementation of the module. For instance, the
low-level design may describe a block of processing that is looped over a number
of times. The actual implementation may be a for loop or a do loop, both of which
could be used to implement the algorithm. Likewise, a collection of objects could
be represented by a linked list or an array; this level of detail is not required to be
presented, since both are algorithmically identical. Conversely, if a module’s
actual implementation performed a bubble sort, it would be inadequate for the
low-level design to specify that the module “performed a sort”; it would have to
describe the type of sort that was being performed.

Security-supporting modules do not need to be described in the same amount of detail,
but they should be identified and enough information should be supplied so that 1) the
evaluation team can determine that such modules are correctly classified as security
supporting (vs. security enforcing), and 2) the evaluation team has the information
necessary to complete the analysis required by ADV_INT_(EXP).1.

In the low-level design, security-enforcing modules are described in terms of the
interfaces they present to other modules; the interfaces they use (call interfaces) from
other modules; global data they access; their purpose; and an algorithmic description of
how they provide that function. Security supporting modules are described only in terms
of the interfaces they present and their purpose.

 141

The interfaces presented by a module are those interfaces used by other modules to
invoke the functionality provided. Interfaces are described in terms of how their
parameters, and any values that are returned from the interface. In addition to a list of
parameters, the descriptions of these parameters are also given. If a parameter were
expected to take on a set of values (e.g., a “flag” parameter), the complete set of values
the parameter could take on that would have an effect on module processing would be
specified. Likewise, parameters representing data structures are described such that each
field of the data structure is identified and described. Note that different programming
languages may have additional “interfaces” that would be non-obvious; an example
would be operator/function overloading in C++. This “implicit interface” in the class
description would also be described as part of the low-level design. Note that although a
module could present only one interface, it is more common that a module presents a
small set of related interfaces.

By contrast, interfaces used by a module must be identified such that it can be determined
the unique interface that is being invoked by the module being described. It must also be
clear from the low-level design the algorithmic reason the invoking module is being
called. For instance, if Module A is being described, and it uses Module B’s bubble sort
routine, an inadequate algorithmic description would be “Module A invokes the
double_bubble() interface in Module B to perform a bubble sort.” An adequate
algorithmic description would be “Module A invokes the double_bubble routine with the
list of access control entries; double_bubble() will return the entries sorted first on the
username, then on the access_allowed field according the following rules...” The low-
level design must provide enough detail so that it is clear what effects Module A is
expecting from the bubble sort interface. Note that one method of presenting these called
interfaces is via a call tree, and then the algorithmic description can be included in the
algorithmic description of the called module.

If the implementation makes use of global data, the low-level design must describe the
global data, and in the algorithmic descriptions of the modules indicate how the specific
global data are used by the module. Global data are identified and described much like
parameters of an interface.

The purpose a module fulfills is a short description indicating what function the module
provides. The level of detail provided should be such that the reader could get a general
idea of what the module’s function is in the architecture, and to determine (for security-
supporting modules) that it is not a security-enforcing module.

As discussed previously, the algorithmic description of the module should describe in an
algorithmic fashion the implementation of the module. This can be done in pseudo-code,
through flow charts, or informal text. It discusses how the parameters to the interface,
global data, and called functions are used to accomplish the result. It notes changes to
global data, system state, and return values produced by the module. It is at the level of
detail that an implementation could be derived that would be very similar to the actual
implementation of the system. It does not need to describe actual implementation artifacts
(do loops vs for loops, linked lists vs arrays) if such artifacts are algorithmically identical.

It should be noted that source code does not meet the low-level design requirements.
Although the low-level design describes the implementation, it is not the implementation.

 142

Further, the comments surrounding the source code are not sufficient low-level design if
delivered interspersed in the source code. The low-level design must stand on its own,
and not depend on source code to provide details that must be provided in the low level
design (whether intentionally or unintentionally). However, if the comments were
extracted by some automated or manual process to produce the low-level design
(independent of the source code statements), they could be found to be acceptable if they
met all of the appropriate requirements.

The ADV_LLD_(EXP).1.2E element in this component defines a requirement that the
evaluator determine that the low-level design is an accurate and complete instantiation of
the user-visible TOE security functional requirements. This provides a direct
correspondence between the TOE security functional requirements and the low-level
design, in addition to the pair-wise correspondences required by the ADV_RCR family.
Although the evaluator may use the evidence provided in ADV_RCR as an input to
making this determination, ADV_RCR cannot be the basis for a positive finding in this
area. The requirement for completeness is intended to be relative to the level of
abstraction of the low-level design. Note that for this element, FPT_SEP and FPT_RVM
are not explicitly analyzed; the analysis for those requirements is done as part of the
activity for the ADV_ARC_EXP component.

PP Appendix for ADV_ARC_(EXP).1 (Back to TOC)

The architectural design of the TOE is related to the information contained in other
decomposition documentation (functional specification, high-level design, low-level
design) provided for the TSF, but presents the design in a manner that supports the
argument that the TSP cannot be compromised (FPT_SEP) and that it cannot be bypassed
(FPT_RVM). The objective of this component is for the developer to provide an
architectural design and justification associated with the integrity and non-bypassability
properties of the TSF.

FPT_SEP and FPT_RVM are distinct from other SFRs because they largely have no
directly observable interface at the TSF. Rather, they are properties of the TSF that are
achieved through the design of the system, and enforced by the correct implementation of
that design. Because of their pervasive nature, the material needed to provide the
assurance that these requirements are being achieved is better suited to a presentation
separate from the design decomposition of the TSF as embodied in ADV_FSP_EXP,
ADV_HLD_EXP, and ADV_LLD_(EXP). This is not to imply that the architectural
design called for by this component cannot reference or make use of the design
composition material; but it is likely that much of the detail present in the decomposition
documentation will not be relevant to the argument being provided for the architectural
design document.

The architectural design document consists of two types of information. The first is the
design information for the entire TSF related to the FPT_SEP and FPT_RVM
requirements. This type of information, like the decompositions for ADV_HLD_EXP and

 143

ADV_FSP_EXP, describes how the TSF is implemented. The description, however,
should be focused on providing information sufficient for the reader to determine that the
TSF implementation is likely not to be compromised, and that the TSP enforcement
mechanisms (that is, those that are implementing SFRs other than FPT_SEP and
FPT_RVM) are likely always being invoked.

The nature of the FPT_SEP requirement lends itself to a design description much better
than FPT_RVM. For FPT_SEP, mechanisms can be identified (e.g., memory
management, protected processing modes provided by the hardware, etc.) and described
that implement the domain separation. However, FPT_RVM is concerned with interfaces
that bypass the enforcement mechanisms. In most cases this is a consequence of the
implementation, where if a programmer is writing an interface that accesses or
manipulates an object, it is that programmer’s responsibility to use interfaces that are part
of the TSP enforcement mechanism for the object and not to try to “go around” those
interfaces. However, the developer is still able to describe architectural elements (e.g.,
object managers, macros to be invoked for specific functionality) that pertain to the
design of the system to achieve the “always invoked” property of the TSF.

For FPT_SEP, the design description should cover how user input is handled by
privileged-mode routine; what hardware self-protection mechanisms are used and how
they work (e.g., memory management hardware, including translation lookaside buffers);
how software portions of the TSF use the hardware self-protection mechanisms in
providing their functions; and any software protection constructs or coding conventions
that contribute to meeting FPT_SEP.

For FPT_RVM, the description should cover resources that are protected under the SFRs
(usually FDP_* components) and functionality (e.g., audit) that is provided by the TSF.
The description should also identify the interfaces that are associated with each of the
resources or the functionality; this might make use of the information in the FSP. This
description should also describe any design constructs, such as object managers, and their
method of use. For instance, if routines are to use a standard macro to produce an audit
record, this convention is a part of the design that contributes to the non-bypassability of
the audit mechanism. It’s important to note that “non-bypassability” in this context is not
an attempt to answer the question “could a part of the TSF implementation, if malicious,
bypass a TSP mechanism”, but rather it’s to document how the actual implementation
does not bypass the mechanisms implementing the TSP.

In addition to the descriptive information indicated in the previous paragraphs, the second
type of information an architectural design document must contain is a justification that
the FPT_SEP and FPT_RVM requirements are being met. This is distinct from the
description, and presents an argument for why the design presented in the description is
sufficient.

For FPT_SEP, the justification should cover the possible modes by which the TSF could
be compromised, and how the mechanisms implemented in response to FPT_SEP counter
such compromises. The vulnerability analysis might be referenced in this section.

For FPT_RVM, the justification demonstrates that whenever a resource protected by an
SFR is accessed, the protection mechanisms of the TSF are invoked (that is, there are no

 144

“backdoor” methods of accessing resources that are not identified and analyzed as part of
the ADV_FSP_EXP/ADV_HLD_EXP/ADV_LLD_EXP analysis). Similarly, the
description demonstrates that a function described by an SFR is always provided where
required. For example, if the FCO_NRO family were being used the description should
demonstrate that all interfaces either 1) do not deal with transmitting the information
identified in the FCO_NRO component included in the ST, or 2) invoke the
mechanism(s) described by the decomposition documentation. The justification for
FPT_RVM will likely need to address all of the TSFI in order to make the case that the
TSP is non-bypassable.

 145

Appendix E: Protection Profile Cover Sheet Template
(Back to TOC)

 An example cover sheet is provided below and should be used as a template by the
author of the protection profile. The author shall replace the [Technology Area] with the
technology area of the protection profile. In addition, the date and version number of the
profile should also be included.

 146

US Government Protection Profile

[Technology Area]

For

Medium Robustness Environments

Month dd, yyyy
 Version x.x

 147

	Forward
	Table of Contents
	I. Introduction
	II. Medium Robustness Definition
	
	Instruction 1: Characterize Robustness Level
	Instruction 2: Requiring Hardware for Medium Robustness TOE
	Instruction 3: Uses of Medium Robustness
	Instruction 4: Assurance Requirements for Medium Robustness

	III. General Information Instructions
	
	Instruction 5: Content and outline of a Protection Profile
	Instruction 6: Format for the title page of a Protection Profile
	Instruction 7: Assumptions
	Instruction 8: Describing Threats
	Instruction 9: Threats, Policies, Objectives and Requirements
	Instruction 10: Specifying Requirements on the IT Environment
	Instruction 11: Scheme Interpretations
	Instruction 12: Rationale Section
	Instruction 13: Conventions
	Instruction 14: Glossary

	IV. Minimum Common Criteria Security Functional Requirement Instructions
	A. Security Audit
	Instruction 15: FAU_GEN.1-NIAP-0407 Audit data generation and FAU_GEN.2-NIAP-410 User Identity Association
	Instruction 16: FAU_SEL.1-NIAP-0407 Audit event selection
	Instruction 17: FAU_STG.1-NIAP-0429 Audit event storage (Back to TOC)
	Instruction 18: FAU_STG.3 Audit event storage
	Instruction 19: FAU_STG.NIAP—0414 Site-Configurab
	Instruction 20: FAU_ARP.1 Security alarm, FAU_ARP_ACK_(EXP).1 Security alarm acknowledgment, FAU_SAA.1-NIAP-407 Potential violation analysis

	B. Cryptographic Support
	Instruction 21: FCS_BCM Baseline Cryptographic Module, FCS_CKM Cryptographic Key, Management, FCS_COP Cryptographic operation

	C. User Data Protection
	Instruction 22: FDP_ACF Access control functions
	Instruction 23: FDP_IFF.1 and .2 Information flow control functions

	D. Identification and Authentication
	Instruction 24: FIA_AFL.1-NIAP-0425 Authentication failures
	Instruction 25: FIA_USB.1 User-subject binding

	E. Protection of the TSF
	Instruction 26: FPT_RPL.1 Replay detection
	Instruction 27: FPT_RCV Trusted recovery
	Instruction 28: FPT_TST TSF self test

	F. Resource Utilization
	Instruction 29: FRU_RSA.1 Resource allocation, FMT_MOF.1 Management of functions in TSF, FMT_MTD.2 Management of TSF data

	G. Security Management Roles
	Instruction 30: FMT_SMR.2 Restriction on Security Roles

	H. TOE Access
	Instruction 31: FTA_TAB.1 TOE access banner

	Required Text
	Instruction 32: FTA_TSE.1 TOE session establishment

	V. Explicit Common Criteria Security Assurance Requirements
	
	Instruction 33: ADV_ARC_(EXP).1 Architectural design, ADV_INT_(EXP).1 Modular decomposition, DV_FSP_(EXP).1 Functional specification With Complete Summary, ADV_HLD_(EXP).1 Security-enforcing high-level design, ADV_LLD_(EXP).1 Security-enforcing

	VI. Appendices
	Appendix A Mapping of Medium Robustness Threats/Policies to Objectives
	Appendix B: Mapping of Medium Robustness Objectives to Requirement
	Appendix C: Sample PP Mapping Spreadsheet
	Appendix D: Explanatory Material for Explicit Assurance Requirements
	
	
	PP Appendix for ADV_INT_EXP
	PP Appendix for ADV_FSP_(EXP).1 (Back to TOC)

	Appendix E: Protection Profile Cover Sheet Template

