Assurance Activities Report

for

Acronis SCS Cyber Backup 12.5 Hardened Edition Server Version 1.0 15 September 2023

Prepared by:

Leidos Inc. https://www.leidos.com/CC-FIPS140 Common Criteria Testing Laboratory 6841 Benjamin Franklin Drive Columbia, MD 21046

Prepared for:

National Information Assurance Partnership Common Criteria Evaluation and Validation Scheme The Developer of the TOE:

Acronis 1225 W. Washington St, Suite #205, Tempe, AZ 85288 United States of America

The TOE Evaluation was Sponsored by:

Acronis SCS

Acronis 1225 W. Washington St, Suite #205, Tempe, AZ 85288 United States of America

Evaluation Personnel:

Allen Sant Kofi Owusu

Contents

1	Introdu	iction	5
	1.2 Ev 1.3 Co	pplicable Technical Decisions vidence onformance Claims AR Evaluation	6 7
2	Securit	y Functional Requirement Assurance Activities	9
	2.1 Cr 2.1.1	ryptographic Support (FCS) FCS_CKM_EXT.1 Cryptographic Key Generation Services	
	2.1.2	FCS_CKM.1/AK Cryptographic Asymmetric Key Generation	9
	2.1.3	FCS_CKM.2 Cryptographic Key Establishment	12
	2.1.4	FCS_COP.1/Hash Cryptographic Operation – Hashing	15
	2.1.5	FCS_COP.1/KeyedHash Cryptographic Operation – Keyed-Hash Message A	uthentication
	2.1.6	FCS_COP.1/Sig Cryptographic Operation – Signing	17
	2.1.7	FCS_COP.1/SKC Cryptographic Operation – Encryption/Decryption	18
	2.1.8	FCS_RBG_EXT.1 Random Bit Generation Services	24
	2.1.9	FCS_RBG_EXT.2 Random Bit Generation from Application	25
	2.1.10	FCS_STO_EXT.1 Storage of Credentials	27
	2.1.11	FCS_TLS_EXT.1 TLS Protocol [TLS Package]	28
	2.1.12	FCS_HTTPS_EXT.1/Server HTTPS Protocol	29
	2.1.13	FCS_TLSS_EXT.1 TLS Server Protocol [TLS Package]	
	2.1.14	FCS_TLSS_EXT.4 TLS Server Support for Renegotiation [TLS Package]	35
	2.2 Us 2.2.1	ser Data Protection (FDP) FDP_DAR_EXT.1 Encryption of Sensitive Application Data	
	2.2.2	FDP_DEC_EXT.1 Access to Platform Resources	37
	2.2.3	FDP_NET_EXT.1 Network Communications	38
	2.3 Se 2.3.1	curity Management (FMT) FMT_CFG_EXT.1 Secure by Default Configuration	
	2.3.2	FMT_MEC_EXT.1 Supported Configuration Mechanism	41
	2.3.3	FMT_SMF.1 Specification of Management Functions	43
	2.4 Pr	ivacy (FPR)	43

	2.4.1	FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable Informat 43	ion
	2.5 Prot 2.5.1	tection of the TSF (FPT) FPT_AEX_EXT.1 Anti-Exploitation Capabilities	
	2.5.2	FPT_API_EXT.1 Use of Supported Services and APIs	.48
	2.5.3	FPT_IDV_EXT.1 Software Identification and Versions	.48
	2.5.4	FPT_LIB_EXT.1 Use of Third Party Libraries	.49
	2.5.5	FPT_TUD_EXT.1 Integrity for Installation and Update	.49
	2.5.6	FPT_TUD_EXT.2 Integrity for Installation and Update	.51
	2.6 Trus 2.6.1	sted Path/Channels (FTP) FTP_DIT_EXT.1 Protection of Data in Transit	
3	Security	Assurance Requirements	.55
		ss ASE: Security Target	
	3.2 Clas 3.2.1	ss ADV: Development ADV FSP.1 Basic Functional Specification	
	3.3 Clas 3.3.1	ss AGD: Guidance Documents AGD_OPE.1 Operational User Guidance	
	3.3.2	AGD_PRE.1 Preparative Procedures	.56
	3.4 Clas 3.4.1	ss ALC: Life-Cycle Support ALC_CMC.1 Labeling of the TOE	
	3.4.2	ALC_CMS.1 TOE CM Coverage	.57
	3.4.3	ALC_TSU_EXT.1 Timely Security Updates	. 59
	3.5 Clas 3.5.1	ss ATE: Tests ATE_IND.1 Independent Testing – Conformance	
	3.6 Clas 3.6.1	ss AVA: Vulnerability Assessment AVA_VAN.1 Vulnerability Survey	

1 Introduction

This document presents results from performing evaluation activities associated with the evaluation of Acronis SCS Cyber Backup Management Server Version 12.5. This report contains sections documenting the performance of evaluation activities associated with each of the Security Functional Requirements (SFRs) and Security Assurance Requirements (SARs) as specified in the evaluation activities for the Protection Profile for Application Software, Version 1.4, 2021-10-07 [App PP] and the Functional Package for Transport Layer Security (TLS), Version 1.1, 2019-03-01 [TLS Package].

1.1 Applicable Technical Decisions

The NIAP Technical Decisions referenced below apply to the [App PP] and [TLS Package]. Rationale is included for those Technical Decisions that do not apply to this evaluation.

App PP

<u>TD0780</u>	FIA_X509_EXT.1 Test 4 Clarification		
	This TD does not apply to the TOE as the TOE does not claim mutual authentication and thus, does not claim the FIA_X509_EXT.1 SFR.		
<u>TD0756</u>	Update for platform-provided full disk encryption		
<u>TD0747</u>	Configuration Storage Option for Android		
<u>TD0743</u>	FTP_DIT_EXT.1.1 Selection exclusivity		
<u>TD0736</u>	D0736 Number of elements for iterations of FCS_HTTPS_EXT.1		
	This TD applies to the TOE. This TD clearly adds the SFR FCS_HTTPS_EXT.1.3/Server.		
<u>TD0719</u>	ECD for PP APP v1.3 and 1.4		
	This TD applies to the TOE. The TD provides formal definitions for the extended components.		
<u>TD0717</u>	Format changes for PP_APP_V1.4		
	This TD applied to the TOE. The TD ensures consistency with CC Part 2 for FCS family SFRs.		
<u>TD0664</u>	Testing activity for FPT_TUD_EXT.2.2		
	This TD applies to the TOE. The TD modifies Test activities and has been incorporated into the AAR.		
<u>TD0650</u> :	Conformance claim sections updated to allow for MOD_VPNC_V2.3 and 2.4.		
	This TD does not apply to the TOE as it provides the ability to utilize the PP- Module for VPN clients which this TOE does not claim.		
<u>TD0628</u> :	Addition of Container Image to Package Format		

This TD applies to the TOE. The TD modifies the SFR and Test and has been incorporated into the AAR.

TLS Package

<u>TD0770</u> :	TLSS.2 connection with no client cert		
	This TD is not applicable to the TOE as the TOE does not claim the relevant SFR.		
<u>TD0739</u> :	PKG_TLS_v1.1 has 2 different publication dates.		
	This TD applies to the TOE. The TD modifies a Test and has been incorporated into the AAR.		
<u>TD0726</u> :	Corrections to (D)TLSS SFRs in TLS 1.1 FP		
	This TD applies to the TOE but only modifies the SFR, so no EAs are affected.		
<u>TD0588</u> :	Session Resumption Support in TLS Package		
	This TD applies to the TOE. The TD modifies the SFR and Test and has been incorporated into the AAR.		
<u>TD0513</u> :	CA Certificate loading		
	This TD does not apply to the TOE as it pertains to an SFR the TOE does not claim.		
<u>TD0499</u> :	Testing with pinned certificates		
	This TD does not apply to the TOE as it pertains to an SFR the TOE does not claim.		
<u>TD0469</u> :	Modification of Test Evaluation Activity for FCS_TLSS_EXT.1.1 test 4.1		
	This TD applies to the TOE. The TD modifies Test and has been incorporated into the AAR.		
<u>TD0442</u> :	Updated TLS Ciphersuites for TLS Package		
	This TD applies to the TOE but only modifies the SFR, so no EAs are affected.		
1.2 Evidence			
[App PP]	Protection Profile for Application Software, Version 1.4, 2021-10-07		
[TLS Package	e] Functional Package for Transport Layer Security (TLS), Version 1.1, 2019-03-01		
[ST]	Acronis SCS Cyber Backup 12.5 Hardened Edition Server v12.5 Security Target, Document Version 0.13, September 15, 2023		
[USER]	Acronis Cyber Backup 12.5 SCS Hardened Edition User Guide		
[CCSUPP]	Acronis Cyber Backup 12.5 SCS Hardened Edition Server v12.5 Guidance Documentation Supplement, Version 0.4, September 15, 2023		

- [TEST] Acronis SCS Cyber Backup 12.5 Hardened Edition Server Common Criteria Test Report and procedures for Application Software Version 1.4 and Functional Package for TLS version 1.1, Version 1.0, September 15, 2023
- [AVA] Acronis SCS Cyber Backup 12.5 Hardened Edition Server v12.5 Vulnerability Assessment, Version 1.1, September 15, 2023

1.3 Conformance Claims

Common Criteria Versions

- Common Criteria for Information Technology Security Evaluation Part 1: Introduction, Version 3.1, Revision 5, dated: April 2017.
- Common Criteria for Information Technology Security Evaluation Part 2: Security Functional Components, Version 3.1, Revision 5, dated: April 2017.
- Common Criteria for Information Technology Security Evaluation Part 3: Security Assurance Components, Version 3.1, Revision 5, dated: April 2017.

Common Evaluation Methodology Versions

• Common Methodology for Information Technology Security Evaluation, Evaluation Methodology, Version 3.1, Revision 5, dated: April 2017.

1.4 SAR Evaluation

The following Security Assurance Requirements (SARs) were evaluated during the evaluation of the TOE:

SAR	Verdict
ASE_CCL.1	Pass
ASE_ECD.1	Pass
ASE_INT.1	Pass
ASE_OBJ.1	Pass
ASE_REQ.1	Pass
ASE_TSS.1	Pass
ADV_FSP.1	Pass
AGD_OPE.1	Pass
AGD_PRE.1	Pass
ALC_CMC.1	Pass
ALC_CMS.1	Pass
ALC_TSU_EXT.1	Pass
ATE_IND.1	Pass

AVA_VAN.1	Pass
-----------	------

The evaluation work units are listed in the proprietary ETR. The evaluators note per the PP evaluation activities that many of the SARs were successfully evaluated through completion of the associated evaluation activities presented in the claimed PP.

2 Security Functional Requirement Assurance Activities

This section describes the evaluation activities associated with the SFRs defined in the ST and the results of those activities as performed by the evaluation team. The evaluation activities are derived from the [App PP] and [TLS Package] and modified by applicable NIAP Technical Decisions. Evaluation activities for SFRs not claimed by the TOE have been omitted.

Evaluator notes, such as changes made due to NIAP Technical Decisions, are in bold text. Bold text is also used within evaluation activities to identify when they are mapped to individual SFR elements rather than the component level.

2.1 Cryptographic Support (FCS)

2.1.1 FCS_CKM_EXT.1 Cryptographic Key Generation Services

Note SFR name modified by NIAP TD0717.

2.1.1.1 TSS Evaluation Activity

The evaluator shall inspect the application and its developer documentation to determine if the application needs asymmetric key generation services. If not, the evaluator shall verify the **generate no asymmetric cryptographic keys** selection is present in the ST. Otherwise, the evaluation activities shall be performed as stated in the selection-based requirements.

[ST] Section 8.1.1 FCS_CKM_EXT.1 and FCS_CKM.1/AK: states that the TOE implements asymmetric key generation using RSA, and ECC key generation schemes for key establishment and entity authentication for TLS and HTTPS. This is consistent with the need for ephemeral keys in TLS and HTTPS and with the selection of "implement asymmetric key generation" in the ST.

2.1.1.2 Guidance Evaluation Activity

None.

2.1.1.3 Test Evaluation Activity

None.

2.1.2 FCS_CKM.1/AK Cryptographic Asymmetric Key Generation

2.1.2.1 TSS Evaluation Activity

The evaluator shall ensure that the TSS identifies the key sizes supported by the TOE. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

[ST] Section 8.1.1 FCS_CKM.1 and FCS_CKM.1/AK: states that the TOE implements asymmetric key generation and Table 14 of the ST identifies those key sizes as 2048, and 3072 for RSA, and NIST curves with sizes 256, 384, 521 for ECC (ECDSA). The description indicates that RSA and ECC key generation schemes are used for key establishment and entity authentication for TLS and HTTPS.

If the application "invokes platform-provided functionality for asymmetric key generation," then the evaluator shall examine the TSS to verify that it describes how the key generation functionality is invoked.

This is not applicable as the Application selects "implement functionality".

2.1.2.2 Guidance Evaluation Activity

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the TOE to use the selected key generation scheme(s) and key size(s) for all uses defined in this PP.

[CCSUPP] Section 3.1.1 states that there are no management options to change the settings for the implemented cryptographic library. By default, the TOE is configured with the appropriate settings to meet the security requirements outlined in the Security Target.

2.1.2.3 Test Evaluation Activity

If the application "implements asymmetric key generation," then the following test activities shall be carried out.

Evaluation Activity Note: The following tests may require the developer to provide access to a developer environment that provides the evaluator with tools that are typically available to end-users of the application.

Key Generation for FIPS PUB 186-4 RSA Schemes

The evaluator shall verify the implementation of RSA Key Generation by the TOE using the Key Generation test. This test verifies the ability of the TSF to correctly produce values for the key components including the public verification exponent e, the private prime factors p and q, the public modulus n and the calculation of the private signature exponent d. Key Pair generation specifies 5 ways (or methods) to generate the primes p and q. These include:

- 1. Random Primes:
 - Provable primes
 - Probable primes
- 2. Primes with Conditions:
 - Primes p1, p2, q1,q2, p and q shall all be provable primes
 - Primes p1, p2, q1, and q2 shall be provable primes and p and q shall be probable primes
 - Primes p1, p2, q1,q2, p and q shall all be probable primes

To test the key generation method for the Random Provable primes method and for all the Primes with Conditions methods, the evaluator must seed the TSF key generation routine with sufficient data to deterministically generate the RSA key pair. This includes the random seed(s), the public exponent of the RSA key, and the desired key length. For each key length supported, the evaluator shall have the TSF generate 25 key pairs. The evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from a known good implementation.

If possible, the Random Probable primes method should also be verified against a known good implementation as described above. Otherwise, the evaluator shall have the TSF generate 10 keys pairs for each supported key length nlen and verify:

- $n = p \cdot q$,
- p and q are probably prime according to Miller-Rabin tests,
- GCD(p-1,e) = 1,
- GCD(q-1,e) = 1,
- $2^{16} \le e \le 2^{256}$ and e is an odd integer,
- $|\mathbf{p}-\mathbf{q}| > 2^{n \ln 2 100}$,
- $p \ge 2^{n \ln 2 1/2}$,
- $q \ge 2^{n \ln 2 1/2}$,
- $2^{(nlen/2)} < d < LCM(p-1,q-1),$
- $e \cdot d = 1 \mod LCM(p-1,q-1)$.

Key Generation for Elliptic Curve Cryptography (ECC)

FIPS 186-4 ECC Key Generation Test For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall require the implementation under test (IUT) to generate 10 private/public key pairs. The private key shall be generated using an approved random bit generator (RBG). To determine correctness, the evaluator shall submit the generated key pairs to the public key verification (PKV) function of a known good implementation.

FIPS 186-4 Public Key Verification (PKV) Test For each supported NIST curve, i.e., P-256, P-384 and P-521, the evaluator shall generate 10 private/public key pairs using the key generation function of a known good implementation and modify five of the public key values so that they are incorrect, leaving five values unchanged (i.e., correct). The evaluator shall obtain in response a set of 10 PASS/FAIL values.

Key Generation for Finite-Field Cryptography (FFC)

The evaluator shall verify the implementation of the Parameters Generation and the Key Generation for FFC by the TOE using the Parameter Generation and Key Generation test. This test verifies the ability of the TSF to correctly produce values for the field prime p, the cryptographic prime q (dividing p-1), the cryptographic group generator g, and the calculation of the private key x and public key y. The Parameter generation specifies 2 ways (or methods) to generate the cryptographic prime q and the field prime p:

Cryptographic and Field Primes:

- Primes q and p shall both be provable primes
- Primes q and field prime p shall both be probable primes

and two ways to generate the cryptographic group generator g: Cryptographic Group Generator:

- Generator g constructed through a verifiable process
- Generator g constructed through an unverifiable process.

The Key generation specifies 2 ways to generate the private key x: Private Key:

• len(q) bit output of RBG where $1 \le x \le q-1$

• len(q) + 64 bit output of RBG, followed by a mod q-1 operation where $1 \le x \le q-1$.

The security strength of the RBG must be at least that of the security offered by the FFC parameter set. To test the cryptographic and field prime generation method for the provable primes method and/or the group generator g for a verifiable process, the evaluator must seed the TSF parameter generation routine with sufficient data to deterministically generate the parameter set. For each key length supported, the evaluator shall have the TSF generate 25 parameter sets and key pairs. The evaluator shall verify the correctness of the TSF's implementation by comparing values generated by the TSF with those generated from a known good implementation. Verification must also confirm

- $g \neq 0,1$
- q divides p-1
- $g^q \mod p = 1$
- $g^x \mod p = y$

for each FFC parameter set and key pair.

Diffie-Hellman Group 14 and FFC Schemes using "safe-prime" groups

Testing for FFC Schemes using Diffie-Hellman group 14 and/or safe-prime groups is done as part of testing in CKM.2.1.

The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for RSA and ECDSA key generation. This certificate provides assurance that the TSF performs these functions as required.

2.1.3 FCS_CKM.2 Cryptographic Key Establishment

2.1.3.1 TSS Evaluation Activity

Modified by TD0717

The evaluator shall ensure that the supported key establishment schemes correspond to the key generation schemes identified in FCS_CKM.1.1 FCS_CKM.1.1/AK. If the ST specifies more than one scheme, the evaluator shall examine the TSS to verify that it identifies the usage for each scheme.

[ST] Section 8.1.1 FCS_CKM.2: states that the TOE implements both RSA and elliptic curvebased key establishment schemes for TLS and HTTPS. The key establishment schemes correspond to those identified in FCS_CKM.1/AK.

2.1.3.2 Guidance Evaluation Activity

The evaluator shall verify that the AGD guidance instructs the administrator how to configure the TOE to use the selected key establishment scheme(s).

[CCSUPP] Section 3.1.1 states that there are no management options to change the settings for the implemented cryptographic library. By default, the TOE is configured with the appropriate settings to meet the security requirements outlined in the Security Target.

2.1.3.3 Test Evaluation Activity

Evaluation Activity Note: The following tests require the developer to provide access to a test platform that provides the evaluator with tools that are typically not found on factory products.

Key Establishment Schemes

The evaluator shall verify the implementation of the key establishment schemes supported by the TOE using the applicable tests below.

SP800-56A Key Establishment Schemes

The evaluator shall verify a TOE's implementation of SP800-56A key agreement schemes using the following Function and Validity tests. These validation tests for each key agreement scheme verify that a TOE has implemented the components of the key agreement scheme according to the specifications in the Recommendation. These components include the calculation of the DLC primitives (the shared secret value Z) and the calculation of the derived keying material (DKM) via the Key Derivation Function (KDF). If key confirmation is supported, the evaluator shall also verify that the components of key confirmation have been implemented correctly, using the test procedures described below. This includes the parsing of the DKM, the generation of MACdata and the calculation of MACtag.

Function Test

The Function test verifies the ability of the TOE to implement the key agreement schemes correctly. To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE supported schemes. For each supported key agreement scheme-key agreement role combination, KDF type, and, if supported, key confirmation role-key confirmation type combination, the tester shall generate 10 sets of test vectors. The data set consists of one set of domain parameter values (FFC) or the NIST approved curve (ECC) per 10 sets of public keys. These keys are static, ephemeral or both depending on the scheme being tested.

The evaluator shall obtain the DKM, the corresponding TOE's public keys (static and/or ephemeral), the MAC tag(s), and any inputs used in the KDF, such as the Other Information (OtherInfo) and TOE id fields.

If the TOE does not use a KDF defined in SP 800-56A, the evaluator shall obtain only the public keys and the hashed value of the shared secret.

The evaluator shall verify the correctness of the TSF's implementation of a given scheme by using a known good implementation to calculate the shared secret value, derive the keying material DKM, and compare hashes or MAC tags generated from these values.

If key confirmation is supported, the TSF shall perform the above for each implemented approved MAC algorithm.

Validity Test

The Validity test verifies the ability of the TOE to recognize another party's valid and invalid key agreement results with or without key confirmation. To conduct this test, the evaluator shall obtain a list of the supporting cryptographic functions included in the SP800-56A key agreement implementation to determine which errors the TOE should be able to recognize. The evaluator generates a set of 24 (FFC) or 30 (ECC) test vectors consisting of data sets including domain parameter values or NIST approved curves, the evaluator's public keys, the TOE's public/private key pairs, MACTag, and any inputs used in the KDF, such as the OtherInfo and TOE id fields.

The evaluator shall inject an error in some of the test vectors to test that the TOE recognizes invalid key agreement results caused by the following fields being incorrect: the shared secret value Z, the DKM, the OtherInfo field, the data to be MACed, or the generated MACTag. If the TOE contains the full or partial (only ECC) public key validation, the evaluator will also individually inject errors in both parties' static public keys, both parties' ephemeral public keys and the TOE's static private key to assure the TOE detects errors in the public key validation function and/or the partial key validation function (in ECC only). At least two of the test vectors shall remain unmodified and therefore should result in valid key agreement results (they should pass).

The TOE shall use these modified test vectors to emulate the key agreement scheme using the corresponding parameters. The evaluator shall compare the TOE's results with the results using a known good implementation verifying that the TOE detects these errors.

SP800-56B Key Establishment Schemes

The evaluator shall verify that the TSS describes whether the TOE acts as a sender, a recipient, or both for RSA-based key establishment schemes.

If the TOE acts as a sender, the following evaluation activity shall be performed to ensure the proper operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE supported schemes. For each combination of supported key establishment scheme and its options (with or without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate 10 sets of test vectors. Each test vector shall include the RSA public key, the plaintext keying material, any additional input parameters if applicable, the MacKey and MacTag if key confirmation is incorporated, and the outputted ciphertext. For each test vector, the evaluator shall perform a key establishment encryption operation on the TOE with the same inputs (in cases where key confirmation is incorporated, the test shall use the MacKey from the test vector instead of the randomly generated MacKey used in normal operation) and ensure that the outputted ciphertext is equivalent to the ciphertext in the test vector.

If the TOE acts as a receiver, the following evaluation activities shall be performed to ensure the proper operation of every TOE supported combination of RSA-based key establishment scheme:

To conduct this test the evaluator shall generate or obtain test vectors from a known good implementation of the TOE supported schemes. For each combination of supported key establishment scheme and its options (with our without key confirmation if supported, for each supported key confirmation MAC function if key confirmation is supported, and for each supported mask generation function if KTS-OAEP is supported), the tester shall generate 10 sets of test vectors. Each test vector shall include the RSA private key, the plaintext keying material (KeyData), any additional input parameters if applicable, the MacTag in cases where key confirmation is incorporated, and the outputted ciphertext. For each test vector, the evaluator shall perform the key establishment decryption operation on the TOE and ensure that the outputted plaintext keying material (KeyData) is equivalent to the plaintext keying material in the test vector. In cases where key confirmation is incorporated, the evaluator shall perform the key confirmation steps and ensure that the outputted MacTag is equivalent to the MacTag in the test vector.

The evaluator shall ensure that the TSS describes how the TOE handles decryption errors. In accordance with NIST Special Publication 800-56B, the TOE must not reveal the particular error that occurred, either through the contents of any outputted or logged error message or through timing variations. If KTS-OAEP is supported, the evaluator shall create separate contrived ciphertext values that trigger each of the three decryption error checks described in NIST Special Publication 800-56B section 7.2.2.3, ensure that each decryption attempt results in an error, and ensure that any outputted or logged error message is identical for each. If KTS-KEM-KWS is supported, the evaluator shall create separate contrived ciphertext values that trigger each of the three decryption 800-56B section 7.2.3.3, ensure that each decryption 800-56B section 7.2.3.3, ensure that each decryption attempt results in an error, and ensure that each decryption attempt results in an error, and ensure that each decryption attempt results in an error, and ensure that each decryption attempt results in an error, and ensure that each decryption attempt results in an error, and ensure that each decryption attempt results in an error, and ensure that any outputted or logged error message is identical for each.

RSA-based key establishment

The evaluator shall verify the correctness of the TSF's implementation of RSAES-PKCS1-v1_5 by using a known good implementation for each protocol selected in FTP_DIT_EXT.1 that uses RSAES-PKCS1-v1_5.

Diffie-Hellman Group 14

The evaluator shall verify the correctness of the TSF's implementation of Diffie-Hellman group 14 by using a known good implementation for each protocol selected in FTP_DIT_EXT.1 that uses Diffie-Hellman group 14.

FFC Schemes using "safe-prime" groups

The evaluator shall verify the correctness of the TSF's implementation of safe-prime groups by using a known good implementation for each protocol selected in FTP_DIT_EXT.1 that uses safe-prime groups. This test must be performed for each safe-prime group that each protocol uses.

The correctness of the TSF's implementation of RSAESPKCS1-v1_5 is verified by its implementation of TLSv1.2 as a TLS Server. The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for Elliptic curve based key establishment. This certificate provides assurance that the TSF performs these functions as required.

2.1.4 FCS_COP.1/Hash Cryptographic Operation – Hashing

2.1.4.1 TSS Evaluation Activity

The evaluator shall check that the association of the hash function with other application cryptographic functions (for example, the digital signature verification function) is documented in the TSS.

The evaluator examined the TSS to check that the association of hash functions with other application cryptographic functions was properly documented. [ST] Section 8.1.1 subsection FCS_COP.1/Hash and FCS_COP.1/KeyedHash of the ST was used to determine the verdict of this work unit. The evaluator found that hash functions are used with other TOE cryptographic functions, including digital signature verification and Message Authentication Code to support the TOE's HTTPS and TLS cryptographic functionality.

2.1.4.2 Guidance Evaluation Activity

None.

2.1.4.3 Test Evaluation Activity

The TSF hashing functions can be implemented in one of two modes. The first mode is the byteoriented mode. In this mode the TSF hashes only messages that are an integral number of bytes in length; i.e., the length (in bits) of the message to be hashed is divisible by 8. The second mode is the bit-oriented mode. In this mode the TSF hashes messages of arbitrary length. As there are different tests for each mode, an indication is given in the following sections for the bit-oriented vs. the byte-oriented testmacs. The evaluator shall perform all of the following tests for each hash algorithm implemented by the TSF and used to satisfy the requirements of this PP.

The following tests require the developer to provide access to a test application that provides the evaluator with tools that are typically not found in the production application.

Test 1: Short Messages Test - Bit oriented Mode. The evaluators devise an input set consisting of m+1 messages, where m is the block length of the hash algorithm. The length of the messages range sequentially from 0 to m bits. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Test 2: Short Messages Test - Byte oriented Mode. The evaluators devise an input set consisting of m/8+1 messages, where m is the block length of the hash algorithm. The length of the messages range sequentially from 0 to m/8 bytes, with each message being an integral number of bytes. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Test 3: Selected Long Messages Test - Bit oriented Mode. The evaluators devise an input set consisting of m messages, where m is the block length of the hash algorithm. The length of the ith message is 512 + 99*i, where $1 \le i \le m$. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Test 4: Selected Long Messages Test - Byte oriented Mode. The evaluators devise an input set consisting of m/8 messages, where m is the block length of the hash algorithm. The length of the ith message is 512 + 8*99*i, where $1 \le i \le m/8$. The message text shall be pseudorandomly generated. The evaluators compute the message digest for each of the messages and ensure that the correct result is produced when the messages are provided to the TSF.

Test 5: Pseudorandomly Generated Messages Test. This test is for byte-oriented implementations only. The evaluators randomly generate a seed that is n bits long, where n is the length of the message digest produced by the hash function to be tested. The evaluators then

formulate a set of 100 messages and associated digests by following the algorithm provided in Figure 1 of [SHAVS]. The evaluators then ensure that the correct result is produced when the messages are provided to the TSF.

The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for SHA2-256 and SHA2-384. This certificate provides assurance that the TSF performs these functions as required.

2.1.5 FCS_COP.1/KeyedHash Cryptographic Operation – Keyed-Hash Message Authentication

The evaluator shall perform the following activities based on the selections in the ST.

2.1.5.1 TSS Evaluation Activity

None.

2.1.5.2 Guidance Evaluation Activity

None.

2.1.5.3 Test Evaluation Activity

For each of the supported parameter sets, the evaluator shall compose 15 sets of test data. Each set shall consist of a key and message data. The evaluator shall have the TSF generate HMAC tags for these sets of test data. The resulting MAC tags shall be compared to the result of generating HMAC tags with the same key and IV using a known-good implementation.

The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for HMAC-SHA2-256 and HMAC-SHA2-384. This certificate provides assurance that the TSF performs these functions as required.

2.1.6 FCS_COP.1/Sig Cryptographic Operation – Signing

The evaluator shall perform the following activities based on the selections in the ST.

2.1.6.1 TSS Evaluation Activity

None.

2.1.6.2 Guidance Evaluation Activity

None.

2.1.6.3 Test Evaluation Activity

The following tests require the developer to provide access to a test application that provides the evaluator with tools that are typically not found in the production application.

ECDSA Algorithm Tests

Test 1: ECDSA FIPS 186-4 Signature Generation Test. For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate 10 1024-bit long messages and obtain for each message a public key and the resulting signature values R and S. To determine correctness, the evaluator shall use the signature verification function of a known good implementation.

Test 2: ECDSA FIPS 186-4 Signature Verification Test. For each supported NIST curve (i.e., P-256, P-384 and P-521) and SHA function pair, the evaluator shall generate a set of 10 1024-bit message, public key and signature tuples and modify one of the values (message, public key or signature) in five of the 10 tuples. The evaluator shall obtain in response a set of 10 PASS/FAIL values.

This is not applicable as the TOE does not use or claim ECDSA algorithm support.

RSA Signature Algorithm Tests

Test 1: Signature Generation Test. The evaluator shall verify the implementation of RSA Signature Generation by the TOE using the Signature Generation Test. To conduct this test the evaluator must generate or obtain 10 messages from a trusted reference implementation for each modulus size/SHA combination supported by the TSF. The evaluator shall have the TOE use their private key and modulus value to sign these messages. The evaluator shall verify the correctness of the TSF's signature using a known good implementation and the associated public keys to verify the signatures.

Test 2: Signature Verification Test. The evaluator shall perform the Signature Verification test to verify the ability of the TOE to recognize another party's valid and invalid signatures. The evaluator shall inject errors into the test vectors produced during the Signature Verification Test by introducing errors in some of the public keys, e, messages, IR format, and/or signatures. The TOE attempts to verify the signatures and returns success or failure.

The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for RSA Digital signature generation and verification using 2048 and 3072 bit RSA keys. This certificate provides assurance that the TSF performs these functions as required.

2.1.7 FCS_COP.1/SKC Cryptographic Operation – Encryption/Decryption

2.1.7.1 TSS Evaluation Activity

None.

2.1.7.2 Guidance Evaluation Activity

The evaluator checks the AGD documents to determine that any configuration that is required to be done to configure the functionality for the required modes and key sizes is present.

[CCSUPP] Section 3.1.1 states that there are no management options to change the settings for the implemented cryptographic library. By default, the TOE is configured with the appropriate settings to meet the security requirements outlined in the Security Target.

2.1.7.3 Test Evaluation Activity

The evaluator shall perform all of the following tests for each algorithm implemented by the TSF and used to satisfy the requirements of this PP:

AES-CBC Known Answer Tests

There are four Known Answer Tests (KATs), described below. In all KATs, the plaintext, ciphertext, and IV values shall be 128-bit blocks. The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

KAT-1. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 plaintext values and obtain the ciphertext value that results from AES-CBC encryption of the given plaintext using a key value of all zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all-zeros key, and the other five shall be encrypted with a 256-bit all-zeros key. To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using 10 ciphertext values as input and AES-CBC decryption.

KAT-2. To test the encrypt functionality of AES-CBC, the evaluator shall supply a set of 10 key values and obtain the ciphertext value that results from AES-CBC encryption of an all-zeros plaintext using the given key value and an IV of all zeros. Five of the keys shall be 128-bit keys, and the other five shall be 256-bit keys. To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using an all-zero ciphertext value as input and AES-CBC decryption.

KAT-3. To test the encrypt functionality of AES-CBC, the evaluator shall supply the two sets of key values described below and obtain the ciphertext value that results from AES encryption of an all-zeros plaintext using the given key value and an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second set shall have 256 256-bit keys. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. To test the decrypt functionality of AES-CBC, the evaluator shall supply the two sets of key and ciphertext value pairs described below and obtain the plaintext value that results from AES-CBC decryption of the given ciphertext using the given key and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of key/ciphertext pairs shall have 256 256-bit key/ciphertext pairs. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall have 128 128-bit key/ciphertext pairs. Key i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1,N]. The ciphertext value in each pair shall be the value that results in an all-zeros plaintext when decrypted with its corresponding key.

KAT-4. To test the encrypt functionality of AES-CBC, the evaluator shall supply the set of 128 plaintext values described below and obtain the two ciphertext values that result from AES-CBC encryption of the given plaintext using a 128-bit key value of all zeros with an IV of all zeros and using a 256-bit key value of all zeros with an IV of all zeros, respectively. Plaintext value i in each set shall have the leftmost i bits be ones and the rightmost 128-i bits be zeros, for i in [1,128].

To test the decrypt functionality of AES-CBC, the evaluator shall perform the same test as for encrypt, using ciphertext values of the same form as the plaintext in the encrypt test as input and AES-CBC decryption.

This is not applicable as TOE does not use AES in CBC mode.

AES-CBC Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 < i <= 10. The evaluator shall choose a key, an IV and plaintext message of length i blocks and encrypt the message, using the mode to be tested, with the chosen key and IV. The ciphertext shall be compared to the result of encrypting the same plaintext message with the same key and IV using a known good implementation. The evaluator shall also test the decrypt functionality for each mode by decrypting an i-block message where 1 < i <=10. The evaluator shall choose a key, an IV and a ciphertext message of length i blocks and decrypt the message, using the mode to be tested, with the chosen key and IV. The plaintext shall be compared to the result of decrypting the same ciphertext message of length i blocks and decrypt the message, using the mode to be tested, with the chosen key and IV. The plaintext shall be compared to the result of decrypting the same ciphertext message with the same key and IV using a known good implementation. AES-CBC Monte Carlo Tests The evaluator shall test the encrypt functionality using a set of 200 plaintext, IV, and key 3- tuples. 100 of these shall use 128 bit keys, and 100 shall use 256 bit keys. The plaintext and IV values shall be 128-bit blocks. For each 3-tuple, 1000 iterations shall be run as follows:

Input: PT, IV, Key for i = 1 to 1000: if i == 1: CT[1] = AES-CBC-Encrypt(Key, IV, PT) PT = IV else: CT[i] = AES-CBC-Encrypt(Key, PT) PT = CT[i-1]

The ciphertext computed in the 1000th iteration (i.e., CT[1000]) is the result for that trial. This result shall be compared to the result of running 1000 iterations with the same values using a known good implementation.

The evaluator shall test the decrypt functionality using the same test as for encrypt, exchanging CT and PT and replacing AES-CBC-Encrypt with AES-CBC-Decrypt.

This is not applicable as TOE does not use AES in CBC mode.

AES-GCM Monte Carlo Tests

The evaluator shall test the authenticated encrypt functionality of AES-GCM for each combination of the following input parameter lengths:

- 128 bit and 256 bit keys
- Two plaintext lengths. One of the plaintext lengths shall be a non-zero integer multiple of 128 bits, if supported. The other plaintext length shall not be an integer multiple of 128 bits, if supported.
- Three AAD lengths. One AAD length shall be 0, if supported. One AAD length shall be a non-zero integer multiple of 128 bits, if supported. One AAD length shall not be an integer multiple of 128 bits, if supported.
- Two IV lengths. If 96 bit IV is supported, 96 bits shall be one of the two IV lengths tested.

The evaluator shall test the encrypt functionality using a set of 10 key, plaintext, AAD, and IV tuples for each combination of parameter lengths above and obtain the ciphertext value and tag that results from AES-GCM authenticated encrypt. Each supported tag length shall be tested at least once per set of 10. The IV value may be supplied by the evaluator or the implementation being tested, as long as it is known.

The evaluator shall test the decrypt functionality using a set of 10 key, ciphertext, tag, AAD, and IV 5-tuples for each combination of parameter lengths above and obtain a Pass/Fail result on

authentication and the decrypted plaintext if Pass. The set shall include five tuples that Pass and five that Fail.

The results from each test may either be obtained by the evaluator directly or by supplying the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for AES-GCM using the key sizes 128 and 256.

AES-XTS Tests

The evaluator shall test the encrypt functionality of XTS-AES for each combination of the following input parameter lengths:

256 bit (for AES-128) and 512 bit (for AES-256) keys

Three data unit (i.e., plaintext) lengths. One of the data unit lengths shall be a non-zero integer multiple of 128 bits, if supported. One of the data unit lengths shall be an integer multiple of 128 bits, if supported. The third data unit length shall be either the longest supported data unit length or 216 bits, whichever is smaller.

Using a set of 100 (key, plaintext and 128-bit random tweak value) 3-tuples and obtain the ciphertext that results from XTS-AES encrypt.

The evaluator may supply a data unit sequence number instead of the tweak value if the implementation supports it. The data unit sequence number is a base-10 number ranging between 0 and 255 that implementations convert to a tweak value internally.

The evaluator shall test the decrypt functionality of XTS-AES using the same test as for encrypt, replacing plaintext values with ciphertext values and XTS-AES encrypt with XTS-AES decrypt.

This is not applicable as TOE does not use AES in XTS mode.

AES-CCM Tests

It is not recommended that evaluators use values obtained from static sources such as http://csrc.nist.gov/groups/STM/cavp/documents/mac/ccmtestvectors.zip or use values not generated expressly to exercise the AES-CCM implementation.

The evaluator shall test the generation-encryption and decryption-verification functionality of AES-CCM for the following input parameter and tag lengths:

- Keys: All supported and selected key sizes (e.g., 128, 256 bits).
- Associated Data: Two or three values for associated data length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes) supported associated data lengths, and 2^16 (65536) bytes, if supported.
- Payload: Two values for payload length: The minimum (≥ 0 bytes) and maximum (≤ 32 bytes) supported payload lengths.
- Nonces: All supported nonce lengths (7, 8, 9, 10, 11, 12, 13) in bytes.
- Tag: All supported tag lengths (4, 6, 8, 10, 12, 14, 16) in bytes.

The testing for CCM consists of five tests. To determine correctness in each of the below tests, the evaluator shall compare the ciphertext with the result of encryption of the same inputs with a known good implementation.

Variable Associated Data Test

For each supported key size and associated data length, and any supported payload length, nonce length, and tag length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload values, and obtain the resulting ciphertext.

Variable Payload Test

For each supported key size and payload length, and any supported associated data length, nonce length, and tag length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload values, and obtain the resulting ciphertext.

Variable Nonce Test For each supported key size and nonce length, and any supported associated data length, payload length, and tag length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload values, and obtain the resulting ciphertext.

Variable Tag Test For each supported key size and tag length, and any supported associated data length, payload length, and nonce length, the evaluator shall supply one key value, one nonce value, and 10 pairs of associated data and payload values, and obtain the resulting ciphertext.

Decryption-Verification Process Test To test the decryption-verification functionality of AES-CCM, for each combination of supported associated data length, payload length, nonce length, and tag length, the evaluator shall supply a key value and 15 sets of input plus ciphertext, and obtain the decrypted payload. Ten of the 15 input sets supplied should fail verification and five should pass.

This is not applicable as the TOE does not use AES in CCM mode.

AES-CTR Tests

Test 1: Known Answer Tests (KATs)

There are four Known Answer Tests (KATs) described below. For all KATs, the plaintext, IV, and ciphertext values shall be 128-bit blocks. The results from each test may either be obtained by the validator directly or by supplying the inputs to the implementer and receiving the results in response. To determine correctness, the evaluator shall compare the resulting values to those obtained by submitting the same inputs to a known good implementation.

To test the encrypt functionality, the evaluator shall supply a set of 10 plaintext values and obtain the ciphertext value that results from encryption of the given plaintext using a key value of all zeros and an IV of all zeros. Five plaintext values shall be encrypted with a 128-bit all zeros key, and the other five shall be encrypted with a 256-bit all zeros key. To test the decrypt functionality, the evaluator shall perform the same test as for encrypt, using 10 ciphertext values as input.

To test the encrypt functionality, the evaluator shall supply a set of 10 key values and obtain the ciphertext value that results from encryption of an all zeros plaintext using the given key value and an IV of all zeros. Five of the key values shall be 128-bit keys, and the other five shall be 256-bit keys. To test the decrypt functionality, the evaluator shall perform the same test as for encrypt, using an all zero ciphertext value as input.

To test the encrypt functionality, the evaluator shall supply the two sets of key values described below and obtain the ciphertext values that result from AES encryption of an all zeros plaintext using the given key values an an IV of all zeros. The first set of keys shall have 128 128-bit keys, and the second shall have 256 256-bit keys. Key_i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros, for i in [1, N]. To test the decrypt functionality, the evaluator shall supply the two sets of key and ciphertext value pairs described below and obtain the plaintext value that results from decryption of the given ciphertext using the given key values and an IV of all zeros. The first set of key/ciphertext pairs shall have 128 128-bit key/ciphertext pairs, and the second set of key/ciphertext pairs shall have 256 256-bit pairs. Key_i in each set shall have the leftmost i bits be ones and the rightmost N-i bits be zeros for i in [1, N]. The ciphertext value in each pair shall be the value that results in an all zeros plaintext when decrypted with its corresponding key.

To test the encrypt functionality, the evaluator shall supply the set of 128 plaintext values described below and obtain the two ciphertext values that result from encryption of the given plaintext using a 128-bit key value of all zeros and using a 256 bit key value of all zeros, respectively, and an IV of all zeros. Plaintext value i in each set shall have the leftmost bits be ones and the rightmost 128-i bits be zeros, for i in [1, 128]. To test the decrypt functionality, the evaluator shall perform the same test as for encrypt, using ciphertext values of the same form as the plaintext in the encrypt test as input.

Test 2: Multi-Block Message Test

The evaluator shall test the encrypt functionality by encrypting an i-block message where 1 lessthan i less-than-or-equal to 10. For each i the evaluator shall choose a key, IV, and plaintext message of length i blocks and encrypt the message, using the mode to be tested, with the chosen key. The ciphertext shall be compared to the result of encrypting the same plaintext message with the same key and IV using a known good implementation. The evaluator shall also test the decrypt functionality by decrypting an i-block message where 1 less-than i less-than-or-equal to 10. For each i the evaluator shall choose a key and a ciphertext message of length i blocks and decrypt the message, using the mode to be tested, with the chosen key. The plaintext shall be compared to the result of decrypting the same ciphertext message with the same key using a known good implementation.

Test 3: Monte-Carlo Test

For AES-CTR mode perform the Monte Carlo Test for ECB Mode on the encryption engine of the counter mode implementation. There is no need to test the decryption engine.

The evaluator shall test the encrypt functionality using 200 plaintext/key pairs. 100 of these shall use 128 bit keys, and 100 of these shall use 256 bit keys. The plaintext values shall be 128-bit blocks. For each pair, 1000 iterations shall be run as follows:

For AES-ECB mode # Input: PT, Key for i = 1 to 1000: CT[i] = AES-ECB-Encrypt(Key, PT) PT = CT[i]

The ciphertext computed in the 1000th iteration is the result for that trial. This result shall be compared to the result of running 1000 iterations with the same values using a known good implementation.

The evaluator examined the CAVP certificate #C1351 and determined that the TOE has been awarded a CAVP certificate for AES-CTR using the key sizes 128 and 256.

2.1.8 FCS_RBG_EXT.1 Random Bit Generation Services

2.1.8.1 TSS Evaluation Activity

If "use no DRBG functionality" is selected, the evaluator shall inspect the application and its developer documentation and verify that the application needs no random bit generation services.

[ST] Section 7.2.1 subsection FCS_RBG_EXT.1 indicates that the ST selects "implement DRBG functionality." Therefore, this activity is not applicable to the TOE.

If "implement DRBG functionality" is selected, the evaluator shall ensure that additional FCS RBG EXT.2 elements are included in the ST.

[ST] Section 7.2.1 subsection FCS_RBG_EXT.1 indicates that the ST selects "implement DRBG functionality", therefore, the evaluator verified that FCS_RBG_EXT.2 is included in the ST. Section 7.2.1 of the ST were used to determine the verdict of this assurance activity as the FCS_RBG_EXT.2 SFR is included.

If "invoke platform-provided DRBG functionality" is selected, the evaluator performs the following activities. The evaluator shall examine the TSS to confirm that it identifies all functions (as described by the SFRs included in the ST) that obtain random numbers from the platform RBG. The evaluator shall determine that for each of these functions, the TSS states which platform interface (API) is used to obtain the random numbers. The evaluator shall confirm that each of these interfaces corresponds to the acceptable interfaces listed for each platform below.

It should be noted that there is no expectation that the evaluators attempt to confirm that the APIs are being used correctly for the functions identified in the TSS; the activity is to list the used APIs and then do an existence check via decompilation.

[ST] Section 7.2.1 subsection FCS_RBG_EXT.1 indicates that the ST selects "implement DRBG functionality". Thus, this activity is not applicable to the TOE.

2.1.8.2 Guidance Evaluation Activity

None.

2.1.8.3 Test Evaluation Activity

If "invoke platform-provided DRBG functionality" is selected, the following tests shall be performed:

The evaluator shall decompile the application binary using a decompiler suitable for the application (TOE). The evaluator shall search the output of the decompiler to determine that, for each API listed in the TSS, that API appears in the output. If the representation of the API does not correspond directly to the strings in the following list, the evaluator shall provide a mapping from the decompiled text to its corresponding API, with a description of why the API text does not directly correspond to the decompiled text and justification that the decompiled text corresponds to the associated API.

The following are the per-platform list of acceptable APIs

Android: The evaluator shall verify that the application uses at least one of javax.crypto.KeyGenerator class or the java.security.SecureRandom class or /dev/random or /dev/urandom.

Microsoft Windows: The evaluator shall verify that rand_s, RtlGenRandom, BcryptGenRandom, or CryptGenRandom API is used for classic desktop applications. The evaluator shall verify the application uses the RNGCryptoServiceProvider class or derives a class from System.Security.Cryptography.RandomNumberGenerator API for Windows Universal Applications. It is only required that the API is called/invoked, there is no requirement that the API be used directly. In future versions of this document, CryptGenRandom may be removed as an option as it is no longer the preferred API per vendor documentation.

Apple iOS: The evaluator shall verify that the application invokes either SecRandomCopyBytes, CCRandomGenerateBytes, or CCRandomCopyBytes, or uses /dev/random directly to acquire random.

Linux: The evaluator shall verify that the application collects random from /dev/random or /dev/urandom.

Oracle Solaris: The evaluator shall verify that the application collects random from /dev/random.

Apple macOS: The evaluator shall verify that the application invokes either CCRandomGenerateBytes or CCRandomCopyBytes, or collects random from /dev/random.

If invocation of platform-provided functionality is achieved in another way, the evaluator shall ensure the TSS describes how this is carried out, and how it is equivalent to the methods listed here (e.g. higher-level API invokes identical low-level API).

This is not applicable as the TOE does not select "invoke platform-provided DRBG functionality" and instead implements DRBG functionality.

2.1.9 FCS_RBG_EXT.2 Random Bit Generation from Application

2.1.9.1 TSS Evaluation Activity

FCS_RBG_EXT.2.1 None.

FCS_RBG_EXT.2.2

Documentation shall be produced – and the evaluator shall perform the activities – in accordance with Appendix C – Entropy Documentation and Assessment and the Clarification to the Entropy Documentation and Assessment Annex.

The vendor provided documentation describing the entropy sources used by the TOE. The evaluator examined the documentation and determined that it includes the required detailed sections necessary to thoroughly understand the entropy sources and to determine that it can be relied upon to provide sufficient entropy.

2.1.9.2 Guidance Evaluation Activity

FCS_RBG_EXT.2.1 and FCS_RBG_EXT.2.2

None.

2.1.9.3 Test Evaluation Activity

The evaluator shall perform the following tests, depending on the standard to which the RBG conforms.

Implementations Conforming to FIPS 140-2 Annex C.

FCS_RBG_EXT.2.1

The reference for the tests contained in this section is The Random Number Generator Validation System (RNGVS). The evaluators shall conduct the following two tests. Note that the "expected values" are produced by a reference implementation of the algorithm that is known to be correct. Proof of correctness is left to each Scheme.

FCS_RBG_EXT.2.1

Test 1: The evaluators shall perform a Variable Seed Test. The evaluators shall provide a set of 128 (Seed, DT) pairs to the TSF RBG function, each 128 bits. The evaluators shall also provide a key (of the length appropriate to the AES algorithm) that is constant for all 128 (Seed, DT) pairs. The DT value is incremented by 1 for each set. The seed values shall have no repeats within the set. The evaluators ensure that the values returned by the TSF match the expected values.

FCS_RBG_EXT.2.1

Test 2: The evaluators shall perform a Monte Carlo Test. For this test, they supply an initial Seed and DT value to the TSF RBG function; each of these is 128 bits. The evaluators shall also provide a key (of the length appropriate to the AES algorithm) that is constant throughout the test. The evaluators then invoke the TSF RBG 10,000 times, with the DT value being incremented by 1 on each iteration, and the new seed for the subsequent iteration produced as specified in NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES Algorithms, Section E.3. The evaluators ensure that the 10,000th value produced matches the expected value.

This is not applicable as the TOE does not claim conformance to FIPS 140-2 Annex C and instead claims conformance to NIST SP 800-90A.

Implementations Conforming to NIST Special Publication 800-90A

FCS_RBG_EXT.2.1

Test 1: The evaluator shall perform 15 trials for the RNG implementation. If the RNG is configurable, the evaluator shall perform 15 trials for each configuration. The evaluator shall also confirm that the operational guidance contains appropriate instructions for configuring the RNG functionality.

If the RNG has prediction resistance enabled, each trial consists of (1) instantiate DRBG, (2) generate the first block of random bits (3) generate a second block of random bits (4) uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is a count (0 - 14). The next three are entropy input, nonce, and personalization string for the instantiate operation. The next two are additional input and entropy input for the first call to generate. The final two are additional input and entropy input for the second call to generate. These values are randomly

generated. "generate one block of random bits" means to generate random bits with number of returned bits equal to the Output Block Length (as defined in NIST SP 800-90A).

If the RNG does not have prediction resistance, each trial consists of (1) instantiate DRBG, (2) generate the first block of random bits (3) reseed, (4) generate a second block of random bits (5) uninstantiate. The evaluator verifies that the second block of random bits is the expected value. The evaluator shall generate eight input values for each trial. The first is a count (0 - 14). The next three are entropy input, nonce, and personalization string for the instantiate operation. The fifth value is additional input to the first call to generate. The sixth and seventh are additional input and entropy input to the call to reseed. The final value is additional input to the second generate call.

The following paragraphs contain more information on some of the input values to be generated/selected by the evaluator.

Entropy input: the length of the entropy input value must equal the seed length.

Nonce: If a nonce is supported (CTR_DRBG with no Derivation Function does not use a nonce), the nonce bit length is one-half the seed length.

Personalization string: The length of the personalization string must be less then or equal to seed length. If the implementation only supports one personalization string length, then the same length can be used for both values. If more than one string length is support, the evaluator shall use personalization strings of two different lengths. If the implementation does not use a personalization string, no value needs to be supplied.

Additional input: the additional input bit lengths have the same defaults and restrictions as the personalization string lengths.

The evaluator examined the ST and found that in Section 8.1.1 "Cryptographic Support" Table 14 "Cryptographic Algorithms and Key Sizes" that the TOE was awarded the CAVP certificate #C1351 for DRBG.

FCS_RBG_EXT.2.2

In the future, specific statistical testing (in line with NIST SP 800-90B) will be required to verify the entropy estimates.

2.1.10 FCS_STO_EXT.1 Storage of Credentials

2.1.10.1 TSS Evaluation Activity

The evaluator shall check the TSS to ensure that it lists all persistent credentials (secret keys, PKI private keys, or passwords) needed to meet the requirements in the ST. For each of these items, the evaluator shall confirm that the TSS lists for what purpose it is used, and how it is stored.

[ST] Section 8.1.1 FCS_STO_EXT.1: The TOE leverages the Windows Data Protection API to securely store the TOE's TLS private key, Backup Agent application token, and registration token. The TLS private key is used to decrypt TLS and HTTPS traffic. The registration token is used as an alternative to an administrator's credentials when installing a Backup Agent while the Backup Agent application token is used by connecting Backup Agents to download the correct configuration and license information.

The TOE also uses credentials for management of the TOE however these credentials are defined by and stored in the platform. Since the TOE does not create or store these credentials they are not included in FCS_STO_EXT.1. These password credentials are described in FDP_DAR_EXT.1 in Section 8.1.2 of the ST after the discussion of the TLS Private key: "No other forms of sensitive data are stored by the TOE.

2.1.10.2 Guidance Evaluation Activity

None.

2.1.10.3 Test Evaluation Activity

For all credentials for which the application implements functionality, the evaluator shall verify credentials are encrypted according to FCS_COP.1/SKC or conditioned according to FCS_CKM.1.1/AK and FCS_CKM.1/PBKDF. For all credentials for which the application invokes platform-provided functionality, the evaluator shall perform the following actions which vary per platform.

Android: The evaluator shall verify that the application uses the Android KeyStore or the Android KeyChain to store certificates.

Microsoft Windows: The evaluator shall verify that all certificates are stored in the Windows Certificate Store. The evaluator shall verify that other credentials, like passwords, are stored in the Windows Credential Manager or stored using the Data Protection API (DPAPI). For Windows Universal Applications, the evaluator shall verify that the application is using the ProtectData class and storing credentials in IsolatedStorage.

Apple iOS: The evaluator shall verify that all credentials are stored within a Keychain.

Linux: The evaluator shall verify that all keys are stored using Linux keyrings.

Oracle Solaris: The evaluator shall verify that all keys are stored using Solaris Key Management Framework (KMF).

Apple macOS: The evaluator shall verify that all credentials are stored within Keychain.

The evaluator verified that the TOE utilized the Windows Data Protection API (DPAPI) to securely store credentials.

2.1.11 FCS_TLS_EXT.1 TLS Protocol [TLS Package]

2.1.11.1 General Evaluation Activity

The evaluator shall ensure that the selections indicated in the ST are consistent with selections in the dependent components.

The evaluator verified that the selection in the ST of 'TLS as a server' is consistent with the dependent components. The selection of TLS as a server is consistent with the selections of HTTPS/TLS as a server in FTP_DIT_EXT.1 and the inclusion of FCS_TLSS_EXT.1. The TOE does not support mutual authentication which is consistent with the absence of FCS_TLSS_EXT.2.

2.1.12 FCS_HTTPS_EXT.1/Server HTTPS Protocol

2.1.12.1 TSS Evaluation Activity

FCS_HTTPS_EXT.1.1/Server

The evaluator shall examine the TSS and determine that enough detail is provided to explain how the implementation complies with RFC 2818.

[ST] Section 8.1.1 states that the TOE's HTTPS protocol complies with RFC 2818 and is implemented using TLS 1.2 (RFC 5246). This complies with RFC 2818 which describes implementing a secure channel for HTTP using TLS.

FCS_HTTPS_EXT.1.2/Server None

FCS_HTTPS_EXT.1.3/Server None.

2.1.12.2 Guidance Evaluation Activity

FCS_HTTPS_EXT.1.1/Server None.

FCS_HTTPS_EXT.1.2/Server None.

FCS_HTTPS_EXT.1.3/Server

None.

2.1.12.3 Test Evaluation Activity

FCS_HTTPS_EXT.1.1/Server

The evaluator shall attempt to establish an HTTPS connection to the TOE using a client, observe the traffic with a packet analyzer, and verify that the connection succeeds and that the traffic is identified as TLS or HTTPS.

The evaluator observed a connection between a remote administrator and the TOE with wireshark. The evaluator verified that the TOE properly protected the connection using HTTPS vis TLS.

FCS_HTTPS_EXT.1.2/Server

Other tests are performed in conjunction with the TLS package.

The evaluator executed the tests prescribed in the TLS package which can be seen in FCS_TLSS_EXT.1 and FCS_TLSS_EXT.4

Added by TD0736 FCS_HTTPS_EXT.1.3/Server

Other tests are performed in conjunction with the TLS Functional Package, FCS_HTTPS_EXT.2 (dependent on selections in FTP_DIT_EXT.1), and FIA_X509_EXT.1.

This is not applicable as the TOE does not utilize mutual authentication or claim FCS_HTTPS_EXT.2.

2.1.13 FCS_TLSS_EXT.1 TLS Server Protocol [TLS Package]

2.1.13.1 TSS Evaluation Activity

FCS_TLSS_EXT.1.1

The evaluator shall check the description of the implementation of this protocol in the TSS to ensure that the cipher suites supported are specified. The evaluator shall check the TSS to ensure that the cipher suites specified include those listed for this component.

[ST] Section 8.1.1 FCS_TLS_EXT.1, FCS_TLSS_EXT.1, and FCS_TLSS_EXT.4: identifies the ciphersuites supported by the TOE as:

- TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
- TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289, and
- TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289.

These cipher suites specified are identical to those listed for the FCS_TLSS_EXT.1 component.

FCS_TLSS_EXT.1.2

The evaluator shall verify that the TSS contains a description of the denial of old SSL and TLS versions consistent relative to selections in FCS TLSS EXT.1.2.

[ST] Section 8.1.1 FCS_TLS_EXT.1, FCS_TLSS_EXT.1, and FCS_TLSS_EXT.4: states that the TOE only accepts TLS v1.2 requests and denies connections from clients requesting SSL 2.0, SSL 3.0, TLS 1.0, or TLS 1.1. This is consistent with the selections in FCS_TLSS_EXT.1.2.

FCS_TLSS_EXT.1.3

The evaluator shall verify that the TSS describes the key agreement parameters of the server's Key Exchange message.

[ST] Section 8.1.1 FCS_TLS_EXT.1, FCS_TLSS_EXT.1, and FCS_TLSS_EXT.4: The TOE uses its Acronis SCS Cryptographic Library to generate key establishment parameters for the server Key Exchange message using RSA with key size 2048, 3072, and 4096 bits and ECDHE over the NIST curve secp521r1.

2.1.13.2 Guidance Evaluation Activity

FCS_TLSS_EXT.1.1

The evaluator shall also check the operational guidance to ensure that it contains instructions on configuring the TOE so that TLS conforms to the description in the TSS.

[CCSUPP] Section 3.1.1: There are no management options to change the settings for the cryptographic functions. The TOE is already configured with the appropriate settings to meet the security requirements outlined in the Security Target.

FCS_TLSS_EXT.1.2

The evaluator shall verify that the AGD guidance includes any configuration necessary to meet this requirement.

[CCSUPP] Section 3.1.1: There are no management options to change the settings for the cryptographic functions. The TOE is already configured with the appropriate settings to meet the security requirements outlined in the Security Target.

FCS_TLSS_EXT.1.3

The evaluator shall verify that any configuration guidance necessary to meet the requirement must be contained in the AGD guidance.

[CCSUPP] Section 3.1.1: There are no management options to change the settings for the cryptographic functions. The TOE is already configured with the appropriate settings to meet the security requirements outlined in the Security Target.

2.1.13.3 Test Evaluation Activity

The evaluator shall also perform the following tests:

FCS_TLSS_EXT.1.1

Test 1: The evaluator shall establish a TLS connection using each of the cipher suites specified by the requirement. This connection may be established as part of the establishment of a higher-level protocol, e.g., as part of an EAP session. It is sufficient to observe the successful negotiation of a cipher suite to satisfy the intent of the test; it is not necessary to examine the characteristics of the encrypted traffic in an attempt to discern the cipher suite being used (for example, that the cryptographic algorithm is 128-bit AES and not 256-bit AES).

The evaluator verified that the TOE could successfully establish a TLS connection using each of the claimed cipher suites.

FCS_TLSS_EXT.1.1

Test 2: The evaluator shall send a Client Hello to the server with a list of cipher suites that does not contain any of the cipher suites in the server's ST and verify that the server denies the connection. Additionally, the evaluator shall send a Client Hello to the server containing only the TLS_NULL_WITH_NULL_NULL cipher suite and verify that the server denies the connection.

The evaluator verified that the TOE rejected connection attempts from peers presenting the cipher suite TLS_NULL_WITH_NULL_NULL. The evaluator additionally verified that the TOE rejected a connection attempt presenting a cipher suite not in the list of claimed cipher suites.

FCS_TLSS_EXT.1.1

Test 3: If RSA key exchange is used in one of the selected ciphersuites, the evaluator shall use a client to send a properly constructed Key Exchange message with a modified EncryptedPreMasterSecret field during the TLS handshake. The evaluator shall verify that the handshake is not completed successfully and no application data flows.

The evaluator verified that the TOE rejected connection attempts where the EncryptedPreMasterSecret has been modified.

FCS_TLSS_EXT.1.1

Test 4: The evaluator shall perform the following modifications to the traffic:

Modified per TD0469 (FCS_TLSS_EXT.1.1 Test 4.1 removed).

FCS_TLSS_EXT.1.1

Test 4.2: Modify a byte in the data of the client's Finished handshake message, and verify that the server rejects the connection and does not send any application data.

The evaluator verified that the TOE rejected connection attempts where the Client Finished record was not computed correctly.

Modified per TD0588.

FCS_TLSS_EXT.1.1

Test 4.3: Demonstrate that the TOE will not resume a session for which the client failed to complete the handshake (independent of TOE support for session resumption): Generate a Fatal Alert by sending a Finished message from the client before the client sends a ChangeCipherSpec message, and then send a Client Hello with the session identifier from the previous incomplete session, and verify that the server does not resume the session.

Test 4.3i [conditional]: If the TOE does not support session resumption based on session IDs according to RFC4346 (TLS1.1) or RFC5246 (TLS1.2) or session tickets according to RFC5077, the evaluator shall perform the following test:

- a. The evaluator shall send a Client Hello with a zero-length session identifier and with a SessionTicket extension containing a zero-length ticket.
- b. The evaluator shall verify the server does not send a NewSessionTicket handshake message (at any point in the handshake).
- c. The evaluator shall verify the Server Hello message contains a zero-length session identifier or passes the following steps:

Note: The following steps are only performed if the ServerHello message contains a non-zero length SessionID.

- d. The evaluator shall complete the TLS handshake and capture the SessionID from the ServerHello.
- e. The evaluator shall send a ClientHello containing the SessionID captured in step d). This can be done by keeping the TLS session in step d) open or start a new TLS session using the SessionID captured in step d).
- f. The evaluator shall verify the TOE (1) implicitly rejects the SessionID by sending a ServerHello containing a different SessionID and by performing a full

handshake (as shown in Figure 1 of RFC 4346 or RFC 5246), or (2) terminates the connection in some way that prevents the flow of application data.

Test 4.3ii [conditional]: If the TOE supports session resumption using session IDs according to RFC4346 (TLS1.1) or RFC5246 (TLS1.2), the evaluator shall carry out the following steps (note that for each of these tests, it is not necessary to perform the test case for each supported version of TLS):

- a. The evaluator shall conduct a successful handshake and capture the TOEgenerated session ID in the Server Hello message. The evaluator shall then initiate a new TLS connection and send the previously captured session ID to show that the TOE resumed the previous session by responding with ServerHello containing the same SessionID immediately followed by ChangeCipherSpec and Finished messages (as shown in Figure 2 of RFC 4346 or RFC 5246).
- b. The evaluator shall initiate a handshake and capture the TOE-generated session ID in the Server Hello message. The evaluator shall then, within the same handshake, generate or force an unencrypted fatal Alert message immediately before the client would otherwise send its ChangeCipherSpec message thereby disrupting the handshake. The evaluator shall then initiate a new Client Hello using the previously captured session ID, and verify that the server (1) implicitly rejects the session ID by sending a ServerHello containing a different SessionID and performing a full handshake (as shown in figure 1 of RFC 4346 or RFC 5246), or (2) terminates the connection in some way that prevents the flow of application data.

Test 4.3iii [conditional]: If the TOE supports session tickets according to RFC5077, the evaluator shall carry out the following steps (note that for each of these tests, it is not necessary to perform the test case for each supported version of TLS):

- a. The evaluator shall permit a successful TLS handshake to occur in which a session ticket is exchanged with the non-TOE client. The evaluator shall then attempt to correctly reuse the previous session by sending the session ticket in the ClientHello. The evaluator shall confirm that the TOE responds with a ServerHello with an empty SessionTicket extension, NewSessionTicket, ChangeCipherSpec and Finished messages (as seen in figure 2 of RFC 5077).
- b. The evaluator shall permit a successful TLS handshake to occur in which a session ticket is exchanged with the non-TOE client. The evaluator will then modify the session ticket and send it as part of a new Client Hello message. The evaluator shall confirm that the TOE either (1) implicitly rejects the session ticket by performing a full handshake (as shown in figure 3 or 4 of RFC 5077), or (2) terminates the connection in some way that prevents the flow of application data.

The TOE claims to support the use of Session Tickets thus Test 4.3i and Test 4.3ii are not applicable since Test 4.3i is conditional on the case that both Session ID and Session Tickets are not used, and Test 4.3ii is conditional on the case that Session ID is used and the TOE selects Session Tickets.

The evaluator verified that the TOE correctly handled Session Tickets when the correct Ticket was presented and allowed connections and application data. The evaluator verified that the TOE did not accept invalid session tickets.

FCS_TLSS_EXT.1.1

Test 4.4: Send a message consisting of random bytes from the client after the client has issued the ChangeCipherSpec message and verify that the server denies the connection.

The evaluator verified that the TOE rejected connection attempts and sent a Fatal Alert when the peer did not send a Finished immediately after the ChangeCipherSpec record.

FCS_TLSS_EXT.1.2

Test 1: The evaluator shall send a Client Hello requesting a connection with version SSL 2.0 and verify that the server denies the connection. The evaluator shall repeat this test with SSL 3.0 and TLS 1.0, and TLS 1.1 if it is selected.

The evaluator verified that the TOE rejected connection attempts only supporting previous protocol versions of SSL 2.0, SSL 3.0, TLS 1.0, and TLS 1.1.

FCS_TLSS_EXT.1.3

The evaluator shall conduct the following tests. The testing can be carried out manually with a packet analyzer or with an automated framework that similarly captures such empirical evidence. Note that this testing can be accomplished in conjunction with other testing activities. For each of the following tests, determining that the size matches the expected size is sufficient.

Modified per TD0739

FCS_TLSS_EXT.1.3

Test 1: [conditional] If RSA-based key establishment is selected, the evaluator shall attempt **Configure the TOE with** a connection using certificate containing a supported RSA-based key establishment with size and attempt a supported size connection. The evaluator shall verify that the size used matches that which is configured and that the connection is successfully established. The evaluator shall repeat this test for each supported size of RSA-based key establishment.

The evaluator verified that the TOE could successfully complete a TLS key exchange using each of the supported RSA key sizes (2048, 3072, 4096).

FCS_TLSS_EXT.1.3

Test 2: [conditional] If finite-field (i.e. non-EC) Diffie-Hellman ciphers are selected, the evaluator shall attempt a connection using a Diffie-Hellman key exchange with a supported parameter size or supported group. The evaluator shall verify that the key agreement parameters in the Key Exchange message are the ones configured. The evaluator shall repeat this test for each supported parameter size or group.

This is not applicable as the TOE does not utilize any finite-field Diffie-Hellman cipher suites.

FCS_TLSS_EXT.1.3

Test 3: [conditional] If ECDHE ciphers are selected, the evaluator shall attempt a connection using an ECDHE ciphersuite with a supported curve. The evaluator shall verify that the key agreement parameters in the Key Exchange message are the ones configured. The evaluator shall repeat this test for each supported elliptic curve.

The evaluator verified that the TOE could successfully complete a TLS key exchange using the Named Curve secp521r1. The evaluator verified that the TOE properly constructed the ServerKeyExchange record during the connection attempt.

2.1.14 FCS_TLSS_EXT.4 TLS Server Support for Renegotiation [TLS Package]

2.1.14.1 TSS Evaluation Activity

None.

2.1.14.2 Guidance Evaluation Activity

None.

2.1.14.3 Test Evaluation Activity

The following tests require connection with a client that supports secure renegotiation and the "renegotiation_info" extension

Test 1: The evaluator shall use a network packet analyzer/sniffer to capture the traffic between the two TLS endpoints. The evaluator shall verify that the "renegotiation_info" field is included in the ServerHello message.

The evaluator verified that the TOE included the "renegotiation_info" extension in the ServerHello record.

Test 2: The evaluator shall modify the length portion of the field in the ClientHello message in the initial handshake to be non-zero and verify that the server sends a failure and terminates the connection. The evaluator shall verify that a properly formatted field results in a successful TLS connection.

The evaluator verified the TOE rejected connection attempts when the client included a non-zero "renegotiation_info" extension in the ClientHello record.

Test 3: The evaluator shall modify the "client_verify_data" or "server_verify_data" value in the ClientHello message received during secure renegotiation and verify that the server terminates the connection.

The evaluator verified that the TOE rejected connection attempts when the client attempted secure renegotiation and had a modified "client_verify_data" used to compute the info field of the "renegotiation_info" extension.

2.2 User Data Protection (FDP)

2.2.1 FDP_DAR_EXT.1 Encryption of Sensitive Application Data

2.2.1.1 TSS Evaluation Activity

The evaluator shall examine the TSS to ensure that it describes the sensitive data processed by the application. The evaluator shall then ensure that the following activities cover all of the sensitive data identified in the TSS.

If **not store any sensitive data** is selected, the evaluator shall inspect the TSS to ensure that it describes how sensitive data cannot be written to non-volatile memory. The evaluator shall also ensure that this is consistent with the filesystem test below.

[ST] Section 8.1.2 FDP_DAR_EXT.1: The TOE protects sensitive data in accordance with FCS_STO_EXT.1 when it is stored in non-volatile memory. The TOE utilizes the Data Protection API to store a TLS private key that is used for HTTPS and TLS connections, the Backup Agent application tokens for downloading configuration and licensing information, and registration tokens that are used as an alternative to credential when installing the Backup Agents. No other forms of sensitive data are stored by the TOE. Users that authenticate through the TOE are validated by the OS. The TOE only reacts to the returned responses and does not store these credentials.

2.2.1.2 Guidance Evaluation Activity

None.

2.2.1.3 Test Evaluation Activity

Modified by TD0756

Evaluation activities (after the identification of the sensitive data) are to be performed on all sensitive data listed that are not covered by FCS_STO_EXT.1.

If "implement functionality to encrypt sensitive data as defined in the PP-Module for File Encryption" or "protect sensitive data in accordance with FCS_STO_EXT.1" is selected. The evaluator shall inventory the filesystem locations where the application may write data. The evaluator shall run the application and attempt to store sensitive data. The evaluator shall then inspect those areas of the filesystem to note where data was stored (if any), and determine whether it has been encrypted.

If "leverage platform-provided functionality" is selected, the evaluation activities will be performed as stated in the following requirements, which vary on a per-platform basis.

Android: The evaluator shall inspect the TSS and verify that it describes how files containing sensitive data are stored with the MODE_PRIVATE flag set.

Microsoft Windows: The Windows platform currently does not provide data-at-rest encryption services which depend upon invocation by application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate platform encryption, such as BitLocker or Encrypting File System (EFS), clear to the end user.

Apple iOS: The evaluator shall inspect the TSS and ensure that it describes how the application uses the Complete Protection, Protected Unless Open, or Protected Until First User Authentication Data Protection Class for each data file stored locally.

Linux: The Linux platform currently does not provide data-at-rest encryption services which depend upon invocation by application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate platform encryption clear to the end user.

Oracle Solaris: The Solaris platform currently does not provide data-at-rest encryption services which depend upon invocation by application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate platform encryption clear to the end user.

Apple macOS: The macOS platform currently does not provide data-at-rest encryption services which depend upon invocation by application developers. The evaluator shall verify that the Operational User Guidance makes the need to activate platform encryption clear to the end user.

This is not applicable as the TOE only uses methods covered by FCS_STO_EXT.1 to store sensitive data.

2.2.2 FDP_DEC_EXT.1 Access to Platform Resources

2.2.2.1 TSS Evaluation Activity

FDP_DEC_EXT.1.1 and FDP_DEC_EXT.1.2 None.

2.2.2.2 Guidance Evaluation Activity

FDP_DEC_EXT.1.1

The evaluator shall perform the platform-specific actions below and inspect user documentation to determine the application's access to hardware resources. The evaluator shall ensure that this is consistent with the selections indicated. The evaluator shall review documentation provided by the application developer and for each resource which it accesses, identify the justification as to why access is required.

[CCSUPP] Section 3.1.4 states that the TOE leverages the platform's networking hardware to communicate with other systems in the environment. The Windows Firewall is configured automatically during installation to allow the TOE to communicate with the systems in the environment over HTTPS and TLS.

[CCSUPP] Section 3.1.4.1: The TOE communicates with the Backup Agents to establish secure communications using TLSv1.2 over TCP port 7780. The TOE is accessed via a web browser on TCP port 9877.

FDP_DEC_EXT.1.2

The evaluator shall perform the platform-specific actions below and inspect user documentation to determine the application's access to sensitive information repositories. The evaluator shall ensure that this is consistent with the selections indicated. The evaluator shall review documentation provided by the application developer and for each sensitive information repository which it accesses, identify the justification as to why access is required.

[CCSUPP] Section 3.1.5 states that the TOE accesses the Window's Event logs for the purpose of storing audit information about administrator authentication. No other information repositories on the platform are sed. This is consistent with the selection made in [ST] Section 7.2.2 FDP DEC EXT.1.2.

2.2.2.3 Test Evaluation Activity

FDP_DEC_EXT.1.1

Android: The evaluator shall verify that each uses-permission entry in the AndroidManifest.xml file for access to a hardware resource is reflected in the selection.

Microsoft Windows: For Windows Universal Applications the evaluator shall check the WMAppManifest.xml file for a list of required hardware capabilities. The evaluator shall verify that the user is made aware of the required hardware capabilities when the application is first installed. This includes permissions such as ID_CAP_ISV_CAMERA, ID_CAP_LOCATION, ID_CAP_NETWORKING, ID_CAP_MICROPHONE, ID_CAP_PROXIMITY and so on. A complete list of Windows App permissions can be found at:

• http://msdn.microsoft.com/en-US/library/windows/apps/jj206936.aspx

For Windows Desktop Applications the evaluator shall identify in either the application software or its documentation the list of the required hardware resources.

Apple iOS: The evaluator shall verify that either the application or the documentation provides a list of the hardware resources it accesses.

Linux: The evaluator shall verify that either the application software or its documentation provides a list of the hardware resources it accesses.

Oracle Solaris: The evaluator shall verify that either the application software or its documentation provides a list of the hardware resources it accesses.

Apple macOS: The evaluator shall verify that either the application software or its documentation provides a list of the hardware resources it accesses.

The evaluator verified that the [CCSUPP] documentation, in section 3.1.4, indicates which hardware resources the TOE uses.

FDP_DEC_EXT.1.2

Android: The evaluator shall verify that each uses-permission entry in the AndroidManifest.xml file for access to a sensitive information repository is reflected in the selection.

Microsoft Windows: For Windows Universal Applications the evaluator shall check the WMAppManifest.xml file for a list of required capabilities. The evaluator shall identify the required information repositories when the application is first installed. This includes permissions such as

ID_CAP_CONTACTS, ID_CAP_APPOINTMENTS, ID_CAP_MEDIALIB and so on. A complete list of Windows App permissions can be found at:

• http://msdn.microsoft.com/en-US/library/windows/apps/jj206936.aspx

For Windows Desktop Applications the evaluator shall identify in either the application software or its documentation the list of sensitive information repositories it accesses.

Apple iOS: The evaluator shall verify that either the application software or its documentation provides a list of the sensitive information repositories it accesses.

Linux: The evaluator shall verify that either the application software or its documentation provides a list of sensitive information repositories it accesses.

Oracle Solaris: The evaluator shall verify that either the application software or its documentation provides a list of sensitive information repositories it accesses.

Apple macOS: The evaluator shall verify that either the application software or its documentation provides a list of sensitive information repositories it accesses.

The evaluator verified that the [CCSUPP] documentation, in section 3.1.5, indicates which sensitive information repositories that the TOE uses.

2.2.3 FDP_NET_EXT.1 Network Communications

2.2.3.1 TSS Evaluation Activity

None.

2.2.3.2 Guidance Evaluation Activity

None.

2.2.3.3 Test Evaluation Activity

The evaluator shall perform the following tests:

Test 1: The evaluator shall run the application. While the application is running, the evaluator shall sniff network traffic ignoring all non-application associated traffic and verify that any network communications witnessed are documented in the TSS or are user-initiated.

The evaluator verified that all traffic observed from the TOE was documented in the TSS or user initiated.

Test 2: The evaluator shall run the application. After the application initializes, the evaluator shall run network port scans to verify that any ports opened by the application have been captured in the ST for the third selection and its assignment. This includes connection-based protocols (e.g. TCP, DCCP) as well as connectionless protocols (e.g. UDP).

The evaluator verified that the TOE did not open any additional ports other than those defined in the ST.

Android: If "no network communication" is selected, the evaluator shall ensure that the application's AndroidManifest.xml file does not contain a uses-permission or uses-permission-sdk-23 tag containing android:name="android.permission.INTERNET". In this case, it is not necessary to perform the above Tests 1 and 2, as the platform will not allow the application to perform any network communication.

This portion is not applicable as the TOE does not utilize the Android platform.

2.3 Security Management (FMT)

2.3.1 FMT_CFG_EXT.1 Secure by Default Configuration

2.3.1.1 TSS Evaluation Activity

FMT_CFG_EXT.1.1

The evaluator shall check the TSS to determine if the application requires any type of credentials and if the application installs with default credentials.

[ST] Section 8.1.3 FMT_CFG_EXT.1: The TOE does not install with any default credentials. Rather, it uses the credentials of the platform for user authentication. The TOE software must be installed using a local administrator account. During installation, all members of the Administrators group are added to the Acronis Centralized Admins group. Any account with the Acronis Centralized Admins group can be used to access the TOE once the installation is complete.

The TOE is configured by default with file permissions that protect the application binaries and data files from modification by normal unprivileged users. This prevents a standard user from modifying the application or its data files.

FMT_CFG_EXT.1.2

None.

2.3.1.2 Guidance Evaluation Activity

FMT_CFG_EXT.1.1 and FMT_CFG_EXT.1.2 None.

2.3.1.3 Test Evaluation Activity

If the application uses any default credentials the evaluator shall run the following tests.

FMT_CFG_EXT.1.1

Test 1: The evaluator shall install and run the application without generating or loading new credentials and verify that only the minimal application functionality required to set new credentials is available.

This is not applicable as the TOE does not utilize default credentials.

FMT_CFG_EXT.1.1

Test 2: The evaluator shall attempt to clear all credentials and verify that only the minimal application functionality required to set new credentials is available.

This is not applicable as the TOE does not utilize default credentials.

FMT_CFG_EXT.1.1

Test 3: The evaluator shall run the application, establish new credentials and verify that the original default credentials no longer provide access to the application.

This is not applicable as the TOE does not utilize default credentials.

FMT_CFG_EXT.1.2

The evaluator shall install and run the application. The evaluator shall inspect the filesystem of the platform (to the extent possible) for any files created by the application and ensure that their permissions are adequate to protect them. The method of doing so varies per platform.

Android: The evaluator shall run the command find -L . -perm /002 inside the application's data directories to ensure that all files are not world-writable. The command should not print any files.

Microsoft Windows: The evaluator shall run the SysInternals tools, Process Monitor and Access Check (or tools of equivalent capability, like icacls.exe) for Classic Desktop applications to verify that files written to disk during an application's installation have the correct file permissions, such that a standard user cannot modify the application or its data files. For Windows Universal Applications the evaluator shall consider the requirement met because of the AppContainer sandbox.

Apple iOS: The evaluator shall determine whether the application leverages the appropriate Data Protection Class for each data file stored locally.

Linux: The evaluator shall run the command find -L . -perm /002 inside the application's data directories to ensure that all files are not world-writable. The command should not print any files.

Oracle Solaris: The evaluator shall run the command find . $(-\text{perm }-002 \)$ inside the application's data directories to ensure that all files are not world-writable. The command should not print any files.

Apple macOS: The evaluator shall run the command find . -perm +002 inside the application's data directories to ensure that all files are not world-writable. The command should not print any files.

The evaluator performed an Access Check scan against TOE directories and confirmed that a standard user could not modify the application or data files.

2.3.2 FMT_MEC_EXT.1 Supported Configuration Mechanism

2.3.2.1 TSS Evaluation Activity

The evaluator shall review the TSS to identify the application's configuration options (e.g. settings) and determine whether these are stored and set using the mechanisms supported by the platform or implemented by the application in accordance with the PP-Module for File Encryption. At a minimum the TSS shall list settings related to any SFRs and any settings that are mandated in the operational guidance in response to an SFR.

[ST] Section 8.1.3 FMT_MEC_EXT.1 describes the application's configuration settings and states that TOE stores these settings in the Windows Registry and the C:\ProgramData\ directory. The TSS identifies the following settings and includes those related to SFRs as mandated in the guidance:

- Add or delete an agent machine to or from the managed devices.
- Manage registration tokens for automated deployment of agent software.

Conditional: If "implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in the PP-Module for File Encryption" is selected, the evaluator shall ensure that the TSS identifies those options, as well as indicates where the encrypted representation of these options is stored.

The TOE does not implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in the PP-Module for File Encryption and does not claim conformance to this Module. Therefore, this evaluation activity is N/A.

2.3.2.2 Guidance Evaluation Activity

None.

2.3.2.3 Test Evaluation Activity

Modified per TD0624.

If "invoke the mechanisms recommended by the platform vendor for storing and setting configuration options" is chosen, the method of testing varies per platform as follows:

Android: The evaluator shall run the application and make security-related changes to its configuration. The evaluator shall check that at least one XML file at location /data/data/package/shared prefs/ (for Shared **Preferences**) and/or /data/data/package/files/datastore (for DataStore) reflects the changes made to the configuration to verify that the application used SharedPreferences and/or PreferenceActivity classes for storing configuration data, where the package is the Java package of the application. For SharedPreferences the evaluator shall examine the XML file to make sure it reflects the changes made to the configuration to verify that the application used SharedPreferences and/or PreferenceActivity to store the configuration data. For DataStore the evaluator shall use a protocol buffer analyzer to examine the file to make sure it reflects the changes made to the configuration to verify that the application used DataStore to store the configuration data.

Microsoft Windows: The evaluator shall determine and verify that Windows Universal Applications use either the Windows.Storage namespace, Windows.UI.ApplicationSettings namespace, or the IsolatedStorageSettings namespace for storing application specific settings. For .NET applications, the evaluator shall determine and verify that the application uses one of the locations listed in <u>https://docs</u>.microsoft.com/en-us/dotnet/framework/configure-apps/ for storing application specific settings. For Classic Desktop applications, the evaluator shall run the application while monitoring it with the SysInternals tool ProcMon and make changes to its configuration. The evaluator shall verify that ProcMon logs show corresponding changes to the the Windows Registry or C:\ProgramData\ directory.

Apple iOS: The evaluator shall verify that the app uses the user defaults system or key-value store for storing all settings.

Linux: The evaluator shall run the application while monitoring it with the utility strace. The evaluator shall make security-related changes to its configuration. The evaluator shall verify that strace logs corresponding changes to configuration files that reside in /etc (for system-specific configuration), in the user's home directory (for user-specific configuration), or /var/lib/ (for configurations controlled by UI and not intended to be directly modified by an administrator).

Oracle Solaris: The evaluator shall run the application while monitoring it with the utility dtrace. The evaluator shall make security-related changes to its configuration. The evaluator shall verify that dtrace logs corresponding changes to configuration files that reside in /etc (for system-specific configuration) or in the user's home directory (for user-specific configuration).

Apple macOS: The evaluator shall verify that the application stores and retrieves settings using the NSUserDefaults class.

If "implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in the PP-Module for File Encryption" is selected, for all configuration options listed in the TSS as being stored and protected using encryption, the evaluator shall examine the contents of the configuration option storage (identified in the TSS) to determine that the options have been encrypted.

The evaluator used ProcMon to capture Actions to manage registration tokens and manage list of backup agents allowed to connect and verified that the appropriate changes were made to the registry or C:\Program\Data\ directory.

The TOE does not implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in the PP-Module for File Encryption and does not claim conformance to this Module. Therefore, the "implement functionality to encrypt and store configuration options as defined by FDP_PRT_EXT.1 in the PP-Module for File Encryption" portion of the assurance activity is N/A.

2.3.3 FMT_SMF.1 Specification of Management Functions

2.3.3.1 TSS Evaluation Activity

None.

2.3.3.2 Guidance Evaluation Activity

The evaluator shall verify that every management function mandated by the PP is described in the operational guidance and that the description contains the information required to perform the management duties associated with the management function.

The evaluator examined the operational guidance to determine that they describe the management functions mandated by the PP and identified in the ST FMT_SMF.1.1 requirement. The evaluator found that the documents contain information on the management functions:

- *Query the version of the TOE, and Check for updates to the TOE:* [CCSUPP] Section 3.1.3,
- Check for updates to the TOE: [CCSUPP] Section 3.1.3,
- *Manage the list of Backup Agents that may connect to the TOE as devices: [USER] Section 1.7,*
- Manage tokens used for the initial connection to the TOE: [USER] Section 1.12.

2.3.3.3 Test Evaluation Activity

The evaluator shall test the application's ability to provide the management functions by configuring the application and testing each option selected from above. The evaluator is expected to test these functions in all the ways in which the ST and guidance documentation state the configuration can be managed.

The evaluator verified that each of the defined management functions could be successfully completed using the TOE.

2.4 Privacy (FPR)

2.4.1 FPR_ANO_EXT.1 User Consent for Transmission of Personally Identifiable Information

2.4.1.1 TSS Evaluation Activity

The evaluator shall inspect the TSS documentation to identify functionality in the application where PII can be transmitted.

The evaluator examined the TSS to determine if it identifies the application functionality that transmits PII. The evaluator found in section 8.1.4 of the ST that the TOE may backup and restore

data that is considered PII. However, the TOE does not inspect the data that is to be backed up or recovered and thus uses the Application Note case of the Profile where the PII is not specifically requested, and the user would be volunteering the information through the act of placing the PII data in a location that is backed up by the TOE. Therefore, the TSF does not transmit any PII.

2.4.1.2 Guidance Evaluation Activity

None.

2.4.1.3 Test Evaluation Activity

If require user approval before executing is selected, the evaluator shall run the application and exercise the functionality responsibly for transmitting PII and verify that user approval is required before transmission of the PII.

This is not applicable as the TOE selects that it does not transmit PII.

2.5 **Protection of the TSF (FPT)**

2.5.1 FPT_AEX_EXT.1 Anti-Exploitation Capabilities

2.5.1.1 TSS Evaluation Activity

FPT_AEX_EXT.1.1

The evaluator shall ensure that the TSS describes the compiler flags used to enable ASLR when the application is compiled.

[ST] Section 8.1.5 FPT_AEX_EXT.1: The TOE does not make requests to map memory at an explicit address and is compiled with ASLR enabled. The TOE does not allocate any memory regions with write and execute permissions. The TOE is compatible with the platform's security features. More specifically, the application can run successfully with Windows Defender Exploit Guard configured with the following minimum mitigations enabled: Control Flow Guard (CFG), Randomize memory allocations (Bottom-Up ASLR), Export address filtering (EAF), Import address filtering (IAF), and Data Execution Prevention (DEP). The TOE does not write user-modifiable files to directories that contain executable files. The TOE is compiled with the /GS flag enabled by default for stack-based buffer overflow protection and the /NXCOMPAT flag to enable DEP protections for the application.

FPT_AEX_EXT.1.2, FPT_AEX_EXT.1.3, FPT_AEX_EXT.1.4, and FPT_AEX_EXT.1.5 None.

2.5.1.2 Guidance Evaluation Activity

FPT_AEX_EXT.1.1, FPT_AEX_EXT.1.2, FPT_AEX_EXT.1.3, FPT_AEX_EXT.1.4, and FPT_AEX_EXT.1.5

None.

2.5.1.3 Test Evaluation Activity

FPT_AEX_EXT.1.1

The evaluator shall perform either a static or dynamic analysis to determine that no memory mappings are placed at an explicit and consistent address. The method of doing so varies per platform. For those platforms requiring the same application running on two different systems, the evaluator may alternatively use the same device. After collecting the first instance of mappings, the evaluator must uninstall the application, reboot the device, and reinstall the application to collect the second instance of mappings.

Android: The evaluator shall run the same application on two different Android systems. Both devices do not need to be evaluated, as the second device is acting only as a tool. Connect via ADB and inspect /proc/PID/maps. Ensure the two different instances share no memory mappings made by the application at the same location.

Microsoft Windows: The evaluator shall run the same application on two different Windows systems and run a tool that will list all memory mapped addresses for the application. The evaluator shall then verify the two different instances share no mapping locations. The Microsoft SysInternals tool, VMMap, could be used to view memory addresses of a running application. The evaluator shall use a tool such as Microsoft's BinScope Binary Analyzer to confirm that the application has ASLR enabled.

Apple iOS: The evaluator shall perform a static analysis to search for any mmap calls (or API calls that call mmap), and ensure that no arguments are provided that request a mapping at a fixed address.

Linux: The evaluator shall run the same application on two different Linux systems. The evaluator shall then compare their memory maps using pmap -x PID to ensure the two different instances share no mapping locations.

Oracle Solaris: The evaluator shall run the same application on two different Solaris systems. The evaluator shall then compare their memory maps using pmap -x PID to ensure the two different instances share no mapping locations.

Apple macOS: The evaluator shall run the same application on two different Mac systems. The evaluator shall then compare their memory maps using vmmap PID to ensure the two different instances share no mapping locations.

The evaluator ran VMMap to capture the memory used by the TOE in the initial state and again after use of the TOE and several reboots and confirmed that no mapping locations were shared.

FPT_AEX_EXT.1.2

The evaluator shall verify that no memory mapping requests are made with write and execute permissions. The method of doing so varies per platform.

Android: The evaluator shall perform static analysis on the application to verify that

- mmap is never invoked with both the PROT_WRITE and PROT_EXEC permissions, and
- mprotect is never invoked.

Microsoft Windows: The evaluator shall use a tool such as Microsoft's BinScope Binary Analyzer to confirm that the application passes the NXCheck. The evaluator may also ensure that the /NXCOMPAT flag was used during compilation to verify that DEP protections are enabled for the application. **Apple iOS**: The evaluator shall perform static analysis on the application to verify that mprotect is never invoked with the PROT_EXEC permission.

Linux: The evaluator shall perform static analysis on the application to verify that both

- mmap is never be invoked with both the PROT_WRITE and PROT_EXEC permissions, and
- mprotect is never invoked with the PROT_EXEC permission.

Oracle Solaris: The evaluator shall perform static analysis on the application to verify that both

- mmap is never be invoked with both the PROT_WRITE and PROT_EXEC permissions, and
- mprotect is never invoked with the PROT_EXEC permission.

Apple macOS: The evaluator shall perform static analysis on the application to verify that mprotect is never invoked with the PROT_EXEC permission.

The evaluator verified that all of the TOE's applications passed the NXCheck and contained a reference to NX Compatible.

FPT_AEX_EXT.1.3

The evaluator shall configure the platform in the ascribed manner and carry out one of the prescribed tests:

Android: Applications running on Android cannot disable Android security features, therefore this requirement is met and no evaluation activity is required.

Microsoft Windows: If the OS platform supports Windows Defender Exploit Guard (Windows 10 version 1709 or later), then the evaluator shall ensure that the application can run successfully with Windows Defender Exploit Guard Exploit Protection configured with the following minimum mitigations enabled; Control Flow Guard (CFG), Randomize memory allocations (Bottom-Up ASLR), Export address filtering (EAF), Import address filtering (IAF), and Data Execution Prevention (DEP). The following link describes how to enable Exploit Protection, <u>https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defenderexploit-guard/customize-exploit-protection.</u>

If the OS platform supports the Enhanced Mitigation Experience Toolkit (EMET) which can be installed on Windows 10 version 1703 and earlier, then the evaluator shall ensure that the application can run successfully with EMET configured with the following minimum mitigations enabled; Memory Protection Check, Randomize memory allocations (Bottom-Up ASLR), Export address filtering (EAF), and Data Execution Prevention (DEP).

Apple iOS: Applications running on iOS cannot disable security features, therefore this requirement is met and no evaluation activity is required.

Linux: The evaluator shall ensure that the application can successfully run on a system with either SELinux or AppArmor enabled and in enforce mode.

Oracle Solaris: The evaluator shall ensure that the application can run with Solaris Trusted Extensions enabled and enforcing.

Apple macOS: The evaluator shall ensure that the application can successfully run on macOS without disabling any security features.

This test activity is not applicable since Windows Server 2016 version 1607 does not support EMET.

FPT_AEX_EXT.1.4

The evaluator shall run the application and determine where it writes its files. For files where the user does not choose the destination, the evaluator shall check whether the destination directory contains executable files. This varies per platform:

Android: The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written. The evaluator shall ensure that there are no executable files stored under /data/data/package/ where package is the Java package of the application.

Microsoft Windows: For Windows Universal Applications the evaluator shall consider the requirement met because the platform forces applications to write all data within the application working directory (sandbox). For Windows Desktop Applications the evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written. The evaluator shall ensure that there are no executable files stored in the same directories to which the application wrote user-modifiable files.

Apple iOS: The evaluator shall consider the requirement met because the platform forces applications to write all data within the application working directory (sandbox).

Linux: The evaluator shall run the program, mimicking normal usage, and note where all usermodifiable files are written. The evaluator shall ensure that there are no executable files stored in the same directories to which the application wrote user-modifiable files.

Oracle Solaris: The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written. The evaluator shall ensure that there are no executable files stored in the same directories to which the application wrote user-modifiable files.

Apple macOS: The evaluator shall run the program, mimicking normal usage, and note where all user-modifiable files are written. The evaluator shall ensure that there are no executable files stored in the same directories to which the application wrote user-modifiable files.

This test was performed in conjunction with FMT_CFG_EXT.1.2.

FPT_AEX_EXT.1.5

The evaluator will inspect every native executable included in the TOE to ensure that stackbased buffer overflow protection is present.

Microsoft Windows: Applications that run as Managed Code in the .NET Framework do not require these stack protections. Applications developed in Object Pascal using the Delphi IDE compiled with RangeChecking enabled comply with this element. For other code, the evaluator shall review the TSS and verify that the /GS flag was used during compilation. The evaluator shall run a tool like, BinScope, that can verify the correct usage of /GS.

For PE, the evaluator will disassemble each and ensure the following sequence appears:

For ELF executables, the evaluator will ensure that each contains references to the symbol __stack_chk_fail.

Tools such as <u>Canary Detector</u> may help automate these activities.

This test was performed in conjunction with FPT_AEX_EXT.1.2.

2.5.2 FPT_API_EXT.1 Use of Supported Services and APIs

2.5.2.1 TSS Evaluation Activity

The evaluator shall verify that the TSS lists the platform APIs used in the application.

The evaluator examined the TSS to determine if it lists the platform APIs used in the application. A complete list of APIs used by the TOE is in Appendix A.

2.5.2.2 Guidance Evaluation Activity

None.

2.5.2.3 Test Evaluation Activity

The evaluator shall then compare the list with the supported APIs (available through e.g. developer accounts, platform developer groups) and ensure that all APIs listed in the TSS are supported.

The evaluation confirmed that the API's listed in Appendix A of the ST were valid documented APIs.

2.5.3 FPT_IDV_EXT.1 Software Identification and Versions

2.5.3.1 TSS Evaluation Activity

If "other version information" is selected the evaluator shall verify that the TSS contains an explanation of the versioning methodology.

[ST] 7.2.5 FPT_IDV_EXT.1 "other version information" is not selected in this SFR. The TOE uses SWID tags that comply with minimum requirements from ISO/IEC 19770-2:2015 for versioning. Thus, this is N/A.

2.5.3.2 Guidance Evaluation Activity

None.

2.5.3.3 Test Evaluation Activity

The evaluator shall install the application, then check for the existence of version information. If SWID tags is selected the evaluator shall check for a .swidtag file. The evaluator shall open the file and verify that is contains at least a SoftwareIdentity element and an Entity element.

The evaluator verified the TOE possessed a SWID tag file and verified that the tag contains a Software Identity and an Entity element.

2.5.4 FPT_LIB_EXT.1 Use of Third Party Libraries

2.5.4.1 TSS Evaluation Activity

None.

2.5.4.2 Guidance Evaluation Activity

None.

2.5.4.3 Test Evaluation Activity

The evaluator shall install the application and survey its installation directory for dynamic libraries. The evaluator shall verify that libraries found to be packaged with or employed by the application are limited to those in the assignment.

The evaluator confirmed that any dynamic libraries packaged with the TOE were listed in the ST.

2.5.5 FPT_TUD_EXT.1 Integrity for Installation and Update

2.5.5.1 TSS Evaluation Activity

FPT_TUD_EXT.1.1, FPT_TUD_EXT.1.2, and FPT_TUD_EXT.1.3 None.

FPT_TUD_EXT.1.4

The evaluator shall verify that the TSS identifies how updates to the application are signed by an authorized source. The definition of an authorized source must be contained in the TSS. The evaluator shall also ensure that the TSS (or the operational guidance) describes how candidate updates are obtained.

[ST] Section 8.1.5 FPT_TUD_EXT.1.3 and FPT_TUD_EXT.1.4: The TOE's installation package and its updates are digitally signed so that the platform can verify their signatures before installation. The packages are digitally signed using a 2048-bit RSA key and SHA-256 digest algorithm. The authorized source of this signature is Acronis SCS, INC issued by DigiCert.

FPT_TUD_EXT.1.5

The evaluator shall verify that the TSS identifies how the application is distributed. If "with the platform" is selected the evaluated shall perform a clean installation or factory reset to confirm that TOE software is included as part of the platform OS. If "as an additional package" is selected the evaluator shall perform the tests in FPT_TUD_EXT.2.

[ST] Section 8.1.5 FPT_TUD_EXT.1.5 and FPT_TUD_EXT.2: indicates that the TOE is distributed as an additional software package to the platform OS. It is packaged in the standard executable (.exe) format. It is packaged such that its removal results in the deletion of all traces of the application, with the exception of configuration settings, output files, and audit/log events.

The evaluator verified the inclusion of FPT_TUD_EXT.2 in the evaluation.

2.5.5.2 Guidance Evaluation Activity

FPT_TUD_EXT.1.1

The evaluator shall check to ensure the guidance includes a description of how updates are performed.

[CCSUPP] Section 3.1.3 has the procedures to check for an update and Section 3.1.3.1 has the instructions for performing an update. To check for updates to the TOE, click the question mark icon in the top right corner and then click Check for updates. A new window is displayed that will note if a new version is available or if the latest version is installed.

If an update is available, the instructions say to use the download link below the output of the version check to navigate to download a copy of the installation file and notes that the download links for the current version are available even if a new version is available as these links will always point to the most recent version.

FPT_TUD_EXT.1.2

The evaluator shall verify guidance includes a description of how to query the current version of the application

[CCSUPP] Section 3.1.3 provides the instructions to query the current version. To check the TOE version, click the question mark icon in the top right corner and then click **About**. A pop-up is displayed that will note the version information for the installed software.

FPT_TUD_EXT.1.3, FPT_TUD_EXT.1.4, and FPT_TUD_EXT.1.5 None.

2.5.5.3 Test Evaluation Activity

FPT_TUD_EXT.1.1

The evaluator shall check for an update using procedures described in either the application documentation or the platform documentation and verify that the application does not issue an error. If it is updated or if it reports that no update is available this requirement is considered to be met.

The evaluator queried for a TOE update and confirmed that the TOE was running the latest version.

FPT_TUD_EXT.1.2

The evaluator shall query the application for the current version of the software according to the operational user guidance. The evaluator shall then verify that the current version matches that of the documented and installed version.

The evaluator queried the TOE version and confirmed it reported the expected version.

FPT_TUD_EXT.1.3

The evaluator shall verify that the application's executable files are not changed by the application.

Apple iOS: The evaluator shall consider the requirement met because the platform forces applications to write all data within the application working directory (sandbox).

For all other platforms, the evaluator shall perform the following test:

Test 1: The evaluator shall install the application and then locate all of its executable files. The evaluator shall then, for each file, save off either a hash of the file or a copy of the file itself. The evaluator shall then run the application and exercise all features of the application as described in the ST. The evaluator shall then compare each executable file with the either the saved hash or the saved copy of the files. The evaluator shall verify that these are identical.

The evaluator hashed the TOE executables and utilized the TOE. The evaluator then hashed the executables again and verified the hashes did not change, thus indicated that the executables were not modified.

FPT_TUD_EXT.1.4 and FPT_TUD_EXT.1.5

None.

2.5.6 FPT_TUD_EXT.2 Integrity for Installation and Update

2.5.6.1 TSS Evaluation Activity

FPT_TUD_EXT.2.1 and FPT_TUD_EXT.2.2

None.

FPT_TUD_EXT.2.3

The evaluator shall verify that the TSS identifies how the application installation package is signed by an authorized source. The definition of an authorized source must be contained in the TSS.

[ST] Section 8.1.5 FPT_TUD_EXT.1.3 and FPT_TUD_EXT.1.2: states that the installation packages are digitally signed using a 2048-bit RSA key and SHA-256 digest algorithm. The authorized source of the signature is ACRONIS SCS, INC issued by DigiCert.

2.5.6.2 Guidance Evaluation Activity

FPT_TUD_EXT.2.1, FPT_TUD_EXT.2.2, and FPT_TUD_EXT.2.3 None.

2.5.6.3 Test Evaluation Activity

Modified per TD0628.

FPT_TUD_EXT.2.1

If a container image is claimed the evaluator shall verify that application updates are distributed as container images. If the format of the platform-supported package manager is claimed, the evaluator shall verify that application updates are distributed in the correct format-supported by the platform. This varies per platform:

Android: The evaluator shall ensure that the application is packaged in the Android application package (APK) format.

Microsoft Windows: The evaluator shall ensure that the application is packaged in the standard Windows Installer (.MSI) format, the Windows Application Software (.EXE) format signed using the Microsoft Authenticode process, or the Windows Universal Application package (.APPX) format. See https://msdn.microsoft.com/en-us/library/ms537364(v=vs.85).aspx for details regarding Authenticode signing.

Apple iOS: The evaluator shall ensure that the application is packaged in the IPA format.

Linux: The evaluator shall ensure that the application is packaged in the format of the package management infrastructure of the chosen distribution. For example, applications running on Red Hat and Red Hat derivatives shall be packaged in RPM format. Applications running on Debian and Debian derivatives shall be packaged in DEB format.

Oracle Solaris: The evaluator shall ensure that the application is packaged in the PKG format. **Apple macOS**: The evaluator shall ensure that application is packaged in the DMG format, the PKG format, or the MPKG format.

The TOE is a standalone application and not a container image. The evaluator verified the TOE was packaged in the .EXE format.

FPT_TUD_EXT.2.2

Modified by TD0664

Android: The evaluator shall consider the requirement met because the platform forces applications to write all data within the application working directory (sandbox).

Microsoft Windows: The evaluator shall install the application and then locate all of its executable files. The evaluator shall then, for each file, save off either a hash of the file or a copy of the file itself. The evaluator shall then run the application and exercise all features of the application as described in the ST. The evaluator shall then compare each executable file with the either the saved hash or the saved copy of the files. The evaluator shall verify that these are identical.

Apple iOS: The evaluator shall consider the requirement met because the platform forces applications to write all data within the application working directory (sandbox).

Linux: The evaluator shall install the application and then locate all of its executable files. The evaluator shall then, for each file, save off either a hash of the file or a copy of the file itself. The evaluator shall then run the application and exercise all features of the application as described in the ST. The evaluator shall then compare each executable file with the either the saved hash or the saved copy of the files. The evaluator shall verify that these are identical.

Oracle Solaris: The evaluator shall install the application and then locate all of its executable files. The evaluator shall then, for each file, save off either a hash of the file or a copy of the file itself. The evaluator shall then run the application and exercise all features of the application as described in the ST. The evaluator shall then compare each executable file with the either the saved hash or the saved copy of the files. The evaluator shall verify that these are identical.

Apple macOS: The evaluator shall install the application and then locate all of its executable files. The evaluator shall then, for each file, save off either a hash of the file or a copy of the file itself. The evaluator shall then run the application and exercise all features of the application as

described in the ST. The evaluator shall then compare each executable file with the either the saved hash or the saved copy of the files. The evaluator shall verify that these are identical.

All Other Platforms...

The evaluator shall record the path of every file on the entire filesystem prior to installation of the application, and then install and run the application. Afterwards, the evaluator shall then uninstall the application, and compare the resulting filesystem to the initial record to verify that no files, other than configuration, output, and audit/log files, have been added to the filesystem.

The evaluator observed all the files on the system then installed the TOE, utilized the TOE, and uninstalled the TOE and gathered the file inventory again. The evaluator confirmed that there were no traces of the TOE left behind, other than those specified by the assurance activity.

FPT_TUD_EXT.2.3 None.

2.6 Trusted Path/Channels (FTP)

2.6.1 FTP_DIT_EXT.1 Protection of Data in Transit

2.6.1.1 TSS Evaluation Activity

For platform-provided functionality, the evaluator shall verify the TSS contains the calls to the platform that TOE is leveraging to invoke the functionality.

The TOE does not utilize the platform for encryption of transmitted data and instead implements the encryption itself, therefore this activity is N/A.

2.6.1.2 Guidance Evaluation Activity

None.

2.6.1.3 Test Evaluation Activity

The evaluator shall perform the following tests.

Test 1: The evaluator shall exercise the application (attempting to transmit data; for example by connecting to remote systems or websites) while capturing packets from the application. The evaluator shall verify from the packet capture that the traffic is encrypted with HTTPS, TLS, DTLS, SSH, or IPsec in accordance with the selection in the ST.

Test 2: The evaluator shall exercise the application (attempting to transmit data; for example by connecting to remote systems or websites) while capturing packets from the application. The evaluator shall review the packet capture and verify that no sensitive data is transmitted in the clear.

Test 3: The evaluator shall inspect the TSS to determine if user credentials are transmitted. If credentials are transmitted the evaluator shall set the credential to a known value. The evaluator shall capture packets from the application while causing credentials to be transmitted as described in the TSS. The evaluator shall perform a string search of the captured network packets and verify that the plaintext credential previously set by the evaluator is not found.

Test 1 and 2 were performed in conjunction with FDP_NET_EXT.1. Test 3 is not applicable because the TOE does not transmit user credentials.

Android: If "not transmit any data" is selected, the evaluator shall ensure that the application's AndroidManifest.xml file does not contain a uses-permission or uses-permission-sdk-23 tag containing android:name="android.permission.INTERNET". In this case, it is not necessary to perform the above Tests 1, 2, or 3, as the platform will not allow the application to perform any network communication.

Apple iOS: If "encrypt all transmitted data" is selected, the evaluator shall ensure that the application's Info.plist file does not contain the NSAllowsArbitraryLoads or NSExceptionAllowsInsecureHTTPLoads keys, as these keys disable iOS's Application Transport Security feature.

This is not applicable as the TOE does not claim the Android or Apple iOS platform.

- 3 Security Assurance Requirements
- 3.1 Class ASE: Security Target

As per ASE activities define in [CEM].

3.2 Class ADV: Development

3.2.1 ADV_FSP.1 Basic Functional Specification

There are no specific evaluation activities associated with these SARs, except ensuring the information is provided. The functional specification documentation is provided to support the evaluation activities described in Section 2 Security Functional Requirement Assurance Activities, and other activities described for AGD, ATE, and AVA SARs. The requirements on the content of the functional specification information is implicitly assessed by virtue of the other evaluation activities being performed; if the evaluator is unable to perform an activity because there is insufficient interface information, then an adequate functional specification has not been provided.

The Assurance Activities identified above provided sufficient information to determine the appropriate content for the TSS section and to perform the assurance activities. Since these are directly associated with the SFRs, and are implicitly already done, no additional documentation or analysis is necessary.

3.3 Class AGD: Guidance Documents

3.3.1 AGD_OPE.1 Operational User Guidance

3.3.1.1 TSS Evaluation Activity

None defined.

3.3.1.2 Guidance Evaluation Activity

Some of the contents of the operational guidance will be verified by the evaluation activities in Section 2 Security Functional Requirement Assurance Activities and evaluation of the TOE according to the [CEM]. The following additional information is also required.

If cryptographic functions are provided by the TOE, the operational guidance shall contain instructions for configuring the cryptographic engine associated with the evaluated configuration of the TOE. It shall provide a warning to the administrator that use of other cryptographic engines was not evaluated nor tested during the CC evaluation of the TOE.

The documentation must describe the process for verifying updates to the TOE by verifying a digital signature – this may be done by the TOE or the underlying platform.

The evaluator shall verify that this process includes the following steps:

- Instructions for obtaining the update itself. This should include instructions for making the update accessible to the TOE (e.g., placement in a specific directory).
- Instructions for initiating the update process, as well as discerning whether the process was successful or unsuccessful. This includes generation of the digital signature. The TOE will likely contain security functionality that does not fall in the scope of evaluation

under this PP. The operational guidance shall make it clear to an administrator which security functionality is covered by the evaluation activities.

The TOE provides cryptographic functions through its Acronis SCS Cryptographic Library. The [CCSUPP] Section 3.1.1 states that there are no management options to change the settings for the implemented cryptographic library. The TOE is already configured with the appropriate setting to meet the security requirements outlined in the Security Target.

[CCSUPP] Section 2.2.2.2 contains instructions for verifying the signature on TOE executables: "If the certificate information does not match the above information or if the message **This digital signature is OK** is not displayed, do not install the software and contact Acronis SCS support." Section 3.1.3 contains directions for verification of TOE updates that include obtaining the update itself.

[CCSUPP] Section 3.1.3.1 describes how to obtain and perform an update and how the update is made. TOE updates are made available on the vender's website: https://account.acronisscs.com. The link to the update file is provided by the TOE when a user checks for an update and one is available. The download process is started when the administrator clicks on the download link. After download and before installation, the administrator verifies the digital signature (as per instructions in Section 2.2.2.2). If verified successfully, launch the installer and select "Install or update Acronis Backup". Then select "Update" to perform an update of the existing product.

[CCSUPP] Section 3.1.3.1 provides guidance on how to discern whether the update process was unsuccessful: "If the update process is complete and the TOE software has maintained the same dialog screens, a big checkmark within a circle is displayed to show that the update was successful. If a red circle with a white X in it is displayed, this would indicate that the update failed and to contact Acronis SCS support.

3.3.1.3 Test Evaluation Activity

None defined.

3.3.2 AGD_PRE.1 Preparative Procedures

3.3.2.1 TSS Evaluation Activity

None defined.

3.3.2.2 Guidance Evaluation Activity

As indicated in the introduction above, there are significant expectations with respect to the documentation—especially when configuring the operational environment to support TOE functional requirements. The evaluator shall check to ensure that the guidance provided for the TOE adequately addresses all platforms claimed for the TOE in the ST.

[ST] Section 1.4: In the evaluated configuration, the TOE is installed on a Microsoft Windows Server 2016 machine that is on a network connected to two Backup Agents in the TOE environment, an Agent for Windows and an Agent for Linux.

The [CCSUPP] and [USER] cover installation of the TOE on the Server 2016 and for Windows/Linux Agents in the operational environment.

3.3.2.3 Test Evaluation Activity

None defined.

3.4 Class ALC: Life-Cycle Support

3.4.1 ALC_CMC.1 Labeling of the TOE

3.4.1.1 TSS Evaluation Activity

None defined.

3.4.1.2 Guidance Evaluation Activity

The evaluator shall check the ST to ensure that it contains an identifier (such as a product name/version number) that specifically identifies the version that meets the requirements of the ST. Further, the evaluator shall check the AGD guidance and TOE samples received for testing to ensure that the version number is consistent with that in the ST. If the vendor maintains a web site advertising the TOE, the evaluator shall examine the information on the web site to ensure that the information in the ST is sufficient to distinguish the product.

Section 1.2 of [ST] ("Security Target and TOE Reference") includes the TOE identification. The TOE is identified in terms of software included in the evaluated configuration. This consists of Acronis SCS Cyber Backup 12.5 Hardened Edition Server v12.5.

The Acronis SCS website: https://acronisscs.com/ identifies the product "Acronis SCS Hardened Backup" which is the product "Acronis SCS Cyber Backup 12.5 Hardened Edition". This identifier is clearly distinguished from the other products identified on the website and is consistent with the TOE version identified in the ST.

The security target, the guidance, and the evaluated version of the TOE are all in agreement with the TOE definition in the ST.

3.4.1.3 Test Evaluation Activity

None defined.

3.4.2 ALC_CMS.1 TOE CM Coverage

3.4.2.1 TSS Evaluation Activity

The "evaluation evidence required by the SARs" in this PP is limited to the information in the ST coupled with the guidance provided to administrators and users under the AGD requirements. By ensuring that the TOE is specifically identified and that this identification is consistent in the ST and in the AGD guidance (as done in the evaluation activity for ALC_CMC.1), the evaluator implicitly confirms the information required by this component. Life-cycle support is targeted aspects of the developer's life-cycle and instructions to providers of applications for the developer's devices, rather than an in-depth examination of the TSF manufacturer's

development and configuration management process. This is not meant to diminish the critical role that a developer's practices play in contributing to the overall trustworthiness of a product; rather, it's a reflection on the information to be made available for evaluation.

3.4.2.2 Guidance Evaluation Activity

The evaluator shall ensure that the developer has identified (in guidance documentation for application developers concerning the targeted platform) one or more development environments appropriate for use in developing applications for the developer's platform. For each of these development environments, the developer shall provide information on how to configure the environment to ensure that buffer overflow protection mechanisms in the environment(s) are invoked (e.g., compiler flags). The evaluator shall ensure that this documentation also includes an indication of whether such protections are on by default, or have to be specifically enabled. The evaluator shall ensure that the TSF is uniquely identified (with respect to other products from the TSF vendor), and that documentation provided by the developer in association with the requirements in the ST is associated with the TSF using this unique identification.

As described in Section **Error! Reference source not found.** above, the evaluator confirmed the TOE is labelled with a unique software version identifier.

Acronis SCS	Dashboard ()				
	u [*] + Add widget ↓ Download 🖸 Send				
Dashboard	Status	Storage	Activities		
Alerts 3			3		
Activities	• OK 1	Backups 25.99.68	2		
Reports	Protected About	×			
			0 25 Mar 26 Mar 27 Mar 28 Mar 29 Mar 30 Mar 31 Mar		
PLANS	Active alerts	Acronis Cyber Backup 12.5 SCS Hardened Edition	Not protected		
	Total alerts: 3	Build: 16843	Total devices: 1		
С BACKUPS	Iinuxagent Backup Acronis Cyber	Protect 200			
တ္ကို settings	Inuxagent Backup	sacrup sets	🖵 mgmtserver		
	📮 linuxagent 🔺 Backup				
	Show all	6 Mar 13 Mar 20 Mar 27 Mar	Show all		
	Usage of storages Current usage: 25.99 GB 28 24 24 26 10 12 8	C/backups/	384.59 GB free of 476.33 GB		

[CCSUPP] Section 2.2.1.1 identifies the specific operating system platform for the TOE as Microsoft Windows Server 2016. Sections 2.2.2.1 and 2.2.3.1 indicates that the TOE runs on Windows 64-bit architecture and was built with stack buffer overflow protection using the /GS flag and automatically installs the required Microsoft Visual C++ files in the operating environment. These files are needed for the TOE to operate correctly. There are no manual steps for configuring stack buffer overflow protection and it is enabled automatically.

The [USER] and [CCSUPP] are identified with the TOE's unique identifying information: "Acronis Cyber Backup 12.5 SCS Hardened Edition". The [CCSUPP] provides instructions specific to installing and configuring the Acronis Cyber Backup 12.5 SCS Hardened Edition Server with references into the [USER] specific for the TOE configuration. The User Guide covers both the Server (TOE) and Agent (operational environment) components. "12.5 SCS Hardened Edition" provides the unique identifier (with respect to other products from the TSF vendor).

3.4.2.3 Test Evaluation Activity

None defined.

3.4.3 ALC_TSU_EXT.1 Timely Security Updates

3.4.3.1 TSS Evaluation Activity

The evaluator shall verify that the TSS contains a description of the timely security update process used by the developer to create and deploy security updates. The evaluator shall verify that this description addresses the entire application. The evaluator shall also verify that, in addition to the TOE developer's process, any third-party processes are also addressed in the description. The evaluator shall also verify that each mechanism for deployment of security updates is described.

The evaluator shall verify that, for each deployment mechanism described for the update process, the TSS lists a time between public disclosure of a vulnerability and public availability of the security update to the TOE patching this vulnerability, to include any third-party or carrier delays in deployment. The evaluator shall verify that this time is expressed in a number or range of days.

The evaluator shall verify that this description includes the publicly available mechanisms (including either an email address or website) for reporting security issues related to the TOE. The evaluator shall verify that the description of this mechanism includes a method for protecting the report either using a public key for encrypting email or a trusted channel for a website.

[ST] Section 8.2 contains the description of the timely security update process used by the developer to create and deploy security updates to the application (Management Server). It describes the developer process and mechanism of deployment. Security updates are categorized according to severity and fixed accordingly. Issues categorized as critical are fixed immediately, issues categorized as high are provided within 3-4 weeks (15-20 business days), issues categorized as low-medium are provided on the next major version or update. Issue severity is calculated according to CVSSv3 methodology.

Any update that is released is deployed to the Acronis SCS website for download. Customers may refer to the email or use the check for update process to see if a new version is available for their installation. Updates can then be downloaded and applied to the TOE as needed.

The Acronis SCS Support team will notify customers about security issues related to the TOE for critical and high severity issues where the issue is known to 3rd-party (external report or a known exploitation).

The notification will be sent to customers and include enough information to understand the following:

- 1. The risk associated with the issue
- 2. Conditions under which a customer's system is vulnerable
- 3. Necessary steps to mitigate the risk

Customers that purchase the TOE may email appsupport@acronisscs.com to report security issues pertaining to the TOE. A public key and disclosure policy are posted to the Acronis SCS GitHub (https://github.com/acronisscs/public_disclosure) for use in securing the contents of any security related email.

3.4.3.2 Guidance Evaluation Activity

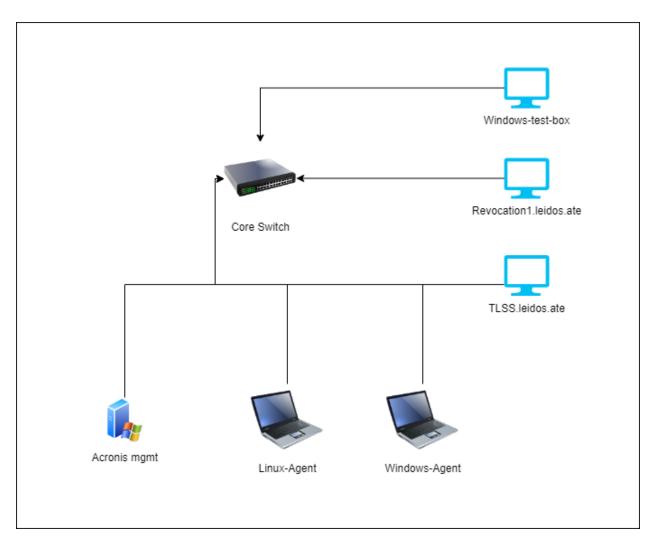
None defined.				
3.4.3.3 Test Evaluation Activity				
None defined.				
3.5 Class ATE: Tests				
3.5.1 ATE_IND.1 Independent Testing – Conformance				
3.5.1.1 TSS Evaluation Activity				

None defined.

3.5.1.2 Guidance Evaluation Activity

None defined.

3.5.1.3 Test Evaluation Activity


The evaluator shall prepare a test plan and report documenting the testing aspects of the system, including any application crashes during testing. The evaluator shall determine the root cause of any application crashes and include that information in the report. The test plan covers all of the testing actions contained in the [CEM] and the body of this PP's evaluation activities.

While it is not necessary to have one test case per test listed in an evaluation activity, the evaluator must document in the test plan that each applicable testing requirement in the ST is covered. The test plan identifies the platforms to be tested, and for those platforms not included in the test plan but included in the ST, the test plan provides a justification for not testing the platforms. This justification must address the differences between the tested platforms and the untested platforms, and make an argument that the differences have no effect; rationale must be provided. If all platforms claimed in the ST are tested, and any setup that is necessary beyond what is contained in the AGD documentation. It should be noted that the evaluator is expected to follow the AGD documentation for installation and setup of each platform either as part of a test or as a standard pre-test condition. This may include special test drivers or tools.

For each driver or tool, an argument (not just an assertion) should be provided that the driver or tool will not adversely affect the performance of the functionality by the TOE and its platform. This also includes the configuration of the cryptographic engine to be used. The cryptographic algorithms implemented by this engine are those specified by this PP and used by the cryptographic protocols being evaluated (e.g SSH). The test plan identifies high-level test objectives as well as the test procedures to be followed to achieve those objectives. These procedures include expected results.

The test report (which could just be an annotated version of the test plan) details the activities that took place when the test procedures were executed, and includes the actual results of the tests. This shall be a cumulative account, so if there was a test run that resulted in a failure; a fix installed; and then a successful re-run of the test, the report would show a "fail" and "pass" result (and the supporting details), and not just the "pass" result.

The evaluator prepared a test plan and report [Test] documenting the testing aspects of the system of the testing actions contained in the [CEM] and the body of this PP's Assurance Activities. A proprietary test report was created which contains all testing test results, test configurations, test platforms and rational. The [CCSUPP] documentation was followed to install and setup the TOE on each platform. No application crashes were encountered during product testing. No equivalency rational was utilized or generated. Testing of the TOE was performed at the Leidos Accredited Testing and Evaluation Lab located in Columbia, Maryland from November 28, 2022, to August 4, 2023.

The evaluation team used the following components to create the test configuration:

TOE Platform:

Windows Server 2016 Standard

Test Configuration Devices:

Windows 10 and RHEL 7 agent to connect to the TOE.

Windows test box to access the TOE.

Lab equipment to facilitate specific tests against the TOE (TLSS, revocation1)

3.6 Class AVA: Vulnerability Assessment

3.6.1 AVA_VAN.1 Vulnerability Survey

3.6.1.1 TSS Evaluation Activity

None defined.

3.6.1.2 Guidance Evaluation Activity

None defined.

3.6.1.3 Test Evaluation Activity

The evaluator shall generate a report to document their findings with respect to this requirement. This report could physically be part of the overall test report mentioned in ATE_IND, or a separate document. The evaluator performs a search of public information to find vulnerabilities that have been found in similar applications with a particular focus on network protocols the application uses and document formats it parses.

The evaluator documents the sources consulted and the vulnerabilities found in the report.

For each vulnerability found, the evaluator either provides a rationale with respect to its nonapplicability, or the evaluator formulates a test (using the guidelines provided in ATE_IND) to confirm the vulnerability, if suitable. Suitability is determined by assessing the attack vector needed to take advantage of the vulnerability. If exploiting the vulnerability requires expert skills and an electron microscope, for instance, then a test would not be suitable and an appropriate justification would be formulated.

For Windows, Linux, macOS and Solaris: The evaluator shall also run a virus scanner with the most current virus definitions against the application files and verify that no files are flagged as malicious.

The evaluator performed vulnerability searches using the following databases:

- <u>https://nvd.nist.gov/</u>
- <u>https://www.kb.cert.org/vuls/</u>

Searches were performed using the following search terms:

- Acronis SCS
- Cyber Backup
- TLS 1.2
- Acronis SCS Cryptographic Library
- SCS Version-check
- All third-party libraries listed in the ST.

No vulnerabilities were identified for the TOE. Searches of public vulnerability repositories were performed during the evaluation on June 12, 2023, and then re-performed a final time on

September 15, 2023, to ensure that no additional public vulnerabilities were disclosed prior to the completion of the evaluation. The vulnerability analysis activity is documented in [AVA].

The evaluator performed virus scans on all TOE directories (including executables) and installer files and verified that no files were identified as threats. The virus scanner utilized was Windows Defender using the following definitions:

🕀 Windows Defender		—	
PC status: Protected			
Home Upd:	🕀 Windows Defender	Settings	▼ Help
	Windows Defender		
	© 2016 Microsoft. All rights reserved. System information:		
 ⊘ Real-time ⊘ Virus and 	Antimalware Client Version: 4. 18. 23070. 1004 Engine Version: 1. 1. 23070. 1005 Antivirus definition: 1.395. 117.0 Antispyware definition: 1.395. 117.0 Network Inspection System Engine Version: 1. 1. 23070. 1005 Network Inspection System Definition Version: 1.395. 117.0		
		now	
	View more information about this program online Warning: This software program is protected by copyright law and international treaties. Unauthorized reproduction or distribution of this program, or any portion of it may result in severe civil or criminal penalties, and will be prosecuted to the fullest extent of the law.		_
C Scan det	OK		