

Motorola Mobility LLC Mobile Devices on

Android 13 Administrator Guidance

Documentation

Version 0.2

12/14/2023

Page 2 of 48

1. DOCUMENT INTRODUCTION .. 4

1.1 EVALUATED DEVICES ... 4

1.2 ACRONYMS ... 4

2. EVALUATED CAPABILITIES .. 5

2.1 DATA PROTECTION ... 5

2.1.1 File-Based Encryption .. 5

2.2 LOCK SCREEN.. 6

2.2.1 Biometric Authentication .. 6

2.2.2 Authentication Rate Limiting ... 6

2.3 KEY MANAGEMENT .. 7

2.3.1 KeyStore ... 7

2.3.2 KeyChain .. 7

2.4 DEVICE INTEGRITY ... 7

2.4.1 Verified Boot .. 7

2.5 DEVICE MANAGEMENT ... 8

2.5.1 EMM/MDM console ... 8

2.5.2 DPC (MDM Agent) .. 9

2.6 WORK PROFILE SEPARATION .. 9

2.7 VPN CONNECTIVITY ... 9

2.8 AUDIT LOGGING ... 9

3. SECURITY CONFIGURATION .. 10

3.1 COMMON CRITERIA MODE .. 10

3.2 CRYPTOGRAPHIC MODULE IDENTIFICATION ... 10

3.3 PERMISSIONS MODEL .. 11

3.4 COMMON CRITERIA RELATED SETTINGS .. 11

3.5 PASSWORD RECOMMENDATIONS .. 16

3.6 BUG REPORTING PROCESS .. 17

4. BLUETOOTH CONFIGURATION ... 18

5. WI-FI CONFIGURATION .. 20

6. VPN CONFIGURATION ... 21

7. WORK PROFILE SEPARATION .. 22

8. SECURE UPDATE PROCESS .. 23

8.1 GOOGLE PLAY SYSTEM UPDATES ... 24

9. AUDIT LOGGING ... 25

10. FDP_DAR_EXT.2 & FCS_CKM.2(2) – SENSITIVE DATA PROTECTION

OVERVIEW .. 31

10.1 SECURECONTEXTCOMPAT ... 31

11. API SPECIFICATION ... 33

11.1 CRYPTOGRAPHIC APIS .. 33

Page 3 of 48

11.1.1. SecureCipher ... 34

11.1.2. FCS_CKM.2/UNLOCKED – Key Establishment (RSA) ... 36

11.1.3. FCS_CKM.2/UNLOCKED – Key Establishment (ECDSA) & FCS_COP.1/SIGN –

Signature Algorithms (ECDSA) ... 36

11.1.4. FCS_CKM.1 – Key Generation (ECDSA) .. 37

11.1.5. FCS_COP.1/ENCRYPT – Encryption/Decryption (AES) ... 37

11.1.6. FCS_COP.1/HASH – Hashing (SHA) ... 38

11.1.7. FCS_COP.1/SIGN – RSA (Signature Algorithms) .. 38

11.1.8. FCS_CKM.1 –Key Generation (RSA) ... 39

11.1.9. FCS_COP.1/KEYHMAC - HMAC .. 39

11.2. KEY MANAGEMENT ... 39

11.2.1. SecureKeyGenerator ... 40

11.3. FCS_TLSC_EXT.1 - CERTIFICATE VALIDATION, TLS, HTTPS 41

11.3.1. Cipher Suites ... 42

11.3.2. Guidance for Bluetooth Low Energy APIs .. 43

Page 4 of 48

1. Document Introduction

This guide includes procedures for configuring Motorola Mobility LLC Devices on Android 13 into

a Common Criteria evaluated configuration and additionally includes guidance to application

developers wishing to write applications that leverage the Motorola phone’s Common Criteria

compliant APIs and features.

1.1 Evaluated Devices

The evaluated device encompasses mobile devices that support enterprises and individual users alike

and includes the following models and versions:

Product Model # Kernel Android OS Version Security Patch Level

ThinkPhone XT2309-3 5.10 Android 13.0 November 2023
EdgePlus XT2301-1 5.15 Android 13.0 November 2023

To verify the OS Version and Security Patch Level on your device:

1. Tap on Settings

2. Tap on About phone

3. Scroll down to Android version and tap on it

1.2 Acronyms

▪ AE – Android Enterprise

▪ AES – Advanced Encryption Standard

▪ API – Application Programming Interface

▪ BYOD – Bring Your Own Device

▪ CA – Certificate Authority

▪ DO – Device Owner

▪ DPC – Device Policy Controller

▪ EMM – Enterprise Mobility Management

▪ MDM – Mobile Device Management

▪ PKI – Public Key Infrastructure

▪ TOE – Target of Evaluation

Page 5 of 48

2. Evaluated Capabilities

The Common Criteria configuration adds support for many security capabilities. Some of those

capabilities include the following:

▪ Data Protection

▪ Lock Screen

▪ Key Management

▪ Device Integrity

▪ Device Management

▪ Work Profile Separation

▪ VPN Connectivity

▪ Audit Logging

2.1 Data Protection

Android uses industry-leading security features to protect user data. The platform creates an

application environment that protects the confidentiality, integrity, and availability of user data.

2.1.1 File-Based Encryption

Encryption is the process of encoding user data on an Android device using an encryption key. With

encryption, even if an unauthorized party tries to access the data, they won’t be able to read it. The

device utilizes File-based encryption (FBE) which allows different files to be encrypted with

different keys that can be unlocked independently.

Direct Boot allows encrypted devices to boot straight to the lock screen and allows alarms to

operate, accessibility services to be available and phones to receive calls before a user has provided

their credential.

With file-based encryption and APIs to make apps aware of encryption, it's possible for these apps

to operate within a limited context before users have provided their credentials while still protecting

private user information.

On a file-based encryption-enabled device, each device user has two storage locations available to

apps:

1. Credential Encrypted (CE) storage, which is the default storage location and only available

after the user has unlocked the device. CE keys are derived from a combination of user

credentials and a hardware secret. It is available after the user has successfully unlocked the

device the first time after boot and remains available for active users until the device shuts

down, regardless of whether the screen is subsequently locked or not.

2. Device Encrypted (DE) storage, which is a storage location available both before the user

has unlocked the device (Direct Boot) and after the user has unlocked the device. DE keys

are derived from a hardware secret that’s only available after the device has performed a

successful Verified Boot.

By default, apps do not run during Direct Boot mode. If an app needs to take action during Direct

Boot mode, such as an accessibility service like Talkback or an alarm clock app, the app can

register components to run during this mode.

DE and CE keys are unique and distinct - no user's CE or DE key will match another. File-based

encryption allows files to be encrypted with different keys, which can be unlocked independently.

https://developer.android.com/training/articles/direct-boot.html

Page 6 of 48

All encryption is based on AES-256 in XTS mode. Due to the way XTS is defined, it needs two

256-bit keys. In effect, both CE and DE keys are 512-bit keys.

By taking advantage of CE, file-based encryption ensures that a user cannot decrypt another user’s

data. This is an improvement on full-disk encryption where there’s only one encryption key, so all

users must know the primary user’s passcode to decrypt data. Once decrypted, all data is decrypted.

2.2 Lock screen

2.2.1 Biometric Authentication

Biometric authentication using fingerprints is available on all the devices. While the position of the

sensor varies by device, the user interactions with the system are otherwise identical.

Up to four separate fingerprints can be enrolled into the device at one time. This provides both the

ability to use different hands as well as options for things like cuts to a finger that could prevent a

successful match. To enroll a fingerprint, the user must first set a password for the device.

The user can manage their fingerprints by going to Settings>Security & privacy>Device lock and

tapping on the Fingerprint Unlock. The user will be prompted to enter their password and then will

be able to manage their fingerprints (fingerprints cannot be managed without entering the password).

Tapping Fingerprint Unlock will let the user add new fingerprints or delete existing ones from the

device. Once the maximum number is added the Add fingerprint option will be unavailable.

When enrolling a fingerprint, the device will prompt the user to provide good samples to build the

template. The user will be asked to move the part of the finger touching the sensor around (to cover

a wider area). If the user moves the finger too far (such as off the sensor) or not enough, the user will

be prompted to ensure a proper range of locations of the finger as well as enough quality samples.

Different messages will guide the user to provide the proper samples and will continue until the device

confirms enough quality data has been acquired.

The biometric cannot be used after a power event (such as a power-on or a reboot), and so the

password must be configured to act as the primary authentication method. Once the password has

been entered once, the user will be able to authenticate using the fingerprint. Periodically (at least

once per day) the user will be required to enter the password.

2.2.2 Authentication Rate Limiting

Both biometric template matching and passcode verification can only take place on secure hardware

with rate limiting (exponentially increasing timeouts) enforced. Android’s GateKeeper throttling is

also used to prevent brute-force attacks. After a user enters an incorrect password, GateKeeper APIs

return a value in milliseconds in which the caller must wait before attempting to validate another

password. Any attempts before the defined amount of time has passed will be ignored by

GateKeeper. Gatekeeper also keeps a count of the number of failed validation attempts since the last

successful attempt. These two values together are used to prevent brute-force attacks of the TOE’s

password.

For biometric fingerprint, the user can attempt 5 failed fingerprint unlocks before fingerprint is

locked for 30 seconds. After the 20th cumulative attempt, the device prohibits use of fingerprint

until the password is entered.

Android offers APIs that allow apps to use biometrics for authentication, and allows users to

authenticate by using their fingerprint scans. These APIs are used in conjunction with the Android

Keystore system.

https://source.android.com/security/biometric/
https://developer.android.com/training/articles/keystore.html
https://developer.android.com/training/articles/keystore.html

Page 7 of 48

2.3 Key Management

2.3.1 KeyStore

The Android KeyStore class lets you manage private keys in secure hardware to make them more

difficult to extract from the device. The KeyStore enables apps to generate and store credentials

used for authentication, encryption, or signing purposes.

Keystore supports symmetric cryptographic primitives such as AES (Advanced Encryption

Standard) and HMAC (Keyed-Hash Message Authentication Code) and asymmetric cryptographic

algorithms such as RSA and EC. Access controls are specified during key generation and enforced

for the lifetime of the key. Keys can be restricted to be usable only after the user has authenticated,

and only for specified purposes or with specified cryptographic parameters. For more information,

see the Authorization Tags and Functions pages.

Additionally, version binding binds keys to an operating system and patch level version. This

ensures that an attacker who discovers a weakness in an old version of system or TEE software

cannot roll a device back to the vulnerable version and use keys created with the newer version.

2.3.2 KeyChain

The KeyChain class allows apps to use the system credential storage for private keys and certificate

chains. KeyChain is often used by Chrome, Virtual Private Network (VPN) apps, and many

enterprise apps to access keys imported by the user or by the mobile device management app.

Whereas the KeyStore is for non-shareable app-specific keys, KeyChain is for keys that are meant

to be shared across profiles. For example, your mobile device management agent can import a key

that Chrome will use for an enterprise website.

2.4 Device Integrity

Device integrity features protect the mobile device from running a tampered operating system. With

companies using mobile devices for essential communication and core productivity tasks, keeping

the OS secure is essential. Without device integrity, very few security properties can be assured.

Android adopts several measures to guarantee device integrity at all times.

2.4.1 Verified Boot

Verified Boot is Android's secure boot process that verifies system software before running it. This

makes it more difficult for software attacks to persistent across reboots, and provides users with a

safe state at boot time. Each Verified Boot stage is cryptographically signed. Each phase of the boot

process verifies the integrity of the subsequent phase, prior to executing that code. Full boot of a

compatible device with a locked bootloader proceeds only if the OS satisfies integrity checks.

Verification algorithms used must be as strong as current recommendations from NIST for hashing

algorithms (SHA-256) and public key sizes (RSA-2048).

https://developer.android.com/reference/java/security/KeyStore.html
https://source.android.com/security/keystore/features.html
https://source.android.com/security/keystore/tags
https://source.android.com/security/keystore/implementer-ref
https://source.android.com/security/keystore/version-binding
http://developer.android.com/reference/android/security/KeyChain.html
http://source.android.com/security/verifiedboot/index.html

Page 8 of 48

The Verified Boot state is used as an input in the process to derive disk encryption keys. If the

Verified Boot state changes (e.g. the user unlocks the bootloader), then the secure hardware

prevents access to data used to derive the disk encryption keys that were used when the bootloader

was locked.

Find out more about Verified Boot here.

2.5 Device Management

The TOE leverages the device management capabilities that are provided through Android

Enterprise which is a combination of three components: your EMM/MDM console, a device policy

controller (DPC) which is your MDM Agent, and a EMM/MDM Application Catalog.

Components of an Android Enterprise solution.

2.5.1 EMM/MDM console

EMM solutions typically take the form of an EMM console—a web application you develop that

allows IT admins to manage their organization, devices, and apps. To support these functions for

Android, you integrate your console with the APIs and UI components provided by Android

Enterprise.

https://source.android.com/security/verifiedboot/

Page 9 of 48

2.5.2 DPC (MDM Agent)

All Android devices that an organization manages through your EMM console must install a DPC

app during setup. A DPC is an agent that applies the management policies set in your EMM console

to devices. Depending on which development option you choose, you can couple your EMM

solution with the EMM solution’s DPC, Android's DPC, or with a custom DPC that you develop.

End users can provision a fully managed or dedicated device using a DPC identifier (e.g. "afw#"),

according to the implementation guidelines defined in the Play EMM API developer

documentation.

▪ The EMM's DPC must be publicly available on Google Play, and the end user must be able

to install the DPC from the device setup wizard by entering a DPC-specific identifier.

▪ Once installed, the EMM's DPC must guide the user through the process of provisioning a

fully managed or dedicated device.

2.6 Work Profile Separation

Fully managed devices with work profiles are for company-owned devices that are used for both

work and personal purposes. The organization still manages the entire device. However, the

separation of work data and apps into a work profile allows organizations to enforce two separate

sets of policies. For example:

▪ A stronger set of policies for the work profile that applies to all work apps and data.

▪ A more lightweight set of policies for the personal profile that applies to the user's personal

apps and data.

You can learn more about work profile separation in section 7.

2.7 VPN Connectivity

IT admins can specify an Always On VPN to ensure that data from specified managed apps will

always go through a configured VPN. Note: this feature requires deploying a VPN client that

supports both Always On and per-app VPN features. IT admins can specify an arbitrary VPN

application (specified by the application package name) to be set as an Always On VPN. IT admins

can use managed configurations to specify the VPN settings for an app.

You can read more about VPN configuration options in section 6.

2.8 Audit Logging

IT admins can gather usage data from devices that can be parsed and programmatically evaluated

for malicious or risky behavior. Activities logged include Android Debug Bridge (adb) activity, app

launches, and screen unlocks.

▪ IT admins can enable security logging for target devices, and the EMM's DPC must be able

to retrieve both security logs and pre-reboot security logs automatically.

▪ IT admins can review enterprise security logs for a given device and configurable time

window, in the EMMs console.

▪ IT admins can export enterprise security logs from the EMMs console.

IT admins can also capture relevant logging information from Logcat which does not require any

additional configuration to be enabled.

You can see a detailed audit logging table in section 9, along with information on how to view and

export the different types of audit logs.

https://developers.google.com/android/work/dev-options
https://developers.google.com/android/management/provision-device
https://developer.android.com/work/dpc/build-dpc.html
https://developers.google.com/android/work/play/emm-api/prov-devices#set_up_device_owner_mode_afw_accts
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrievePreRebootSecurityLogs(android.content.ComponentName)
https://developer.android.com/work/dpc/security#monitor_enterprise_process_logs_and_remote_bug_reports

Page 10 of 48

3. Security Configuration

The Motorola phones offer a rich built-in interface and MDM callable interface for security

configuration. This section identifies the security parameters for configuring your device in

Common Criteria mode and for managing its security settings.

3.1 Common Criteria Mode

To configure the device into Common Criteria Mode, you must set the following options:

1. Require a lockscreen password

▪ Please review the Password Management items in section 3.4 (Common Criteria Related

Settings)

2. Disable Smart Lock

▪ Smart Lock can be disabled using KEYGUARD_DISABLE_TRUST_AGENTS()

3. Enable Encryption of Wi-Fi and Bluetooth secrets

▪ This can be enabled by using setting niap_mode

4. Disable Debugging Features (Developer options)

▪ By default Debugging features are disabled. The system administrator can prevent the

user from enabling them by using DISALLOW_DEBUGGING_FEATURES()

5. Disable installation of applications from unknown sources

▪ This can be disabled by using DISALLOW_INSTALL_UNKNOWN_SOURCES()

6. Turn off usage & diagnostics

▪ Step 1 - Open your device's Settings app

▪ Step 2 - Tap Google, then More, then Usage & diagnostics

▪ Step 3 - Turn Usage & diagnostics off

7. Enable Audit Logging

▪ Audit Logging can be enabled using setSecurityLoggingEnabled

▪ For certain items Logcat can be used which does not require any additional enablement

8. Applications that require MDFPPv3.3 compliant Sensitive Data Protection, Hostname

Checking, Revocation Checking, or TLS Ciphersuite restriction must implement the

NIAPSEC library

No additional configuration is required to ensure key generation, key sizes, hash sizes, and all other

cryptographic functions meet NIAP requirements.

3.2 Cryptographic Module Identification

The TOE implements CAVP certified cryptographic algorithms which are provided by the

following cryptographic components:

1. BoringSSL Library:

▪ BoringCrypto version dcdc7bbc6e59ac0123407a9dc4d1f43dd0d117cd

2. The TOE's LockSettings service

▪ Android LockSettings service KBKDF (version 7

b58a0134d24b27f673e8ab494d1a65dc8883d5a02b0ed68468a55cfdb2a34d23)

3. Hardware Cryptography:

▪ TOE's Wi-FI Chipset provides an AES-CCMP implementation

▪ The TOE's application processor Snapdragon 695[SM6375] provides additional

cryptographic algorithms. The CAVP certificates correctly identify the specific

hardware.

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_TRUST_AGENTS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName,%2520boolean)

Page 11 of 48

The use of other cryptographic components beyond those listed above was neither evaluated nor

tested during the TOE's Common Criteria evaluation.

No additional configuration is needed for the cryptographic modules in order to be compliant.

3.3 Permissions Model

Android runs all apps inside sandboxes to prevent malicious or buggy app code from compromising

other apps or the rest of the system. Because the application sandbox is enforced in the kernel, this

enforcement extends to the entire app regardless of the specific development environment, APIs

used, or programming language. A memory corruption error in an app only allows arbitrary code

execution in the context of that particular app, with the permissions enforced by the OS.

Similarly, system components run in least-privileged sandboxes in order to prevent compromises in

one component from affecting others. For example, externally reachable components, like the media

server and WebView, are isolated in their own restricted sandbox.

Android employs several sandboxing techniques, including Security-Enhanced Linux (SELinux),

seccomp, and file-system permissions.

The purpose of a permission is to protect the privacy of an Android user. Android apps must request

permission to access sensitive user data (such as contacts and SMS), as well as certain system

features (such as camera and internet). Depending on the feature, the system might grant the

permission automatically or might prompt the user to approve the request.

A central design point of the Android security architecture is that no app, by default, has permission

to perform any operations that would adversely impact other apps, the operating system, or the user.

This includes reading or writing the user's private data (such as contacts or emails), reading or

writing another app's files, performing network access, keeping the device awake, and so on.

The DPC can pre-grant or pre-deny specific permissions using PERMISSION_GRANT_STATE

API’s. In addition the end user can revoke a specific apps permission by:

1. Tapping on Settings>Apps¬ifications

2. Tapping on the particular app and then tapping on Permissions

3. From there the user can toggle off any specific permission

You can learn more about Android Permissions on developer.android.com.

3.4 Common Criteria Related Settings

The Common Criteria evaluation requires a range of security settings be available. Those security

settings are identified in the table below. In many cases, the administrator or user has to have the

ability to configure the setting but no specific value is required. The API column indicates the

administrator interface used to control the setting, while the User Interface column provides steps the

user can use to control the setting.

Security

Feature

Setting Description Required

Value

API User Interface

Encryption Device

Encryption

Encrypts all

internal

storage

N/A Encryption on by

default with no

way to turn off

 Wipe Device Removes all

data from

device

No required

value

wipeData() To wipe the device go to

Settings>System>Reset options

and select Erase all date

(factory reset)

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#PERMISSION_GRANT_STATE_DEFAULT
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)

Page 12 of 48

Security

Feature

Setting Description Required

Value

API User Interface

 Wipe

Enterprise

Data

Remove all

enterprise data

from device

No required

value

wipeData() called

from secondary

user

Password

Management

Min Password

Length

Max Password

Length

Minimum

number of

characters in a

password

Maximum

number of

characters in a

password

No required

value

16

setPasswordMini

mumLength()

Default value,

cannot be changed

To set a screen lock go to

Settings>Security &

location>Screen lock and tap

on Password

Password

Complexity

Specify the

type of

characters

required in a

password

No required

value

setPasswordQualit

y()

To set a screen lock go to

Settings>Security &

location>Screen lock and tap

on Password

Password

Expiration

Maximum

length of time

before a

password must

change

No required

value

setPasswordExpir

ationTimeout()

 Authentication

Failures

Maximum

number of

authentication

failures

10 or less setMaximumFaile

dPasswordsForWi

pe()

Lockscreen Inactivity to

lockout

Time before

lockscreen is

engaged

No required

value

setMaximumTime

ToLock()

To set an inactivity lockout go

to Settings>Security &

location> and tap on the gear

icon next to Screen lock then

tap on Automatically lock and

select the appropriate value
Banner Banner

message

displayed on

the lockscreen

Administrat

or or user

defined text

setDeviceOwnerL

ockScreenInfo

To set a banner go to

Settings>Security &

location>Lock screen

preferences>Lock screen

message. Set a message and tap

Save
Remote Lock Looks the

device

remotely

Function

must be

available

lockNow() Tap the power button to turn

off the screen which locks the

device

Show

Password

Disallows the

displaying of

the password

on the screen

of lock-screen

password

Disable This is disabled

by default

Notifications Controls

whether

notifications

are displayed

on the

lockscreen

Enable/

Disable are

available

options

KEYGUARD_DI

SABLE_SECUR

E_NOTIFICATIO

NS()

KEYGUARD_DI

SABLE_UNRED

ACTED_NOTIFI

CATIONS

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout(android.content.ComponentName,%2520long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout(android.content.ComponentName,%2520long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumTimeToLock(android.content.ComponentName,%20long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumTimeToLock(android.content.ComponentName,%20long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setDeviceOwnerLockScreenInfo(android.content.ComponentName,%2520java.lang.CharSequence)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setDeviceOwnerLockScreenInfo(android.content.ComponentName,%2520java.lang.CharSequence)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#lockNow()
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS

Page 13 of 48

Security

Feature

Setting Description Required

Value

API User Interface

Control

Biometric

Fingerprint

Control the use

of Biometric

Fingerprint

authentication

factor

Enable/

Disable are

available

options

KEYGUARD_DI

SABLE_FINGER

PRINT()

Certificate

Management

Import CA

Certificates

Import CA

Certificates

into the Trust

Anchor

Database or

the credential

storage

No required

value

installCaCert() Tap on Settings>Security &

location>Advanced>Ecnryption

& credentials and select Install

from storage

Remove

Certificates

Remove

certificates

from the

Trust Anchor

Database or

the credential

storage

No required

value

uninstallCACert() To clear all user installed

certificates tap on

Settings>Security &

location>Advanced>Ecnryption

& credentials and select Clear

credentials

To remove a specific user

installed certificate tap on

Settings>Security &

location>Advanced>Ecnryption

& credentials>Trusted

credentials. Switch to the User

tab, select the certificate you

want to delete and tap on

Remove

Import Client

Certificates

Import client

certificates in

to Keychain

No required

value

installKeyPair() Tap on Settings>Security &

location>Advanced>Ecnryption

& credentials and select Install

from storage

Remove Client

Certificates

Remove client

certificates

from Keychain

No required

value

removeKeyPair() To remove a specific user

installed client certificate tap on

Settings>Security &

location>Advanced>Ecnryption

& credentials>User credentials.

Switch to the User tab, select

the certificate you want to

delete and tap on Remove

Radio

Control

Control Wi-Fi Control access

to Wi-Fi

Enable/

Disable are

available

options

DISALLOW_CO

NFIG_WIFI()

To disable Wi-Fi tap on

Settings>Network & internet

and toggle Airplane mode to

On

Control GPS Control access

to GPS

Enable/

Disable are

available

options

DISALLOW_SH

ARE_LOCATIO

N()DISALLOW_

CONFIG_LOCA

TION()

Control

Cellular

Control access

to Cellular

Enable/

Disable are

available

options

DISALLOW_CO

NFIG_MOBILE_

NETWORKS()

To disable Cellular tap on

Settings>Network &

internet>Mobile network and

tap on your carrier and toggle

to Off

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_FINGERPRINT
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_FINGERPRINT
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_FINGERPRINT
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installCaCert(android.content.ComponentName,%20byte%5B%5D)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#uninstallCaCert(android.content.ComponentName,%2520byte%5B%5D)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installKeyPair(android.content.ComponentName,%20java.security.PrivateKey,%20java.security.cert.Certificate,%20java.lang.String)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#removeKeyPair(android.content.ComponentName,%20java.lang.String)
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS

Page 14 of 48

Security

Feature

Setting Description Required

Value

API User Interface

Control NFC Control access

to NFC

Enable/

Disable are

available

options

DISALLOW_OU

TGOING_BEAM

()

To disable NFC tap on

Settings>Connected

devices>Connection

preferences and toggle NFC to

Off

Control

Bluetooth

Control access

to Bluetooth

Enable/

Disable are

available

options

DISALLOW_BL

UETOOTH ()

DISALLOW_BL

UETOOTH_SHA

RING()

DISALLOW_CO

NFIG_BLUETO

OTH()

Control

Location

Service

Control access

to Location

Service

Enable/

Disable are

available

options

DISALLOW_SH

ARE_LOCATIO

N()

DISALLOW_CO

NFIG_LOCATIO

N()

Wi-Fi

Settings

Specify Wi-Fi

SSIDs

Specify SSID

values for

connecting to

Wi-Fi. Can

also create

white and

black lists for

SSIDs.

No required

value

WifiEnterpriseCo

nfig()

Set WLAN CA

Certificate

Select the CA

Certificate for

the Wi-FI

connection

No required

value

WifiEnterpriseCo

nfig()

Specify

security type

Specify the

connection

security

(WPA3,

WPA2, etc)

No required

value

WifiEnterpriseCo

nfig()

Select

authentication

protocol

Specify the

EAP-TLS

connection

values

No required

value

WifiEnterpriseCo

nfig()

Select client

credentials

Specify the

client

credentials to

access a

specified

WLAN

No required

value

WifiEnterpriseCo

nfig()

Control

Always-on

VPN

Control access

to Always-on

VPN

Enable/

Disable are

available

options

setAlwaysOnVPN

Package()

Hardware

Control

Control

Microphone

(across device)

Control access

to microphone

across the

device

Enable/

Disable are

available

options

DISALLOW_UN

MUTE_MICROP

HONE()

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH_SHARING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH_SHARING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH_SHARING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName,%20java.lang.String,%20boolean)
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE

Page 15 of 48

Security

Feature

Setting Description Required

Value

API User Interface

Control

Microphone

(per-app basis)

Control access

to microphone

per application

Enable/

Disable are

available

options

 Tap on ‘Settings>Apps &

notifications>App

permissions>Microphone’ then

de-select the apps to remove

permissions

Control

Camera (per-

app basis)

Control access

to camera per

application

Enable/

Disable are

available

options

 Tap on ‘Settings>Apps &

notifications>App

permissions>Camera’ then de-

select the apps to remove

permissions

Control USB

Mass Storage

Control access

to mounting

the device for

storage over

USB.

Enable/

Disable are

available

options

DISALLOW_MO

UNT_PHYSICAL

_MEDIA()

Control USB

Debugging

Control access

to USB

debugging.

Enable/

Disable are

available

options

DISALLOW_DE

BUGGING_FEA

TURES()

Control USB

Tethered

Connections

Control access

to USB

tethered

connections.

Enable/

Disable are

available

options

DISALLOW_CO

NFIG_TETHERI

NG()

Control

Bluetooth

Tethered

Connections

Control access

to Bluetooth

tethered

connections.

Enable/

Disable are

available

options

DISALLOW_CO

NFIG_TETHERI

NG()

Control

Hotspot

Connections

Control access

to Wi-Fi

hotspot

connections

Enable/

Disable are

available

options

DISALLOW_CO

NFIG_TETHERI

NG()

 Automatic

Time

Allows the

device to get

time from the

Wi-Fi

connection

Enable/

Disable are

available

options

setAutoTimeRequ

ired()

Tap on ‘Settings>System>Date

& time’ and toggle Automatic

date & time to On

Application

Control

Install

Application

Installs

specified

application

No required

value

PackageInstaller.S

ession()

Uninstall

Application

Uninstalls

specified

application

App to

uninstall

uninstall() To uninstall an application tap

on Settings>Applications &

notifications>See all. Select the

application and tap on Uninstall

Application

Whitelist

Specifies a list

of applications

that may be

installed

No required

value

This is done by

the EMM/MDM

when they setup

an application

catalog which

leverages

PackageInstaller.S

ession()

Application

Blacklist

Specifies a list

of applications

that may not

be installed

No required

value

PackageInstaller.S

essionInfo()

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAutoTimeRequired(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAutoTimeRequired(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session
https://developer.android.com/reference/android/content/pm/PackageInstaller.html#uninstall(android.content.pm.VersionedPackage,%2520android.content.IntentSender)
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.SessionInfo.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.SessionInfo.html

Page 16 of 48

Security

Feature

Setting Description Required

Value

API User Interface

Application

Repository

Specifies the

location from

which

applications

may be

installed

No required

value

DISALLOW_INS

TALL_UNKNO

WN_SOURCES()

TOE

Management

Enrollment Enroll TOE in

management

No required

value

 During device setup scan

EMM/MDM provided QR code

or enter EMM/MDM DPC

identifier

Refer to section 2.5.2 for more

details

Disallow

Unenrollment

Prevent the

user from

removing the

managed

profile

Enable/

Disable

DISALLOW_RE

MOVE_MANAG

ED_PROFILE()

DISALLOW_FA

CTORY_RESET(

)

Unenrollment Unenroll TOE

from

management

App to

uninstall

uninstall() – this

API can be used

to uninstall the

MDM Agent from

the device.

Uninstalling the

MDM agent from

an enterprise

profile will delete

the entire profile

and all its

applications.

This API can be used to

uninstall enterprise apps. If an

admin uninstalls the MDM

agent installed on an enterprise

profile, the entire profile and all

enterprise applications are

deleted.

Allow

Developer

Mode

Controls

Developer

Mode access

Enable/

Disable are

available

options

DISALLOW_DE

BUGGING_FEA

TURES()

Sharing Data

Between

Enterprise and

Perosnal Apps

Controlls data

sharing

between

enterprise and

work apps

Enable/

Disable

DISALLOW_CR

OSS_PROFILE_

COPY_PASTE()

addCrossProfileIn

tentFilter()

3.5 Password Recommendations

When setting a password, you should select a password that:

● Does not use known information about yourself (e.g. pets names, your name, kids names or

any information available in the public domain);

● Is significantly different from previous passwords (adding a ‘1’ or “!” to the end of the

password is not sufficient); or

● Does not contain a complete word. (Password!).

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/content/pm/PackageInstaller.html#uninstall(android.content.pm.VersionedPackage,%2520android.content.IntentSender)
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName,%20android.content.IntentFilter,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName,%20android.content.IntentFilter,%20int)

Page 17 of 48

● Does not contain repeating or sequential numbers and/or letters.

3.6 Bug Reporting Process

Google supports a bug filing system for the Android OS outlined here:

https://source.android.com/setup/contribute/report-bugs.

This allows developers or users to search for, file, and vote on bugs that need to be fixed. This helps

to ensure that all bugs that affect large numbers of people get pushed up in priority to be fixed.

Security vulnerability for moto devices can be reported through the following link.

https://en-us.support.motorola.com/app/emailform

https://source.android.com/setup/contribute/report-bugs

Page 18 of 48

4. Bluetooth Configuration

Follow the below steps to pair and connect using Bluetooth

Pair

1. Open your phone or tablet's Settings app .

2. Tap Connected devices Connection preferences Bluetooth.

3. Make sure Bluetooth is turned on by looking at the Bluetooth toggle.

4. Tap Pair new device.

5. Tap the name of the Bluetooth device you want to pair with your phone or tablet.

6. Follow any on-screen steps.

Connect

1. Open your phone or tablet's Settings app .

2. Tap Connected devices Connection preferences Bluetooth.

3. Make sure Bluetooth is turned on.

4. In the list of paired devices, tap a paired but unconnected device.

5. When your phone or tablet and the Bluetooth device are connected, the device shows as "Connected" in the

list.

Tip: If your phone is connected to something through Bluetooth, at the top of the screen, you'll see a

Bluetooth icon .

Page 19 of 48

Remove Previously Paired Device

1. Open your phone or tablet's Settings app .

2. Tap Connected devices Previously connected devices

3. Tap the gear icon to the right of the device you want to unpair

4. Tap on Forget and confirm in the popup window by tapping on Forget device

For additional support information around Bluetooth please take a look at this support link.

https://support.google.com/pixelphone/answer/2819579?hl=en

Page 20 of 48

5. Wi-Fi Configuration

Android supports the WPA2-Enterprise (802.11i) protocol and WPA3-Enterprise protocols, which

are specifically designed for enterprise networks and can be integrated into a broad range of Remote

Authentication Dial-In User Service (RADIUS) authentication servers.

IT admins can silently provision enterprise WiFi configurations on managed devices, including:

▪ SSID, via the EMM's DPC

▪ Password, via the EMM's DPC

▪ Identity, via the EMM's DPC

▪ Certificate for clients authorization, via the EMM's DPC

▪ CA certificate(s), via the EMM's DPC

IT admins can lock down WiFi configurations on managed devices, to prevent users from creating

new configurations or modifying corporate configurations.

IT admins can lock down corporate WiFi configurations in either of the following configurations:

▪ Users cannot modify any WiFi configurations provisioned by the EMM, but may add and

modify their own user-configurable networks (for instance personal networks).

▪ Users cannot add or modify any WiFi network on the device, limiting WiFi connectivity to

just those networks provisioned by the EMM.

When the device tries to connect to a WiFi network it performs a standard captive portal check

which bypasses the full tunnel VPN configuration. If the administrator wants to turn the captive

portal check off they need to do this physically on the device before enrolling it in to the MDM by:

1. Enable Developer Options by tapping on Settings>About phone and tapping on Build

number five times until they see that Developer options has been enabled

2. Enable Android Debug Bridge (ADB) over USB by tapping on

Settings>System>Advanced>Developer options and scroll down to USB debugging and

enable the toggle to On

3. Connect to the device to a workstation that has ADB installed and type in “adb shell settings

put global captive_portal_mode 0” and hit enter

4. You can verify the change by typing “adb shell settings get global captive_portal_mode”

and the return value should be “0”

5. Turn off Developer options by tapping on Settings>System>Advanced>Developer options

and toggling the On option to Off at the top

If a WiFi connection unintentionally terminates, the end user will need to reconnect to re-establish

the session.

https://developer.android.com/reference/android/net/wifi/WifiConfiguration.html#SSID
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setPassword(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setIdentity(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setClientKeyEntry(java.security.PrivateKey,%20java.security.cert.X509Certificate)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setCaCertificate(java.security.cert.X509Certificate)
https://developer.android.com/reference/android/provider/Settings.Global#WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN
https://developer.android.com/reference/android/os/UserManager#DISALLOW_CONFIG_WIFI

Page 21 of 48

6. VPN Configuration

Android supports securely connecting to an enterprise network using VPN:

● Always-on VPN—The VPN can be configured so that apps don’t have access to the

network until a VPN connection is established, which prevents apps from sending data

across other networks.

o Always-on VPN supports VPN clients that implement VpnService. The system

automatically starts that VPN after the device boots. Device owners and profile

owners can direct work apps to always connect through a specified VPN.

Additionally, users can manually set Always-on VPN clients that implement

VpnService methods using Settings>More>VPN. Always-on VPN can also be

enabled manually from the settings menu.

https://developer.android.com/reference/android/net/VpnService.html
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.y1nbxclhzddx

Page 22 of 48

7. Work Profile Separation

Work profile mode is initiated when the DPC initiates a managed provisioning flow. The work

profile is based on the Android multi-user concept, where the work profile functions as a separate

Android user segregated from the primary profile. The work profile shares common UI real estate

with the primary profile. Apps, notifications, and widgets from the work profile show up next to

their counterparts from the primary profile and are always badged so users have an indication as to

what type of app it is.

With the work profile, enterprise data does not intermix with personal application data. The work

profile has its own apps, its own downloads folder, its own settings, and its own KeyChain. It is

encrypted using its own encryption key, and it can have its own passcode to gate access.

The work profile is provisioned upon installation, and the user can only remove it by removing the

entire work profile. Administrators can also remotely instruct the device policy client to remove the

work profile, for instance, when a user leaves the organization or a device is lost. Whether the user

or an IT administrator removes the work profile, user data in the primary profile remains on the

device.

A DPC running in profile owner mode can require users to specify a security challenge for apps

running in the work profile. The system shows the security challenge when the user attempts to

open any work apps. If the user successfully completes the security challenge, the system unlocks

the work profile and decrypts it, if necessary.

Android also provides support for a separate work challenge to enhance security and control. The

work challenge is a separate passcode that protects work apps and data. Admins managing the work

profile can choose to set the password policies for the work challenge differently from the policies

for other device passwords. Admins managing the work profile set the challenge policies using the

usual DevicePolicyManager methods, such as setPasswordQuality() and

setPasswordMinimumLength(). These admins can also configure the primary device lock, by using

the DevicePolicyManager instance returned by the DevicePolicyManager.getParentProfileInstance()

method.

As part of setting up a separate work challenge, users may also elect to enroll fingerprints to unlock

the work profile more conveniently. Fingerprints must be enrolled separately from the primary

profile as they are not shared across profiles.

As with the primary profile, the work challenge is verified within secure hardware, ensuring that it’s

difficult to brute-force. The passcode, mixed in with a secret from the secure hardware, is used to

derive the disk encryption key for the work profile, which means that an attacker cannot derive the

encryption key without either knowing the passcode or breaking the secure hardware.

http://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#ACTION_PROVISION_MANAGED_PROFILE
https://docs.google.com/document/d/1gmb2sCKnaXFNqSGO8yMI_NwuDBXF7r-__VQe3HzHcWk/edit#heading=h.ln3pexhgp74y
https://developers.google.com/android/work/prov-devices#profile_owner_provisioning_methods
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName,%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html

Page 23 of 48

8. Secure Update Process

Over the Air (OTA) updates (which includes baseband processor updates) using a public key

chaining ultimately to the Root Public Key, a hardware protected key whose SHA-256 hash resides

inside the application processor. Should this verification fail, the software update will fail and the

update will not be installed. Additionally, the Motorola phones also provide roll-back protection for

OTA updates to prevent a user from installing a prior/previous version of software by check.

The Motorola phones leverage A/B system updates, also known as seamless updates. This approach

ensures that a workable booting system remains on the disk during an over-the-air (OTA) update.

This approach reduces the likelihood of an inactive device after an update, which means fewer

device replacements and device reflashes at repair and warranty centers. Other commercial-grade

operating systems such as ChromeOS also use A/B updates successfully.

The user will get a notification when an update is made available. No special configuration will be

required to ensure a secure update process.

https://source.android.com/devices/tech/ota/ab

Page 24 of 48

8.1 Google Play System Updates

Google Play System Updates offer a simple and fast method to deliver updates. End-user devices

receive the components from the Google Play Store or through a partner-provided over-the-air

(OTA) mechanism.

The components are delivered as either APK or APEX files — APEX is a new file format which

loads earlier in the booting process. Important security and performance improvements that

previously needed to be part of full OS updates can be downloaded and installed similarly to an app

update. Updates delivered in this way are secured by being cryptographically signed.

Google Play System Updates can also deliver faster security fixes for critical security bugs by

modularizing media components, which accounted for nearly 40% of recently patched

vulnerabilities, and allowing updates to Conscrypt, the Java Security Provider.

https://source.android.com/devices/tech/ota/apex

Page 25 of 48

9. Audit Logging

Security Logs:

A MDM agent acting as Device Owner can control the logging with

DevicePolicyManager#setSecurityLoggingEnabled. When security logs are enabled, device owner

apps receive periodic callbacks from DeviceAdminReceiver#onSecurityLogsAvailable, at which

time new batch of logs can be collected viaDevicePolicyManager#retrieveSecurityLogs.

SecurityEvent describes the type and format of security logs being collected.

Audit events from the Security Log are those where the "Keyword" field appears first in the format.

For example: <Keyword> (<Date><Timestamp>): <message>

Logcat Logs:

Logcat logs can be read by a command issued via an ADB shell running on the phone. Information

about reading Logcat logs can be found here. The command to issue a dump of the logcat logs is:

> adb logcat

Logcat logs cannot be exported from the device outside of using the above ADB command to dump

to a file, then retrieving the file from the device (which requires developer settings enabled and

administrative permissions).

Logcat logs can also be read by an application (for example an MDM agent) granted permission

from an ADB shell:

> adb shell pm grant <application_package_name> android.permission.READ_LOGS

Audit events from the Logcat log are those where the "Keyword" field appears after the timestamp

field in the format. For example: Date> <Time> <ID> | <Keyword> <Message>

The table below provides general audit events:

Requirement
Auditable

Events

Additional

Audit Record

Contents

Log Events & Examples

FAU_GEN.1

Start-up and

shutdown of

the audit

functions

SecurityLog

Start-up:

LOGGING_STARTED (Thu Sep 24 10:53:19 EDT

2020):

Shutdown:

All logs are stored in memory. When audit functions are

disabled, all memory being used by the audit functions is

released by the OS, and so this log cannot be seen.

Start-up and

shutdown of

the Rich OS

SecurityLog

Start-up:

OS_STARTUP (Thu Sep 24 10:53:18 EDT 2020): orange

enforcing

Shutdown:

All logs are stored in memory. This log is not capturable

or persistent through boot, and thus isn't available to an

MDM Administrator

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName,%20boolean)
https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html#onSecurityLogsAvailable(android.content.Context,%20android.content.Intent)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/SecurityLog.SecurityEvent.html
https://developer.android.com/studio/command-line/logcat

Page 26 of 48

Requirement
Auditable

Events

Additional

Audit Record

Contents

Log Events & Examples

FCS_STG_EXT.1

Import or

destruction of

key.

Identity of

key. Role and

identity of

requestor.

SecurityLog

KEY_IMPORTED (Thu Sep 24 12:21:47 EDT 2020): 1

USRPKEY_852acf518726278597463f75999f3e28110a61

a9 1000

SecurityLog

KEY_DESTROYED (Thu Sep 24 12:22:38 EDT 2020): 1

USRPKEY_852acf518726278597463f75999f3e28110a61

a9 1000

FCS_STG_EXT.3

Failure to

verify integrity

of stored key.

Identity of key

being verified.

KEY_INTEGRITY_VIOLATION (Thu Oct 29 16:20:44

EDT 2020): USRPKEY_''corrupt" 1010

FDP_DAR_EXT.2

Failure to

encrypt/

decrypt data.

No additional

information.

Logcat

01-17 14:16:31.069 9533 9605 E SecureCipher: Failure

to decrypt data: Keystore operation failed

01-17 14:15:47.212 12181 12181 E SDPCryptoUtils-

Inject: encryptAES256key failed - User not authenticated

:android.security.keystore.UserNotAuthenticatedExceptio

n: User not authenticated

FDP_STG_EXT.1

Addition or

removal of

certificate

from Trust

Anchor

Database.

Subject name

of certificate.

SecurityLog

CERT_AUTHORITY_INSTALLED (Thu Sep 24

12:22:17 EDT 2020): 1 cn=rootca-

rsa,1.2.840.113549.1.9.1=#161a726f6f7463612d7273614

0676f7373616d65727365632e636f6d,o=gss,l=catonsville,

st=md,c=us 0

CERT_AUTHORITY_REMOVED (Thu Sep 24 12:22:30

EDT 2020): 1 cn=rootca-

rsa,1.2.840.113549.1.9.1=#161a726f6f7463612d7273614

0676f7373616d65727365632e636f6d,o=gss,l=catonsville,

st=md,c=us 0

FIA_X509_EXT.1

&

FIA_X509_EXT.1/

WLAN

Failure to

validate

X.509v3

certificate.

Reason for

failure of

validation.

Logcat

01-17 15:15:16.341 2879 2879 I wpa_supplicant: wlan0:

CTRL-EVENT-DISCONNECTED

bssid=9c:4e:36:87:88:2c reason=23

01-17 15:15:16.341 2879 2879 I wpa_supplicant: wlan0:

CTRL-EVENT-SSID-TEMP-DISABLED id=0

ssid="nanoPC-EAP" auth_failures=1 duration=10

reason=AUTH_FAILED 01-17

15:15:20.996 2879 2879 I wpa_supplicant: wlan0:

CTRL-EVENT-EAP-FAILURE EAP authentication

failed

FMT_SMF_EXT.2 [none]. [none].

FPT_NOT_EXT.1 [None].
[No additional

information].

Page 27 of 48

Requirement
Auditable

Events

Additional

Audit Record

Contents

Log Events & Examples

FPT_TST_EXT.1

Initiation of

self-test.
[none]

SecurityLog

CRYPTO_SELF_TEST_COMPLETED (Thu Sep 24

10:53:19 EDT 2020): 1

Failure of self-

test.

SecurityLog

CRYPTO_SELF_TEST_COMPLETED (Thu Sep 24

10:53:19 EDT 2020): 0

FPT_TST_EXT.2/

PREKERNEL

(Selection is

optional)

Start-up of

TOE.

No additional

information.

SecurityLog

OS_STARTUP (Thu Sep 24 10:53:18 EDT 2020): orange

enforcing

[none]
No additional

information.

The table below provides audit events for the Wi-Fi connectivity:

Requirement
Auditable

Events

Additional

Audit Record

Contents

Log Events & Examples

FCS_TLSC_EXT.1

/WLAN

Failure to

establish an

EAP-TLS

session.

Reason for

failure

SecurityLog

<masked BSSID> in the form: xx:xx:xx:xx:AA:BB

<Failure event> events: EAP_FAILURE,

SSID_TEMP_DISABLED, OPEN_SSL_FAILURE

security_wifi_connection: [<masked BSSID>,<Failure

event>,<details>]

Establishment/

termination of

an EAP-TLS

session.

Non-TOE

endpoint of

connection

SecurityLog

Establishment:

<masked BSSID> in the form: xx:xx:xx:xx:AA:BB

<Success event> events: CONNECTED,

DISCONNECTED, ASSOCIATING, ASSOCIATED,

EAP_METHOD_SELECTED

security_wifi_connection: [<masked BSSID>,<Success

event>,<details>]

Termination:

security_wifi_disconnection: [<masked

BSSID>,<details>]

Page 28 of 48

Requirement
Auditable

Events

Additional

Audit Record

Contents

Log Events & Examples

FIA_X509_EXT.6

Attempts to

load and

revoke

certificates

No additional

information

SecurityLog

<result> 1 = successful, 0 = failure

<key alias>: code string for the key

TAG_KEY_IMPORT: [<result>,<key

alias>,<requesting process ID>]

TAG_KEY_DESTRUCTION: [<result>,<key

alias>,<requesting process ID>]
FPT_TST_EXT.3/

WLAN

(note: can be

performed by

TOE or TOE

platform)

Execution of

this set of TSF

self-tests.

[none].

[no additional

information].
These TSF Self-tests are included in the self-tests.

FTA_WSE_EXT.1

All attempts to

connect to

access points.

Certificate

Check Message

and the last 2

octets of the

MAC address

Success and

failures

(including

reason for

failure)

SecurityLog

<masked BSSID> in the form: xx:xx:xx:xx:AA:BB

<Success event> events: ASSOCIATING,

ASSOCIATED

security_wifi_connection: [<masked BSSID>,<Success

event>,<details>]

FTP_ITC.1/WLAN

All attempts to

establish a

trusted

channel.

Identification of

the non-TOE

endpoint of the

channel.

SecurityLog

<masked BSSID> in the form: xx:xx:xx:xx:AA:BB

<Success event> events: ASSOCIATING,

ASSOCIATED

security_wifi_connection: [<masked BSSID>,<Success

event>,<details>]

The below table provides samples management function audits:

Requirement
Auditable

Events

Additional

Audit

Record

Contents

Log Events & Examples

FMT_SMF_EXT.1.1

Function 1
Configure

password policy

FMT_SMF_EXT.1.1

Function 1a

a. minimum

password length

Greater

than or

equal to 8

<Keyword> (<Date><Timestamp>): <message>

PASSWORD_COMPLEXITY_SET (Thu Jun 18

19:50:21 EDT 2020): com.afwsamples.testdpc 0 0 16

393216 0 0 0 0 0 0

Page 29 of 48

Requirement
Auditable

Events

Additional

Audit

Record

Contents

Log Events & Examples

FMT_SMF_EXT.1.1

Function 1b

b. minimum

password

complexity

No required

value

<Keyword> (<Date><Timestamp>): <message>

PASSWORD_COMPLEXITY_SET (Sun Jul 05

19:01:57 EDT 2020): com.afwsamples.testdpc 0 0 0

393216 1 0 1 0 0 1

FMT_SMF_EXT.1.1

Function 1c

c. maximum

password lifetime

<Keyword> (<Date><Timestamp>): <message>

PASSWORD_EXPIRATION_SET (Sun Jul 05

19:03:55 EDT 2020): com.afwsamples.testdpc 0 0

600000

FMT_SMF_EXT.1.1

Function 2

Configure

session locking

policy

FMT_SMF_EXT.1.1

Function 2a

a. screen-lock

enabled/disabled
Enabled

<Keyword> (<Date><Timestamp>): <message>

PASSWORD_COMPLEXITY_SET (Sun Jul 05

19:01:57 EDT 2020): com.afwsamples.testdpc 0 0 0

393216 1 0 1 0 0 1

FMT_SMF_EXT.1.1

Function 2a

a. screen-lock

enabled/disabled

(after requiring a

password above,

admin can

request the user

set a password)

No required

value

<Date> <Time> <ID> | <Keyword> <Message>

09-23 13:17:18.528 1499 6482 I

ActivityTaskManager: START u0

{act=android.app.action.SET_NEW_PASSWORD

cmp=com.android.settings/.password.SetNewPassword

Activity} from uid 10245

FMT_SMF_EXT.1.1

Function 2b

b. screen lock

timeout

10 minutes

or less

<Keyword> (<Date><Timestamp>): <message>

MAX_SCREEN_LOCK_TIMEOUT_SET (Mon Jul 13

21:39:23 EDT 2020): com.afwsamples.testdpc 0 0

120000

FMT_SMF_EXT.1.1

Function 2b

b. screen lock

timeout

(after setting a

max time, the

admin can

prevent

any user changes

with this)

<Keyword> (<Date><Timestamp>): <message>

USER_RESTRICTION_ADDED (Mon Jul 13

21:42:18 EDT 2020): com.afwsamples.testdpc 0

no_config_screen_timeout

FMT_SMF_EXT.1.1

Function 2c

c. number of

authentication

failures

10 or less

<Keyword> (<Date><Timestamp>): <message>

MAX_PASSWORD_ATTEMPTS_SET (Wed Sep 23

13:22:53 EDT 2020): com.afwsamples.testdpc 0 0 10

FMT_SMF_EXT.1.1

Function 8a

Configure

application

installation

policy

a. restricting the

sources of

applications

Enable

<Keyword> (<Date><Timestamp>): <message>

USER_RESTRICTION_ADDED (Thu Aug 27

13:34:17 EDT 2020): com.afwsamples.testdpc 0

no_install_unknown_sources

Page 30 of 48

Requirement
Auditable

Events

Additional

Audit

Record

Contents

Log Events & Examples

FMT_SMF_EXT.1.1

Function 8c

Configure

application

installation

policy

c. denying

installation of

applications

Enable

<Keyword> (<Date><Timestamp>): <message>

USER_RESTRICTION_ADDED (Thu Aug 27

13:34:17 EDT 2020): com.afwsamples.testdpc 0

no_install_unknown_sourcesUSER_RESTRICTION_

ADDED (Wed Jan 15 14:33:38 EST 2020):

com.afwsamples.testdpc 0 no_install_apps

The table below provides audit events for the Bluetooth connectivity:

Requirement
Auditable

Events

Additional

Audit Record

Contents

Log Events & Examples

FIA_BLT_EXT.1

Failed user

authorization

of Bluetooth

device.

User

authorization

decision

SecurityLog

<masked MAC> in the form: xx:xx:xx:xx:AA:BB

<Success/Failure>: 1 = successful, 0 = failure

<details> will have information about pairing

security_bluetooth_connection: [<masked

MAC>,<Success/Failure>,<details>]

LogCat

BluetoothDatabase: getProfileConnectionPolicy: device

<masked MAC> profile=<profile name>

connectionPolicy=<#>

AdapterProperties:

PROFIL_CONNECTION_STATE_CHANGE:

<message>

CachedBluetoothDevice: onProfileStateChanged:

profile <profilename>, device <masked MAC>,

newProfileState=0

(0 means connection state is disconnected)

Failed user

authorization

for local

Bluetooth

Service.

Bluetooth

address and

name of device.

Bluetooth

profile

FIA_BLT_EXT.2

Initiation of

Bluetooth

connection.

Bluetooth

address and

name of device.

SecurityLog

security_bluetooth_connection: [<masked

MAC>,<Success/Failure>,<details>]

Failure of

Bluetooth

connection.

Reason for

failure.

SecurityLog

security_bluetooth_connection: [<masked

MAC>,<Success/Failure>,<details>]

Page 31 of 48

10. FDP_DAR_EXT.2 & FCS_CKM.2(2) – Sensitive Data Protection Overview

Using the NIAPSEC library, sensitive data protection including Biometric protections are enabled

by default by using the Strong configuration.

To request access to the NIAPSEC library, please reach out to: niapsec@google.com.

The library provides APIs via SecureContextCompat to write files when the device is either locked

or unlocked. Reading an encrypted file is only possible when the device is unlocked and

authenticated biometrictrically.

Saving sensitive data files requires a key to be generated in advance. Please see the Key generation

section for more information.

Supported Algorithms via SecureConfig.getStrongConfig()

File Encryption Key: AES256 - AES/GCM/NoPadding

Key Encryption Key: RSA4096 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Writing Encrypted (Sensitive) Files:

SecureContextCompat opens a FileOutputStream for writing and uses SecureCipher (below) to

encrypt the data.

The Key Encryption Key, which is stored in the AndroidKeystore encrypts the File Encryption Key

which is encoded with the file data.

Reading Encrypted (Sensitive) Files:

SecureContextCompat opens a FileInputStream for reading and uses SecureCipher (below) to

decrypt the data.

The Key Encryption Key, which is stored in the AndroidKeystore decrypts the File Encryption Key

which is encoded with the file data.

The File encryption key material is automatically destroyed and removed from memory after each

operation. Please see EphemeralSecretKey for more information.

10.1 SecureContextCompat

Included in the NIAPSEC library.

Encrypt and decrypt files that require sensitive data protection.

Supported Algorithms:

AES256 - AES/GCM/NoPadding

RSA4096 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Public Constructor

SecureContextCompat new SecureContextCompat(Context, BiometricSupport)

See BiometricSupport

Constructor to create an instance of the SecureContextCompat with Biometric support.

Public Methods

FileOutputStream openEncryptedFileOutput

 (String name, int mode, String keyPairAlias)

Page 32 of 48

Gets an encrypted file output stream using the asymmetric/ephemeral algorithms

specified by the default configuration, using NIAP standards.

-name - The file name

-mode - The file mode, usually Context.MODE_PRIVATE

-keyPairAlias - Encrypt data with the AndroidKeyStore key referenced - Key Encryption

Key

void openEncryptedFileInput

 (String name, Executor executor, EncryptedFileInputStreamListener listener)

Gets an encrypted file input stream using the asymmetric/ephemeral algorithms specified

by the default configuration, using NIAP standards.

-name - The file name

-Executor - to handle the threading for BiometricPrompt. Usually

Executors.newSingleThreadExecutor()

-Listener for the resulting FileInputStream.

Code Examples:

SecureContextCompat secureContext = new SecureContextCompat(getApplicationContext(),

SecureConfig.getStrongConfig(biometricSupport));

// Open a sensitive file for writing

FileOutputStream outputStream = secureContext.openEncryptedFileOutput(FILE_NAME,

Context.MODE_PRIVATE, KEY_PAIR_ALIAS);

// Write data to the file, where DATA is a String of sensitive information.

outputStream.write(DATA.getBytes(StandardCharsets.UTF_8));

outputStream.flush();

outputStream.close();

// Read a sensitive data file

 secureContext.openEncryptedFileInput(FILE_NAME, Executors.newSingleThreadExecutor(),

inputStream -> {

 byte[] clearText = new byte[inputStream.available()];

 inputStream.read(encodedData);

 inputStream.close();

 // do something with the decrypted data

});

Built using the JCE libraries for more information please see the following resources:

AndroidKeyStore - https://developer.android.com/training/articles/keystore

BiometricPrompt -

https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Page 33 of 48

11. API Specification

This section provides a list of the evaluated cryptographic APIs that developers can use when writing

their mobile applications.

1. Cryptographic APIs

▪ This section lists all the APIs for the algorithms and random number generation

2. Key Management

▪ APIs for importing, using, and destroying keys

3. Certificate Validation, TLS, HTTPS

▪ API used by applications for configuring the reference identifier

▪ APIs for validation checks (should match the test program provided)

▪ TLS, HTTPS, Bluetooth BR/EDR (any other protocol available to applications)

11.1 Cryptographic APIs

Code samples to do encryption and decryption, including random number generation.

Code examples:
// Data to encrypt

byte[] clearText = "Secret Data".getBytes(StandardCharsets.UTF_8);

// Create a Biometric Support object to handle key authentication

BiometricSupport biometricSupport = new BiometricSupportImpl(activity,

getApplicationContext()) {

 …

};

SecureCipher secureCipher = SecureCipher.getDefault(biometricSupport);

secureCipher.encryptSensitiveData("niapKey", clearText, new

SecureCipher.SecureSymmetricEncryptionCallback() {

 @Override

 public void encryptionComplete(byte[] cipherText, byte[] iv) {

 // Do something with the encrypted data

 }

});

// to decrypt

secureCipher.decryptSensitiveData("niapKey", cipherText, iv, new

SecureCipher.SecureDecryptionCallback() {

 @Override

 public void decryptionComplete(byte[] clearText) {

 // do something with the encrypted data

 }

});

// Generate ephemeral key (random number generation)

int keySize = 256;

SecureRandom secureRandom = SecureRandom.getInstanceStrong();

byte[] key = new byte[keySize / 8];

secureRandom.nextBytes(key);

// Encrypt / decrypt data with the ephemeral key

EphemeralSecretKey ephemeralSecretKey = new EphemeralSecretKey(key,

SecureConfig.getStrongConfig());

Page 34 of 48

Pair<byte[], byte[]> ephemeralCipherText =

secureCipher.encryptEphemeralData(ephemeralSecretKey, clearText);

byte[] ephemeralClearText =

secureCipher.decryptEphemeralData(ephemeralSecretKey,

ephemeralCipherText.first, ephemeralCipherText.second);

11.1.1. SecureCipher

Included in the NIAPSEC library.

Handles low-level cryptographic operations including encryption and decryption. For sensitive data

protection this library is not used directly by developers.

Supported Algorithms:

AES256 - AES/GCM/NoPadding

RSA4096 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Public Static

Accessors

SecureCipher SecureCipher.getDefault(BiometricSupport)

See BiometricSupport

API to get an instance of the SecureCipher with Biometric support.

Public Methods

void encryptSensitiveData (String keyAlias, byte[] clearData,

SecureSymmetricEncryptionCallback callback)

Encrypt sensitive data using the symmetric algorithm specified by the default

configuration, using NIAP standards.

See SecureConfig.getStrongConfig() - Default is AES256 GCM.

-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-clearData - the data to be encrypted

-callback, the callback to return the cipherText after encryption is complete.

void encryptSensitiveDataAsymmetric (String keyAlias, byte[] clearData,

SecureAsymmetricEncryptionCallback callback)

Encrypt sensitive data using the asymmetric algorithm specified by the default

configuration, using NIAP standards.

See SecureConfig.getStrongConfig() - Default is RSA4096 with OAEP.

-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-clearData - the data to be encrypted

-callback, the callback to return the cipherText after encryption is complete.

Pair<byte[],

byte[]>

encryptEphemeralData

(EphemeralSecretKey ephemeralSecretKey,

byte[] clearData)

Encrypt data with an Ephemeral AES 256 GCM key, used for encrypting file data for SDP.

Page 35 of 48

-The Ephemeral key to use

-clearData, the data to be encrypted

Returns a Pair of the cipherText, and IV byte arrays respectively.

void decryptSensitiveData (String keyAlias,

byte[] encryptedData,

byte[] initializationVector,

SecureDecryptionCallback callback)

Decrypt sensitive data using the symmetric algorithm specified by the default

configuration, using NIAP standards.

See SecureConfig.getStrongConfig() - Default is AES256 GCM.

-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-encryptedData - the data to be decrypted

-initializationVector - the IV used for encryption

-callback, the callback to return the clearText after decryption is complete.

void decryptSensitiveData (String keyAlias,

byte[] encryptedData, SecureDecryptionCallback callback)

Decrypt sensitive data using the asymmetric algorithm specified by the default

configuration, using NIAP standards.

See SecureConfig.getStrongConfig() - Default is RSA4096 with OAEP.

-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-encryptedData - the data to be decrypted

-callback, the callback to return the clearText after decryption is complete.

byte[] decryptEphemeralData

(EphemeralSecretKey ephemeralSecretKey,

byte[] encryptedData, byte[] initializationVector)

Decrypt data with an Ephemeral AES 256 GCM key, used for encrypting file data for SDP.

-The Ephemeral key to use

-encryptedData - the data to be decrypted

-initializationVector - the IV used for encryption

Returns a byte array of the clear text.

Built using the JCE libraries for more information please see the following resources:

AndroidKeyStore - https://developer.android.com/training/articles/keystore

Cipher - https://developer.android.com/reference/javax/crypto/Cipher

SecretKey - https://developer.android.com/reference/javax/crypto/SecretKey

SecureRandom - https://developer.android.com/reference/java/security/SecureRandom

BiometricPrompt -

https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/javax/crypto/SecretKey
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Page 36 of 48

11.1.2. FCS_CKM.2/UNLOCKED – Key Establishment (RSA)

Assume that Alice knows a private key and Bob knows Alice’s public key. Bob sent a key

encrypted by the public key. This example shows how Alice gets a plain key sent by Bob. Alice

needs her own private key to decrypt an encrypted key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA",

"AndroidOpenSSL");

keyGen.initialize(keySize);

KeyPair keyPair = keyGen.generateKeyPair();

RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();

RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

// Encrypt

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-

256AndMGF1Padding");

cipher.init(Cipher.ENCRYPT_MODE, publicKey, new OAEPParameterSpec("SHA-

256",

 "MGF1", new MGF1ParameterSpec("SHA-1"),

PSource.PSpecified.DEFAULT));

byte[] cipherText = cipher.doFinal(data.getBytes(StandardCharsets.UTF_8));

// Decrypt

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-

256AndMGF1Padding");

cipher.init(Cipher.DECRYPT_MODE, privateKey, new OAEPParameterSpec("SHA-

256",

 "MGF1", new MGF1ParameterSpec("SHA-1"),

PSource.PSpecified.DEFAULT));

Byte[] plainText = cipher.doFinal(cipherText);

Algorithms::

RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Reference:

Cipher - https://developer.android.com/reference/javax/crypto/Cipher

11.1.3. FCS_CKM.2/UNLOCKED – Key Establishment (ECDSA) & FCS_COP.1/SIGN – Signature

Algorithms (ECDSA)

Assume that Alice knows a private key and Bob's public key. Bob knows his private key and Alice's

public key. Then Alice and Bob can sign/verify the contents of a message.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC",

"AndroidOpenSSL");

ECGenParameterSpec ecParams = new ECGenParameterSpec(spec);

keyGen.initialize(ecParams);

KeyPair keyPair = keyGen.generateKeyPair();

ECPublicKey pubKey = (ECPublicKey) keyPair.getPublic();

ECPrivateKey privKey = (ECPrivateKey) keyPair.getPrivate();

// Sign

Signature signature = Signature.getInstance(algorithm);

signature.initSign(privateKey);

signature.update(data.getBytes(StandardCharsets.UTF_8));

byte[] signature = signature.sign();

https://developer.android.com/reference/javax/crypto/Cipher

Page 37 of 48

// Verify

Signature signature = Signature.getInstance(algorithm);

signature.initVerify(publicKey);

signature.update(data.getBytes(StandardCharsets.UTF_8));

boolean verified = signature.verify(sig);

Algorithms:

"SHA256withECDSA", "secp256r1"

"SHA384withECDSA", "secp384r1"

"SHA512withECDSA", "secp521r1"

Reference:

Signature - https://developer.android.com/reference/java/security/Signature

11.1.4. FCS_CKM.1 – Key Generation (ECDSA)

Assume that Alice knows a private key and Bob's public key. Bob knows his private key and Alice's

public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC",

"AndroidOpenSSL");

ECGenParameterSpec ecParams = new ECGenParameterSpec(spec);

keyGen.initialize(ecParams);

KeyPair keyPair = keyGen.generateKeyPair();

ECPublicKey pubKey = (ECPublicKey) keyPair.getPublic();

ECPrivateKey privKey = (ECPrivateKey) keyPair.getPrivate();

Algorithms:

"SHA256withECDSA", "secp256r1"

"SHA384withECDSA", "secp384r1"

"SHA512withECDSA", "secp521r1"

Reference:

Signature - https://developer.android.com/reference/java/security/Signature

11.1.5. FCS_COP.1/ENCRYPT – Encryption/Decryption (AES)

Cipher class encrypts or decrypts a plain text.

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES",

"AndroidOpenSSL");

keyGenerator.init(keySize);

SecretKey key = keyGenerator.generateKey();

// Encrypt

Cipher cipher = Cipher.getInstance(transformation);

cipher.init(Cipher.ENCRYPT_MODE, secretKey);

byte[] iv = cipher.getIV();

byte[] clearData = data.getBytes(UTF_8);

byte[] cipherText = cipher.doFinal(clearData);

Pair<byte[], byte[]> result = Pair<>(cipherText, iv);

// Decrypt

https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/java/security/Signature

Page 38 of 48

Cipher cipher = Cipher.getInstance(transformation);

cipher.init(Cipher.DECRYPT_MODE, secretKey, spec);

String plainText = new String(cipher.doFinal(cipherText), UTF_8);

Algorithms:

AES/CBC/NoPadding

AES/GCM/NoPadding

Reference:

Cipher - https://developer.android.com/reference/javax/crypto/Cipher

11.1.6. FCS_COP.1/HASH – Hashing (SHA)

You can use MessageDigest class to calculate the hash of plaintext.

MessageDigest messageDigest = MessageDigest.getInstance(algorithm);

messageDigest.update(data.getBytes(StandardCharsets.UTF_8));

byte[] digest = messageDigest.digest();

Algorithms:

SHA-1

SHA-256

SHA-384

SHA-512

Reference:

MessageDigest - https://developer.android.com/reference/java/security/MessageDigest

11.1.7. FCS_COP.1/SIGN – RSA (Signature Algorithms)

KeyFactory class generates RSA private key and public key. Signature class signs a plaintext with

private key generated above and verifies it with public key

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA",

"AndroidOpenSSL");

keyGen.initialize(keySize);

KeyPair keyPair = keyGen.generateKeyPair();

RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();

RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

// Sign

Signature signature = Signature.getInstance(algorithm);

signature.initSign(privateKey);

signature.update(data.getBytes(StandardCharsets.UTF_8));

byte[] sig = signature.sign();

// Verify

Signature signature = Signature.getInstance(algorithm);

signature.initVerify(publicKey);

signature.update(data.getBytes(StandardCharsets.UTF_8));

boolean verified = signature.verify(sig);

https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/java/security/MessageDigest

Page 39 of 48

Algorithms:

SHA256withRSA

SHA384withRSA

Reference:

Signature - https://developer.android.com/reference/java/security/Signature

11.1.8. FCS_CKM.1 –Key Generation (RSA)

KeyFactory class generates RSA private key and public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA",

"AndroidOpenSSL");

keyGen.initialize(keySize);

KeyPair keyPair = keyGen.generateKeyPair();

RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();

RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

Algorithms:

SHA256withRSA

SHA384withRSA

Reference:

Signature - https://developer.android.com/reference/java/security/Signature

11.1.9. FCS_COP.1/KEYHMAC - HMAC

Mac class calculates the hash of plaintext with key.

KeyGenerator keyGenerator = KeyGenerator.getInstance(

 algorithm, "AndroidOpenSSL");

keyGenerator.init(keySize);

SecretKey key = keyGenerator.generateKey();

// Mac

Mac mac = Mac.getInstance(algorithm);

mac.init(secretKey);

byte[] mac = mac.doFinal(data.getBytes(StandardCharsets.UTF_8));

Algorithms:

HmacSHA1

HmacSHA256

HmacSHA384

HmacSHA512

Reference:

Mac - https://developer.android.com/reference/javax/crypto/Mac

11.2. Key Management

Code samples to do key management.

https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/javax/crypto/Mac

Page 40 of 48

Code examples:
SecureKeyGenerator keyGenerator = SecureKeyGenerator.getInstance();

// Generate Keypair

keyGenerator.generateAsymmetricKeyPair(KEY_PAIR_ALIAS);

// Generate Symmetric Key

keyGenerator.generateKey(KEY_ALIAS);

// Generate ephemeral key (random number generation)

keyGenerator.generateEphemeralDataKey();

// To delete a key stored in the Android Keystore

KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");

keyStore.load(null);

keyStore.deleteEntry("KEY_TO_REMOVE");

11.2.1. SecureKeyGenerator

Included in the NIAPSEC library.

Handles low-level key generation operations using the AndroidKeyStore. For sensitive data

protection this library is not used directly by developers.

Supported Algorithms:

AES256 - AES/GCM/NoPadding

RSA4096 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Public Static

Accessors

SecureKeyGenerator SecureCipher.getDefault()

API to get an instance of the SecureCipher with NIAP settings.

Public Methods

boolean generateKey(String keyAlias)

Generate an AES key with NIAP settings that is stored and protected in the

AndroidKeyStore.

See SecureConfig.getStrongConfig() - Default is AES256 GCM.

-keyAlias - name for the key

boolean generateKeyAsymmetricKeyPair(String keyAlias)

Generate an RSA key pair with NIAP settings that is stored and protected in the

AndroidKeyStore.

See SecureConfig.getStrongConfig() - Default is RSA4096 OAEP.

-keyAlias - name for the key pair

EphemeralSecretKey

generateEphemeralDataKey()

Page 41 of 48

Generate an AES key with NIAP settings. This key is not stored in the

AndroidKeyStore

Uses SecureRandom.getInstanceStrong() to generate a random key.

See SecureConfig.getStrongConfig() - Default is AES256 GCM.

Built using the JCE libraries for more information please see the following resources:

AndroidKeyStore - https://developer.android.com/training/articles/keystore

KeyPairGenerator- https://developer.android.com/reference/java/security/KeyPairGenerator

SecretKey - https://developer.android.com/reference/javax/crypto/SecretKey

SecureRandom - https://developer.android.com/reference/java/security/SecureRandom

KeyGenParameterSpec -

https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

11.3. FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS

Included in the NIAPSEC library.

SecureURL automatically configures TLS and can perform certificate and host validation checking.

At construction, SecureURL requires a reference identifier.

Code examples:
SecureURL url = new SecureURL(referenceIdentifier, "google_cert");

HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();

conn.setRequestMethod("GET");

conn.setDoInput(true);

conn.connect();

// Manual check

SecureURL url = new SecureURL(referenceIdentifier, "google_cert");

boolean valid = url.isValid(urlConnection);

Public

Constructors

SecureURL new SecureURL(String referenceIdentifier, String clientCert)

API to create an instance of the SecureURL with NIAP settings. clientCert is optional.

Public Methods

HttpsURLConnection openConnection

Opens an HttpsUrlConnection using TLS by default and handles OCSP validation checks

and does a hostname verification check on initiation of the connection.

boolean isValid(String hostname, SSLSocket socket)

A manual OCSP certificate and hostname check.

Based on a hostname and underlying SSLSocket.

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/java/security/KeyPairGenerator
https://developer.android.com/reference/javax/crypto/SecretKey
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

Page 42 of 48

boolean isValid(HttpsURLConnection conn)

A manual OCSP certificate and hostname check.

Based on an existing HttpsUrlConnection.

boolean isValid(Certificate cert)

A manual OCSP certificate check.

boolean isValid(List<Certificate> certs)

A manual OCSP certificates check.

Built using the networking libraries for more information please see the following resources:

HttpsUrlConnection - https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection

PKIXRevocationChecker -

https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker

SSLSocket - https://developer.android.com/reference/javax/net/ssl/SSLSocket

11.3.1. Cipher Suites

When applications utilize the NIAPSEC library, no configuration is needed to restrict or allow

ciphersuites to be compliant. A list of the ciphersuites supported by Android 13 NIAPSEC can be

found below:

For TLS 1.2 with mutual authentication:

Approved Cipher Suites TLS Version

TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

TLS v1.2

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

The device supports TLS versions 1.1, and 1.2 for use with EAP-TLS as part of WPA2 and WPA3.

The TOE supports the following ciphersuites for this:
TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

Additional ciphersuites are supported by the TOE for Wi-Fi networks but outside the specific scope

of testing for the compliant configuration. It is expected that the Wi-Fi AP will be configured to

utilize the proper ciphersuites to ensure compliance with the expected algorithms.

https://developer.android.com/reference/javax/net/ssl/HttpsURLConnection
https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker
https://developer.android.com/reference/javax/net/ssl/SSLSocket

Page 43 of 48

11.3.2. Guidance for Bluetooth Low Energy APIs

Provides classes that manage Bluetooth functionality, such as scanning for devices, connecting with

devices, and managing data transfer between devices. The Bluetooth API supports both "Classic

Bluetooth" and Bluetooth Low Energy.

For more information about Classic Bluetooth, see the Bluetooth guide. For more information about

Bluetooth Low Energy, see the Bluetooth Low Energy (BLE) guide.

The Bluetooth APIs let applications:

▪ Scan for other Bluetooth devices (including BLE devices).

▪ Query the local Bluetooth adapter for paired Bluetooth devices.

▪ Establish RFCOMM channels/sockets.

▪ Connect to specified sockets on other devices.

▪ Transfer data to and from other devices.

▪ Communicate with BLE devices, such as proximity sensors, heart rate monitors, fitness

devices, and so on.

▪ Act as a GATT client or a GATT server (BLE).

To perform Bluetooth communication using these APIs, an application must declare the

BLUETOOTH permission. Some additional functionality, such as requesting device discovery, also

requires the BLUETOOTH_ADMIN permission.

Interfaces

BluetoothAdapter.LeScanCallback Callback interface used to deliver LE scan results.

BluetoothProfile Public APIs for the Bluetooth Profiles.

BluetoothProfile.ServiceListener An interface for notifying BluetoothProfile IPC clients when they have been

connected or disconnected to the service.

Classes

BluetoothA2dp This class provides the public APIs to control the Bluetooth A2DP profile.

BluetoothAdapter Represents the local device Bluetooth adapter.

BluetoothAssignedNumbers Bluetooth Assigned Numbers.

BluetoothClass Represents a Bluetooth class, which describes general characteristics and

capabilities of a device.

https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.LeScanCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.html
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.ServiceListener.html
https://developer.android.com/reference/android/bluetooth/BluetoothA2dp.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothAssignedNumbers.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.html

Page 44 of 48

BluetoothClass.Device Defines all device class constants.

BluetoothClass.Device.Major Defines all major device class constants.

BluetoothClass.Service Defines all service class constants.

BluetoothDevice Represents a remote Bluetooth device.

BluetoothGatt Public API for the Bluetooth GATT Profile.

BluetoothGattCallback This abstract class is used to implement BluetoothGatt callbacks.

BluetoothGattCharacteristic Represents a Bluetooth GATT Characteristic

A GATT characteristic is a basic data element used to construct a GATT

service,BluetoothGattService.

BluetoothGattDescriptor Represents a Bluetooth GATT Descriptor

GATT Descriptors contain additional information and attributes of a GATT

characteristic, BluetoothGattCharacteristic.

BluetoothGattServer Public API for the Bluetooth GATT Profile server role.

BluetoothGattServerCallback This abstract class is used to implement BluetoothGattServer callbacks.

BluetoothGattService Represents a Bluetooth GATT Service

Gatt Service contains a collection of BluetoothGattCharacteristic, as well as

referenced services.

BluetoothHeadset Public API for controlling the Bluetooth Headset Service.

https://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.Major.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Service.html
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattDescriptor.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServerCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothHeadset.html

Page 45 of 48

BluetoothHealth This class was deprecated in API level 29. Health Device Profile (HDP) and

MCAP protocol are no longer used. New apps should use Bluetooth Low

Energy based solutions such as

BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),

orBluetoothDevice#createL2capChannel(int)

BluetoothHealthAppConfiguration This class was deprecated in API level 29. Health Device Profile (HDP) and

MCAP protocol are no longer used. New apps should use Bluetooth Low

Energy based solutions such as

BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),

orBluetoothDevice#createL2capChannel(int)

BluetoothHealthCallback This class was deprecated in API level 29. Health Device Profile (HDP) and

MCAP protocol are no longer used. New apps should use Bluetooth Low

Energy based solutions such as

BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),

orBluetoothDevice#createL2capChannel(int)

BluetoothHearingAid This class provides the public APIs to control the Hearing Aid profile.

BluetoothHidDevice Provides the public APIs to control the Bluetooth HID Device profile.

BluetoothHidDevice.Callback The template class that applications use to call callback functions on events

from the HID host.

BluetoothHidDeviceAppQosSettings Represents the Quality of Service (QoS) settings for a Bluetooth HID Device

application.

BluetoothHidDeviceAppSdpSettings Represents the Service Discovery Protocol (SDP) settings for a Bluetooth HID

Device application.

BluetoothManager High level manager used to obtain an instance of an BluetoothAdapter and to

conduct overall Bluetooth Management.

BluetoothServerSocket A listening Bluetooth socket.

BluetoothSocket A connected or connecting Bluetooth socket.

https://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#listenUsingL2capChannel()
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#createL2capChannel(int)
https://developer.android.com/reference/android/bluetooth/BluetoothHealthAppConfiguration.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#listenUsingL2capChannel()
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#createL2capChannel(int)
https://developer.android.com/reference/android/bluetooth/BluetoothHealthCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#listenUsingL2capChannel()
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#createL2capChannel(int)
https://developer.android.com/reference/android/bluetooth/BluetoothHearingAid.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDevice.Callback.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDeviceAppQosSettings.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDeviceAppSdpSettings.html
https://developer.android.com/reference/android/bluetooth/BluetoothManager.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothServerSocket.html
https://developer.android.com/reference/android/bluetooth/BluetoothSocket.html

Page 46 of 48

https://developer.android.com/reference/android/bluetooth/package-summary.html

How to connect and pair with a bluetooth device:
// get bluetooth adapter

BluetoothAdapter bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

if (bluetoothAdapter == null) {

 // Device doesn't support Bluetooth

}

// make sure bluetooth is enabled

if (!bluetoothAdapter.isEnabled()) {

 Intent enableBtIntent = new

Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

 startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);

}

// query for devices

Set<BluetoothDevice> pairedDevices = bluetoothAdapter.getBondedDevices();

if (pairedDevices.size() > 0) {

 // There are paired devices. Get the name and address of each paired

device.

 for (BluetoothDevice device : pairedDevices) {

 String deviceName = device.getName();

 String deviceHardwareAddress = device.getAddress(); // MAC address

 }

}

// Connect to devices.

private class AcceptThread extends Thread {

 private final BluetoothServerSocket mmServerSocket;

 public AcceptThread() {

 // Use a temporary object that is later assigned to mmServerSocket

 // because mmServerSocket is final.

 BluetoothServerSocket tmp = null;

 try {

 // MY_UUID is the app's UUID string, also used by the client

code.

 tmp =

bluetoothAdapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);

 } catch (IOException e) {

 Log.e(TAG, "Socket's listen() method failed", e);

 }

 mmServerSocket = tmp;

 }

 public void run() {

 BluetoothSocket socket = null;

 // Keep listening until exception occurs or a socket is returned.

 while (true) {

 try {

 socket = mmServerSocket.accept();

 } catch (IOException e) {

 Log.e(TAG, "Socket's accept() method failed", e);

 break;

 }

 if (socket != null) {

https://developer.android.com/reference/android/bluetooth/package-summary.html

Page 47 of 48

 // A connection was accepted. Perform work associated with

 // the connection in a separate thread.

 manageMyConnectedSocket(socket);

 mmServerSocket.close();

 break;

 }

 }

 }

 // Closes the connect socket and causes the thread to finish.

 public void cancel() {

 try {

 mmServerSocket.close();

 } catch (IOException e) {

 Log.e(TAG, "Could not close the connect socket", e);

 }

 }

}

More information here

https://developer.android.com/guide/topics/connectivity/bluetooth.html#SettingUp

Sample service to interact with a bluetooth APIs.

// A service that interacts with the BLE device via the Android BLE API.
public class BLEService extends Service {

 private final static String TAG = "BLEService";

 private BluetoothManager mBluetoothManager;

 private BluetoothAdapter mBluetoothAdapter;

 private String mBluetoothDeviceAddress;

 private BluetoothGatt mBluetoothGatt;

 private int mConnectionState = STATE_DISCONNECTED;

 private static final int STATE_DISCONNECTED = 0;

 private static final int STATE_CONNECTING = 1;

 private static final int STATE_CONNECTED = 2;

 public final static String ACTION_GATT_CONNECTED =

 "com.niap.ble.ACTION_GATT_CONNECTED";

 public final static String ACTION_GATT_DISCONNECTED =

 "com.niap.ble.ACTION_GATT_DISCONNECTED";

 public final static String ACTION_GATT_SERVICES_DISCOVERED =

 "com.niap.ble.ACTION_GATT_SERVICES_DISCOVERED";

 public final static String ACTION_DATA_AVAILABLE =

 "com.niap.ble.ACTION_DATA_AVAILABLE";

 public final static String EXTRA_DATA =

 "com.niap.ble.EXTRA_DATA";

 // Various callback methods defined by the BLE API.

 private final BluetoothGattCallback mGattCallback =

 new BluetoothGattCallback() {

 @Override

 public void onConnectionStateChange(BluetoothGatt gatt, int

status,

 int newState) {

 String intentAction;

 if (newState == BluetoothProfile.STATE_CONNECTED) {

 intentAction = ACTION_GATT_CONNECTED;

 mConnectionState = STATE_CONNECTED;

 broadcastUpdate(intentAction);

https://developer.android.com/guide/topics/connectivity/bluetooth.html#SettingUp

Page 48 of 48

 Log.i(TAG, "Connected to GATT server.");

 Log.i(TAG, "Attempting to start service discovery:"

+

 mBluetoothGatt.discoverServices());

 } else if (newState ==

BluetoothProfile.STATE_DISCONNECTED) {

 intentAction = ACTION_GATT_DISCONNECTED;

 mConnectionState = STATE_DISCONNECTED;

 Log.i(TAG, "Disconnected from GATT server.");

 broadcastUpdate(intentAction);

 }

 }

 @Override

 // New services discovered

 public void onServicesDiscovered(BluetoothGatt gatt, int

status) {

 if (status == BluetoothGatt.GATT_SUCCESS) {

 broadcastUpdate(ACTION_GATT_SERVICES_DISCOVERED);

 } else {

 Log.w(TAG, "onServicesDiscovered received: " +

status);

 }

 }

 @Override

 // Result of a characteristic read operation

 public void onCharacteristicRead(BluetoothGatt gatt,

 BluetoothGattCharacteristi

c characteristic,

 int status) {

 if (status == BluetoothGatt.GATT_SUCCESS) {

 broadcastUpdate(ACTION_DATA_AVAILABLE,

characteristic);

 }

 }

 };

}

