Android 13

Common Criteria

Administrator
Guidance for Zebra
Devices (4490)

Version 1.2
2025/02/1

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corporation, registered in many
jurisdictions worldwide. All other trademarks are the property of their respective owners.
© 2024 Zebra Technologies Corporation and/or its affiliates. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in
accordance with the terms of those agreements.

For further information regarding legal and proprietary statements, please go to:

SOFTWARE: http://www.zebra.com/linkoslegal

COPYRIGHTS: http://www.zebra.com/copyright

WARRANTY: http://www.zebra.com/warranty

END USER LICENSE AGREEMENT: http://www.zebra.com/eula

Terms of Use

Product Improvements

Continuous improvement of products is a policy of Zebra Technologies. All specifications and designs are subject
to change without notice.

Liability Disclaimer

Zebra Technologies takes steps to ensure that its published Engineering specifications and manuals are correct;
however, errors do occur. Zebra Technologies reserves the right to correct any such errors and disclaims liability
resulting therefrom.

Limitation of Liability

In no event shall Zebra Technologies or anyone else involved in the creation, production, or delivery of the
accompanying product (including hardware and software) be liable for any damages whatsoever (including,
without limitation, consequential damages including loss of business profits, business interruption, or loss of
business information) arising out of the use of, the results of use of, or inability to use such product, even if Zebra
Technologies has been advised of the possibility of such damages. Some jurisdictions do not allow the exclusion
or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Publication Date

2025/02/12

http://www.zebra.com/linkoslegal
http://www.zebra.com/copyright
http://www.zebra.com/warranty
http://www.zebra.com/eula

Contents

Contents

1.0

2.0

3.0

4.0

Document INTrOAUCTIONccooeeeeeeeeceeeeeeeeeeeee e 5
1.1 EVAIUALEU DEVICESeveieiiiiiiiiiiiiiiiiiiiiieebtiiseeeeeee e eeaesessneeeenneneees 5
A o1 (0] 1Y/ 1 TP 6
Evaluated Capabilitiesuuuiiiii e 6
2.1 Data PrOtECHON ... 7
2.1.1 File-Based ENCIYPLiON..........iiiieeeieiiieiiiiee e eeeeeeeiin e e e e e e 7
2.2 KeY MaNagemeNT.....couuiiiiiiiii et e et e et e e e e e 7
A (V] (0] <SPPI 7
2.2.2 KeyStore key Atestationcccovvveiuiiiiiiie e e 8
2.2.3 KEYCRNAIN ...ttt 8
2.3 DEVICE INTEGIILY ..o 8
2.3. 1 Verified BOOL.......coiiiiiiieeeeei e 8
2.3.2 SECUIE BOOL......uiiiii e 9
2.4 DeVice ManagEeMENTuuuuiieeeeeeeeeiiiiii e e e e e e e e e eeaein e e e e e eeeeeesanna e e e eeeaeeeanes 9
241 EMM/MDM CONSOIEuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeaeaeees 9
2.4.2 DPC (MDM AQENL)...utttitiiiiiiunniniuiununeneneenensnennsneesnrsneeseeeenreee.. 9
2.4.3 Managed CoNfigUuIationeueeeeeeeiumeeiiiiiieeiineneneeeeeeieeeeneeneeee 10
2.5 VPN CONNECHIVILY ... 10
Y22 G I U To [0 o To To | 1 T PSRRI 10
Security CONfIQUIALIONueiie e e et e e e e e e e eeeannnanas 11
3.1 Entering into Common Criteria State ... 11
3.2 Successfully Achieving Common Criteria Stateccoevvvviiiiieeeeeennnns 12
I 0 A IR0 1 €= 11 [£ 12
3.3 Exiting from Common Criteria State...........ccovvviiviiiiiiiee e, 12
3.4 Cryptographic Module 1dentificationccovvvivuiiiiiie e 12
3.5 Permissions MOEL...........uuuiiiiie e 13
3.6 Common Criteria Related SettingS........ccoooeeevviiiiiiiiie e 13
3.7 Password Recommendationscoooveeeeieiiiiiieeeeeeeeeeeeee e 18
3.8 BUQ ReEPOItiNg PrOCESS ..o 18
Bluetooth Configurationooiiiii i e 18
4.1 Pair 18
A 0 4] [T o) S PP UPPPTRRPIIN 19

4.3 Remove Previously Paired DEeVICE.........cccccvvvviiiiiiiiiiee e e e eeaeanns 20

5.0 Wi-Fi CONfIQUIAtIONuuueiie et 20
6.0 VPN COoNfIQUIAtION......ccooiiiiiiiiiiiececeeeee e 21
7.0 SeCUre Update PrOCESS.......ccciiieiiiiiiiie e eeee et e e e et e e e e e e e e aaaaaa e e e 21
4 R oo [1] =TT 22
A N = V1S (=T 72N o] o] | 22
7.2.1 One File — New Patch or New Base Linecccceeeveeeiiieiiiniinnnnn. 22
7.2.2 Two Files — New Base Line and Patchccoueieiiiniiiiiiciiiinnnnn. 22
8.0 AUIt LOGING....ciiiiiiiiiiiiiiii et 22
8.1 SECUIMLY LOGS ..evtiiiiiiiiiie ettt e e e e e e e e e e e e 22
LS T2 Moo [0 i o o |- SRR 23
9.0 FDP_DAR_EXT.2 & FCS_CKM.2(2) — Sensitive Data Protection Overview...30
9.1 SecureCoNteXtCOMPAL........uiiiiiieiiiie e e e e e e eaa e 30
10.0API SPECITICALIONceiieeeeiiiiei e e e e e e et e e e e e e e e e eeannaaaas 31
10.1CryptographiC APISeeieiiiiiiiiiiiieiiiie e 31
10.1.1 Code EXamPIESccoooviiiiiiiiiiii 31
10.1.2 SeCUrECIPRNET.. ... e e aaaans 32
10.1.3 FCS_CKM.2(1) — Key Establishment (RSA)........ccccoeeviiviiiiiiieennnnn. 34

10.1.4 FCS_CKM.2(1) — Key Establishment (ECDSA) & FCS_COP.1(3) —
Signature Algorithms (ECDSA)cooc oo 34
10.1.5 FCS_CKM.1 — Key Generation (ECDSA)......cccooeevvviiiiiiiiiiiieeeeeennn, 35
10.1.6 FCS_COP.1(1) — Encryption/Decryption (AES)cceeiiieeiiiinnnns 35
10.1.7 FCS_COP.1(2) — Hashing (SHA) ... 37
10.1.8 FCS_COP.1(3) — RSA (Signature Algorithms)cccevviiiiennnnnn. 37
10.1.9 FCS_CKM.1 — Key Generation (RSA)cceeeveeiiiiiiiiiiiiiieee e 38
10.1.10FCS_COP.1(4) - HMAC ...ttt 38
10.2KeY MaANaAgQEMENT ... ccuiieiiii et e e e e eaa e eaen 38
10.2.1 Code EXAMPIES:......uuiiie e e e aaaan 38
10.2.2 SeCUreKeYGENEIALONccvuueieii e et e e e e eaaeees 38
10.3FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS............ccccvvvvvnnne 40
10.3.1 CIPNEr SUILES ...cevie e eeeaaas 41
10.3.2 Guidance for Bluetooth Low Energy APIS........ccccccvviiiiiiiiiiiiiinnnn. 41
LI 0ANNEXUIE ...t e e e e e e e et e e e et e et e e e e et e et e eaneeeneeannns 47
11.1Creating and Applying the StageNow Profileccccoooeviiiiiiiiiiiinceeeen, 47
11.1.1 Install StAgENOW.......ccovviiiiieiie e 47
11.1.2 Create the StageNow Profilescccccciiiii 47
11.2Configuring Critical Settings Using Stage NOWeeuvieiiiiiiieiiiiiiinnnns 54

Zebra Android 13
édmlnlstrator
u

ildance

1.0 Document Introduction

This guide includes procedures for configuring Zebra Devices running Android 13 into a Common Criteria
evaluated configuration and additionally includes guidance to application developers wishing to write
applications that leverage the Zebra Device’s Common Criteria compliant APIs and features.

1.1 Evaluated Devices
The evaluated devices include the following models andversions:
Table 1 Evaluated Devices

Model # Kernel Android OS Version Security Patch Level
MC9400 QCM4490 5.10.205 Android 13 Aug 05, 2024
MC9450 QCM4490 5.10.205 Android 13 Aug 05, 2024
PS30 QCM4490 5.10.205 Android 13 Aug 05, 2024
TC58e QCM4490 5.10.205 Android 13 Aug 05, 2024
TC53e QCM4490 5.10.205 Android 13 Aug 05, 2024
MC3400 QCM4490 5.10.205 Android 13 Aug 05, 2024
WT5400 QCM4490 5.10.205 Android 13 Aug 05, 2024
WT6400 QCM4490 5.10.205 Android 13 Aug 05, 2024

Zebra Android 13 Administrator Guidance

To verify the OS Version and Security Patch Level on your device:
1. Tap on Settings.

2. Tap on About phone.

3. Scroll down and tap on Android version.

1.2 Acronyms

Acronym Description ‘
AE Android Enterprise
AES Advanced Encryption Standard
API Application Programming Interface
BYOD Bring Your Own Device
CA Certificate Authority
DO Device Owner
DPC Device Policy Controller
EMM Enterprise Mobility Management
FBE File Based Encryption
FDE Full Disk Encryption
FIPS Federal Information Processing Standards
MDM Mobile Device Management
MX Mobility Extensions
PKI Public Key Infrastructure
TOE Target of Evaluation

2.0 Evaluated Capabilities

The Common Criteria configuration adds support for many security capabilities. Some of those capabilities
include the following:

» Data Protection

* Key Management

* Device Integrity

* Device Management

* Work Profile Separation

¢ VPN Connectivity

e Audit Logging

Zebra Android 13 Administrator Guidance

2.1 Data Protection

Android uses industry-leading security features to protect user data. The platform creates an application
environment that protects the confidentiality, integrity, and availability of user data.

2.1.1 File-Based Encryption

Zebra devices default uses File Based Encryption [FBE]. To make it compliant to CC state, Zebra devices
should follow the steps mentioned. See step 2 in 2. Create a StageNow Profile, and use it to apply the
CCReadinesspackage A13_4490.zip on the device.

Encryption is the process of encoding user data on an Android device using an encryption key. With
encryption, even if an unauthorized party tries to access the data, they won’t be able to read it. The device
utilizes File-based encryption (FBE) which allows different files to be encrypted with different keys that can
be unlocked independently.

Direct Boot allows encrypted devices to boot straight to the lock screen and allows alarms to operate,
accessibility services to be available and phones to receive calls before a user has provided their
credential.

With file-based encryption and APIs to make apps aware of encryption, it's possible for these apps to
operate within a limited context before users have provided their credentials while still protecting private
user information.

On a file-based encryption-enabled device, each device user has two storage locations available to apps:

* Credential Encrypted (CE) storage, which is the default storage location and only available after the
user has unlocked the device. CE keys are derived from a combination of user credentials and a
hardware secret. It is available after the user has successfully unlocked the device the first timeafter
boot and remains available for active users until the device shuts down, regardless of whether the
screen is subsequently locked or not.

* Device Encrypted (DE) storage, which is a storage location available both before the user has unlocked
the device (Direct Boot) and after the user has unlocked the device. DE keys are derived from a
hardware secret that’s only available after the device has performed a successful Verified Boot.

By default, applications do not run during Direct Boot mode. If an application needs to take action during
Direct Boot mode, such as an accessibility service like Talkback or an alarm clock application, the
application can register components to run during this mode.

DE and CE keys are unique and distinct - no user's CE or DE key will match another. File-based
encryption allows files to be encrypted with different keys, which can be unlocked independently. All
encryption is based on AES-256 in XTS mode. Due to the way XTS is defined, it needs two 256-bit keys. In
effect, both CE and DE keys are 512-bit keys.

By taking advantage of CE, file-based encryption ensures that a user cannot decrypt another user’s data.
This is an improvement on full-disk encryption (FDE) where there’s only one encryption key, so all users
must know the primary user’s passcode to decrypt data. Once decrypted, all data is decrypted.

2.2 Key Management
2.2.1 KeyStore

The Android KeyStore class lets you manage private keys in secure hardware to make them more difficult
to extract from the device. The KeyStore enables applications to generate and store credentials used for
authentication, encryption, or signing purposes.

Keystore supports symmetric cryptographic primitives such as AES (Advanced Encryption Standard) and
HMAC (Keyed-Hash Message Authentication Code) and asymmetric cryptographic algorithms such as
RSA and EC. Access controls are specified during key generation and enforced for the lifetime of the key.
Keys can be restricted to be usable only after the user has authenticated, and only for specified purposes
or with specified cryptographic parameters. For more information, see the Authorization Tags and
Functions pages.

https://developer.android.com/training/articles/direct-boot.html
https://developer.android.com/reference/java/security/KeyStore.html
https://source.android.com/security/keystore/features.html
https://source.android.com/security/keystore/tags
https://source.android.com/security/keystore/implementer-ref

Zebra Android 13 Administrator Guidance

Additionally, version binding binds keys to an operating system and patch level version. This ensures that
an attacker who discovers a weakness in an old version of system or TEE software cannot roll a device
back to the vulnerable version and use keys created with the newer version.

On Zebra Devices, the KeyStore is implemented in secure hardware.

2.2.2 KeyStore key Attestation

Zebra Devices also support Key Attestation, which empowers a server to gain assurance about the
properties of keys.

2.2.3 KeyChain

The KeyChain class allows applications to use the system credential storage for private keys and
certificate chains. KeyChain is often used by Chrome, Virtual Private Network (VPN) applications, and
many enterprise applications to access keys imported by the user or by the mobile device management
application.

Whereas the KeyStore is for non-shareable application-specific keys, KeyChain is for keys that are meant
to be shared across profiles. For example, your mobile device management agent can import a key that
Chrome will use for an enterprise website.

2.3 Device Integrity

Device integrity features protect the mobile device from running a tampered operating system. With
companies using mobile devices for essential communication and core productivity tasks, keeping the OS
secure is essential. Without device integrity, very few security properties can be assured. Android adopts
several measures to guarantee device integrity at all times.

2.3.1 Verified Boot

Verified Boot is Android's secure boot process that verifies system software before running it. This makes
it more difficult for software attacks to persistent across reboots and provides users with a safe state at
boot time. Each Verified Boot stage is cryptographically signed. Each phase of the boot process verifies
the integrity of the subsequent phase, prior to executing that code. Full boot of a compatible device with a
locked bootloader proceeds only if the OS satisfies integrity checks. Verification algorithms used must be
as strong as current recommendations from NIST for hashing algorithms (SHA-256) and public key sizes
(RSA-2048).

Figure 1 Verified Boot Process

Reboot to get back to
clean image

The Verified Boot state is used as an input in the process to derive disk encryption keys. If the Verified
Boot state changes (e.g. the user unlocks the bootloader), then the secure hardware prevents access to
data used to derive the disk encryption keys that were used when the bootloader was locked.

https://source.android.com/security/keystore/attestation
http://developer.android.com/reference/android/security/KeyChain.html
http://source.android.com/security/verifiedboot/index.html

Zebra Android 13 Administrator Guidance

Enterprises can check the state of Verified Boot using KeyStore key attestation. This retrieves a statement

signed by the secure hardware attesting to many attributes of Verified Boot along with other information
about the state of the device.

Find out more about Verified Boot here.

2.3.2 Secure Boot

In addition to Google’s mandated Verified. Zebra devices supports additional integrity check with Secure
Boot, to protect OS image’s integrity. Zebra Devices (Secure Boot Enabled) ensures protection against
binary manipulation of software and re-flashing attacks.

Secure boot enabled device protects itself from modification by untrusted subjects using following
methods:

* First level Protection is a Secure Boot process that uses cryptographic signatures to ensure the

authenticity/integrity of bootloader/Kernel. The protection is done using data fused into the device
processor.

* Zebra Devices (Secure Boot Enabled protects its REK (Resource Environment Key) by limiting access
to only trusted applications within the Trusted Environment (TEE).

e Zebra Devices includes a Trusted Module which utilizes the REK to protect all other key inthe
hierarchy.

¢ Bootloader Security offers users no other method of installing new software other than Zebra Secured
prescribed OTA methods.

2.4 Device Management
The TOE leverages the device management capabilities that are provided through Android Enterprise
which is a combination of three components: your EMM/MDM console, a device policy controller (DPC)
which is your MDM Agent, and an EMM/MDM Application Catalog.

Figure 2 Components of an Android Enterprise solution.

9
- IT admin
; i _ Managed device
T —)
{ Managed Google Play === | EMM console 3,
- <
Browse apps Device Management :L‘/\. - ¢ Device Policy
Purchase app licenses S Controller
App Management 3z ')a/ = © Managed
Google Play
i

2.41 EMM/MDM console

EMM solutions typically take the form of an EMM console—a web application you develop that allows IT
admins to manage their organization, devices, and apps. To support these functions for Android, you
integrate your console with the APIs and Ul components provided by Android Enterprise.

2.4.2 DPC (MDM Agent)

All Android devices that an organization manages through your EMM console must install a DPC
application during setup. A DPC is an agent that applies the management policies set in your EMM
console to devices. Depending on which development option you choose, you can couple your EMM
solution with the EMM solution’s DPC, Android's DPC, or with a custom DPC that you develop.

End users can provision a fully managed or dedicated device using a DPC identifier (such as "afw#"),
according to the implementation guidelines defined in the Play EMM API developer documentation.

9

https://developer.android.com/training/articles/security-key-attestation.html
http://source.android.com/security/verifiedboot/index.html
https://developers.google.com/android/work/dev-options
https://developers.google.com/android/management/provision-device
https://developer.android.com/work/dpc/build-dpc.html
https://developers.google.com/android/work/play/emm-api/prov-devices#set_up_device_owner_mode_afw_accts

Zebra Android 13 Administrator Guidance

* The EMM's DPC must be publicly available on Google Play, and the end user must be able to install the
DPC from the device setup wizard by entering a DPC-specific identifier.

¢ Once installed, the EMM's DPC must guide the user through the process of provisioning afully
managed or dedicated device.

2.4.3 Managed Configuration

0,

Managed configurations allow the organization's IT admin to remotely specify settings for apps. Zebra
OEMConfig is Zebra’s OEM-specific application that conforms to the OEMConfig model. It provides access
to Zebra-specific and privileged functions via Managed Configurations that are exposed by the Zebra
OEMConfig application.

Using EMM DPC enrolled as a Device Owner, you can set EMM policies or managed configuration values
on a device.

IMPORTANT: You must enable security logging via your EMM DPC to achieve CC compliance. This
is required for OemConfig to write to security logs on the application of managed configurations which
are mandatory to be audit logged according to DOD Annexure for MDFPP33.

For more details on OemConfig security logging, see 2.6 Audit Logqging.
To Use Zebra OemConfig through Test DPC:

1. Install Test DPC and make DPC as Device Owner.

2. Side load Zebra OEMConfig application from Google Play or from Zebra Support Central.
3. Enable security logging via Test DPC.

4. Select Managed Configurations -> Select OEMConfig from the drop-down.

5. Load Manifest Restrictions.

6. Edittransactionld with any random number.

7. Click on the “steps” edit icon.

8. Select Configure.

9. Click on the Bundle #0 editicon.

10. Select Configure.

[EEN
=

. Click on the blacklistStep or serviceCspAction editicon.
. Set the configuration.

. Click on Save in all pages.

A Successfully set app restrictions pop up appears.

Broadcast adb shell am broadcast -a
com.android.vending.APPLICATION_RESTRICTIONS_CHANGED
-n com.zebra.oemconfig.release/.BootCompleteReceiver

=
w N

2.5 VPN Connectivity

2

IT admins can specify an Always On VPN to ensure that data from specified managed apps will always go
through a configured VPN.

NOTE: This feature requires deploying a VPN client that supports both Always On and per-app VPN
features.

IT admins can specify an arbitrary VPN application (specified by the application package name) to be set
as an Always On VPN. IT admins can use managed configurations to specify the VPN settings for an
application.

See 6.0 VPN Configuration for more information about VPN configuration options.

2.6 Audit Logging

IT admins can gather usage data from devices that can be parsed and programmatically evaluated for
malicious or risky behavior. Activities logged include Android Debug Bridge (adb) activity, application
launches, and screen unlocks. For Audit Logging, IT admins can do the following:

¢ Enable security logging for target devices, and the EMM's DPC must be able to retrieve bothsecurity
logs and pre-reboot security logs automatically.

¢ Review enterprise security logs for a given device and configurable time window, in the EMMs console.

10

https://play.google.com/store/apps/details?id=com.zebra.oemconfig.release
https://www.zebra.com/us/en/support-downloads/software/utilities/oemconfig-android-application.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#setAlwaysOnVpnPackage(android.content.ComponentName%2C%20java.lang.String%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrievePreRebootSecurityLogs(android.content.ComponentName)
https://developer.android.com/work/dpc/security#monitor_enterprise_process_logs_and_remote_bug_reports

Zebra Android 13 Administrator Guidance

* |T admins can export enterprise security logs from the EMMs console.

* Capture relevant logging information from Logcat which does not require any additional configuration to
be enabled.

See Table 4 for an example of a detailed audit logging table, along with information on how to view and
export the different types of audit logs.

Zebra additional Security Logging
@ IMPORTANT: You must use your EMM DPC enable security logging to meet CC compliance.

Zebra has additional managed configurations which must be audit logged according to DOD Annexure for
MDFPP33.

Zebra performs additional security audit logging through OemConfig, which leverages existing Google
APIs already compatible to CC standards, to write it to security logs.
Zebra Security log entry produce the following information:
e Tag
Zebra is using custom TAG for audit logging-
TAG_MANAGE_CONFIGURATION_APPLIED = 1111111

* Message

A string message includes Date, Time, Caller name, title of the Managed Configuration, Results -
success or failure of applying the Managed Configuration, Failure reason if results = failure.

3.0 Security Configuration

The Zebra Devices offer a rich built-in interface and MDM callable interface for security configuration. This
section identifies the security parameters for configuring your device in Common Criteria mode and for
managing its security settings.

3.1 Entering into Common Criteria State

IMPORTANT: The following 5 steps MUST be performed in order.
1. Zebra Device for CC compliance should be Boring FIPS supported. Below are pre-requisites.
a. Select the device from Table 1.

b. if build fingerprint is greater than or equal to 13-21-11.00-TG-U00-STD-NEM-04 then continue with
step 2.

c. Download and install the BSP from here with build fingerprint higher than 13-21-11.00-TG-U0Q0-
STD-NEM-04.
2. Create a StageNow Profile and use it to apply the CCReadinesspackage_A13_ 4490.zip on the device.
a. Download CCReadinesspackage A13_ 4490.zip from here.

b. Use StageNow to deploy the package to the device. See 11.1 Creating and Applying the StageNow
Profile.

+ NOTE: See 11.0 Annexure for more details on creating and applying the StageNow Profile.
'(3. Use StageNow to configure critical settings and to enroll your EMM agent as Device Owner.
As required for CC compliance:
a. Disable use of SDcard.
b. Disable various alternate administrative functions.
c. Enroll the Device Owner to provide administrative functions.
d. Convert Staging method to Trusted Staging and deploy MDM Agent to enroll as Device Owner.

NOTE: See 11.2 Configuring Critical Settings Using Stage Now for more details.

11

https://www.zebra.com/us/en/support-downloads/mobile-computers.html
https://www.zebra.com/us/en/support-downloads/security-certification.html

Zebra Android 13 Administrator Guidance

0,

4. Configure the device into Common Criteria state.

IMPORTANT: You must set the following options using your EMM after enrolled as Device Owner:
a. Turn ON “Enable Common Criteria Mode” via TestDPC
b. Require a lockscreen password.
Please review the Password Management items in 3.6 Common Criteria Related Settings.
c. Disable Smart Lock.
Smart Lock can be disabled using KEYGUARD DISABLE TRUST AGENTS().
d. Disable Debugging Features (Developer options) .
By default Debugging features are disabled. The system administrator can prevent the user from
enabling Debugging features using DISALLOW DEBUGGING FEATURES().
e. Disable installation of applications from unknown sources
This can be disabled by using DISALLOW INSTALL UNKNOWN SOURCES().

f. VPN Full Tunnel Configuration In order to leverage full tunnel IPSEC VPN, the VPN client mustbe
configured to route all traffic (0.0.0.0) through the VPN application.

3.2 Successfully Achieving Common Criteria State

3.2.1

If all steps in 3.1 Entering into Common Criteria State are completed successfully, your device is in CC
state. No additional configuration is required to ensure key generation, key sizes, hash sizes, and all other
cryptographic functions meet NIAP requirements.

Limitations

Zebra devices in CC State will not support the following:
* Management of Work Profile

e Multi-User

* SDCard and USB external storage

* Downgrades are NOT allowed.

3.3 Exiting from Common Criteria State

1. Download CCExitPackage A13 4490.zip or relevant package from HERE.
2. Use StageNow to deploy the package to the device.
Refer 11.1 Creating and Applying the StageNow Profile for more details.

No additional configuration is required to ensure key generation, key sizes, hash sizes, and all other
cryptographic functions meet NIAP requirements.

3.4 Cryptographic Module Identification

The TOE implements CAVP certified cryptographic algorithms which are provided by the following
cryptographic components:
* BoringSSL Library 1.0

* Hash: 7f02881e96e51f1873afcf384d02f782b48967ca

* Commit hash: beec06d977932d2f7d6f7bf099446fed1fd93ced
* The TOE's LockSettings service

e Android LockSettings service KBKDF (version 77561fc30db9aedc1f50f5b07504aa65b4268b88)
¢ Hardware Cryptography

* TOE's Wi-FI Chipset provides an AES-CCMP implementation.

¢ The TOE's application processor (SD4490) provides additionalcryptographic algorithms. The
CAVP certificates correctly identify the specific hardware.

The use of other cryptographic components beyond those listed above was neither evaluated nor tested
during the TOE's Common Criteria evaluation.
No additional configuration is needed for the cryptographic modules to be compliant.

Note: Some of the claimed SKUs [TC58e, TC53e] are equipped with Strongbox capabilities; however,
the scope of the evaluation does not cover encompass the validation of this functionality and its use is
not supported within the evaluated configuration.

12

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_TRUST_AGENTS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://www.zebra.com/us/en/support-downloads/security-certification.html

Zebra Android 13 Administrator Guidance

3.5 Permissions Model

Android runs all apps inside sandboxes to prevent malicious or buggy application code from compromising
other apps or the rest of the system. Because the application sandbox is enforced in the kernel, this
enforcement extends to the entire application regardless of the specific development environment, APIs
used, or programming language. A memory corruption error in an application only allows arbitrary code
execution in the context of that particular application, with the permissions enforced by the OS.

Similarly, system components run in least-privileged sandboxes in order to prevent compromises in one
component from affecting others. For example, externally reachable components, like the media server
and WebView, are isolated in their own restricted sandbox.

Android employs several sandboxing techniques, including Security-Enhanced Linux (SELinux), seccomp,
and file-system permissions.

The purpose of a permission is to protect the privacy of an Android user. Android apps must request
permission to access sensitive user data (such as contacts and SMS), as well as certain system features
(such as camera and internet). Depending on the feature, the system might grant the permission
automatically or might prompt the user to approve the request.

A central design point of the Android security architecture is that no application, by default, has permission
to perform any operations that would adversely impact other apps, the operating system, or the user. This
includes reading or writing the user's private data (such as contacts or emails), reading or writing another
application's files, performing network access, keeping the device awake, and so on.

The DPC can pre-grant or pre-deny specific permissions using PERMISSION _GRANT_STATE APIs. In
additio, the end user can revoke a specific apps permission by doing the following:

1. Tap on Settings > Apps¬ifications.

2. Tap on the particular application and then tap Permissions.

From there the user can toggle off specific permissions. You can learn more about Android Permissions on
developer.android.com.

3.6 Common Criteria Related Settings

The Common Criteria evaluation requires a range of security settings to be available. Those security
settings are identified in the table below. In many cases, the administrator or user must have the ability to
configure the setting, but no specific value is required.

Table 2 Common Criteria Settings

Security Feature Setting Description Required Value API ‘ User Interface
Encryption Device Encrypts all internal N/A Encryption on by default | To wipe the device go to
Encryption storage with no way to turn off Settings > System > Reset
. - . wipeData(). options and select Erase all
Wipe Device Removes all data No required value date (factory reset).
from device

Wipe Enterprise | Remove all enterprise | No required value | wipeData called from

Data data from device secondary user.
Password Password Minimum number of No required value | setPasswordMinimumLe | To set a screen lock go to
Management Length characters in a ngth() Settings > Security & location
password > Screen lock and tap
Password.
Password Specify the type of No required value | setPasswordQuality()
Complexity characters required in
a password

13

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#PERMISSION_GRANT_STATE_DEFAULT
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName%2C%20int)

Password
Expiration

Zebra Android 13 Administrator Guidance

Maximum length of
time before a
password must
change

No required value

setPasswordExpirationTi

meout()

Authentication
Failures

Maximum number of
authentication failures

50 or less

setMaximumFailedPass

wordsForWipe()

14

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout(android.content.ComponentName%2C%2520long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout(android.content.ComponentName%2C%2520long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName%2C%20int)

Zebra Android 13 Administrator Guidance

Table 2 Common Criteria Settings (Continued)

Security Feature Setting Description Required Value User Interface
Lockscreen Inactivity to Time before No required value | setMaximumTimeToLock | Toset an inactivity lockout go to
lockout lockscreen is [0} Settings > Security & location
engaged and tap on the gear icon next to
Screen lock then tap on
Banner Banner message Administrator or setDeviceOwnerLockScr Automatically lock and select the
displayed on the user defined text | eeninfo appropriate value. Toset a banner
lockscreen go to Settings > Security &
Remote Lock Looks the device Fun'ction must be | lockNow() :aor(:fl:roer; g eI;o>c ltjcckr iipeen
remotely available message. Set a message and tap
Show Password | Disallows the Disable This is disabled by Save.
displaying of the default Tap the power button to turn off the
password on the screen which locks the device.
screen of lock-screen
password
Notifications Controls whether Enable/Disable KEYGUARD_ DISABLE
notifications are are available SECURE NOTIFICATIO
displayed on the options NS(O
lockscreen KEYGUARD_DISABLE
UNREDACTED_NOTIFI
CATIONS
Control Control the use of Enable/Diable KEYGUARD_DISABLE
Biometric Face Biometric Face unlock | are available D _FEATURES_SET
Unlock options
Certificate Import CA Import CA Certificates | No required value | installCaCert() Tap on Settings > Security &
Management Certificates into the Trust Anchor location > Advanced > Encryption
Database or the & credentials and select Install
credential storage from storage
Remove Remove certificates No required value | uninstallCACert() To clear all user installed
Certificates from the Trust certificates tap on Settings >
Anchor Database or Security & location > Advanced
the credential storage > Encryption & credentials and
select Clear credentials.
Toremove a specific user installed
certificate tap on Settings >
Security & location > Advanced
> Encryption & credentials >
Trusted credentials. Switch to
the User tab, select the certificate
you want to delete and tap on
Remove.
Import Client Import client No required value | installKeyPair() Tap on Settings > Security &
Certificates certificates in to location > Advanced > Encryption
Keychain & credentials and select Install

from storage.

Remove Client
Certificates

Remove client
certificates from
Keychain

No required value

removeKeyPair

To remove a specific user installed
client certificate tap on Settings >
Security & location > Advanced >
Encryption & credentials > User
credentials.

Switch to the User tab, selectthe
certificate you want to delete and
tap on Remove.

15

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumTimeToLock(android.content.ComponentName%2C%20long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumTimeToLock(android.content.ComponentName%2C%20long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setDeviceOwnerLockScreenInfo(android.content.ComponentName%2C%2520java.lang.CharSequence)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setDeviceOwnerLockScreenInfo(android.content.ComponentName%2C%2520java.lang.CharSequence)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#lockNow()
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installCaCert(android.content.ComponentName%2C%20byte%5B%5D)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#uninstallCaCert(android.content.ComponentName%2C%2520byte%5B%5D)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installKeyPair(android.content.ComponentName%2C%20java.security.PrivateKey%2C%20java.security.cert.Certificate%2C%20java.lang.String)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#removeKeyPair(android.content.ComponentName%2C%20java.lang.String)

Zebra Android 13 Administrator Guidance

Table 2 Common Criteria Settings (Continued)

Security Feature

Setting

Description

Required Value

User Interface

Radio Control Control Wi-Fi Control access to Enable/Disable DISALLOW_CONFIG To disable Wi-Fi tap on
Wi-Fi are available WIFI() Settings > Network & internet
options and toggle Airplane mode to
On.
Control GPS Control access to Enable/Disable DISALLOW_SHARE LO
GPS are available CATION()
options DISALLOW CONFIG L
OCATION()
Control Cellular | Control access to Enable/Disable DISALLOW_CONFIG M | To disable Cellular tap on Settings
Cellular are available OBILE_NETWORKS() > Network & internet > Mobile
options network and tap on your carrier
and toggle to Off.
Control NFC Control access to Enable/Disable DISALLOW_ OUTGOIN To disable NFC tap on Settings >
NFC are available G_BEAM() Connected devices >
options Connection preferences and
toggle NFC to Off.
Control Control access to Enable/Disable DISALLOW BLUETOOT
Bluetooth Bluetooth are available HQ
options DISALLOW BLUETOOT
H SHARING()
DISALLOW_ CONFIG B
LUETOOTH()
Control Control access to Enable/Disable DISALLOW SHARE LO
Location Location Service are available CATION()
Service options DISALLOW_CONFIG L
OCATION()
Wi-Fi Settings Specify Wi-Fi Specify SSID values No required value | WifiEnterpriseConfig()
SSIDs for connecting to
Wi-Fi. Can also
create white and
black lists for SSIDs.
Set WLAN CA Select the CA No required value | WifiEnterpriseConfig()
Certificate Certificate for the
Wi-FI connection
Specify security | Specify the No required value | WifiEnterpriseConfig()
type connection security
(WPA2, WPAS3 etc)
Select Specify the EAP-TLS | No required value | WifiEnterpriseConfig()
authentication connection values
protocol
Select client Specify the client No required value | WifiEnterpriseConfig()
credentials credentials to access
a specified WLAN
Control Control access to Enable/Disable setAlwaysOnVPNPacka
Always-on VPN | Always-on VPN are available ae()
options

16

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName%2C%20java.lang.String%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName%2C%20java.lang.String%2C%20boolean)

Zebra Android 13 Administrator Guidance

Table 2 Common Criteria Settings (Continued)

Security Feature

Hardware Control

Application Control

Setting Description Required Value User Interface
Control Control access to Enable/Disable DISALLOW UNMUTE
Microphone microphone across are available MICROPHONE()
(across device) | the device options
Control Control access to Enable/Disable Tap on Settings > Apps &
Microphone microphone per are available notifications > App permissions
(per-app basis) | application options > Microphone and then de-select
the apps to remove permissions.
Control Camera | Control access to Enable/Disable Tap on Settings > Apps &
(per-app basis) | camera per are available notifications > App
application options permissions > Camera and
then de-select the apps to
remove permissions.
Control USB Control access to Enable/Disable DISALLOW MOUNT P
Mass Storage mounting the device are available HYSICAL MEDIAQ)
for storage over USB. | options
Control USB Control access to Enable/Disable DISALLOW DEBUGGIN
Debugging USB debugging. are available G_FEATURES()
options
Control USB Control access to Enable/Disable DISALLOW_ CONFIG T
Tethered USB tethered are available ETHERING()
Connections connections. options
Control Control access to Enable/Disable DISALLOW CONFIG T
Bluetooth Bluetooth tethered are available ETHERING()
Tethered connections. options
Connections
Control Hotspot | Control access to Enable/Disable DISALLOW_ CONFIG T
Connections Wi-Fi hotspot are available ETHERING()
connections options
Automatic Time | Allows the device to Enable/Disable setAutoTimeRequired() Tap on Settings > System >
get time from the are available Date & time and toggle
Wi-Fi connection options Automatic date & time to On.
Install Installs specified No required value | Packagelnstaller.Sessio
Application application n()
Uninstall Uninstalls specified App to uninstall uninstall() To uninstall an application tap on
Application application Settings > Applications &
notifications > See all. Select the
application and tap on Uninstall.
Application Specifies a list of No required value | This is done by the
Whitelist applications that may EMM/MDM when they
be installed setup an application
catalog which leverages
Packagelnstaller.Sessio
n()
Application Specifies a list of No required value | Packagelnstaller.Sessio
Blacklist applications that may ninfo()
not be installed
Application Specifies the location | No required value | DISALLOW INSTALL U
Repository from which NKNOWN_SOURCES()

applications may be
installed

17

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAutoTimeRequired(android.content.ComponentName%2C%20boolean)
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session
https://developer.android.com/reference/android/content/pm/PackageInstaller.html#uninstall(android.content.pm.VersionedPackage%2C%2520android.content.IntentSender)
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.SessionInfo.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.SessionInfo.html
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES

Zebra Android 13 Administrator Guidance

Table 2 Common Criteria Settings (Continued)

Security Feature

TOE Management

Setting Description Required Value User Interface
Enrollment Enroll TOE in No required value During device setup scan
management EMM/MDM provided QR code or
enter EMM/MDM DPC identifier
Refer to section 2.5.2 for more
details
Disallow Prevent the user from | Enable/Disable DISALLOW_REMOVE

Unenrollment

removing the
managed profile

MANAGED_ PROFILE()

DISALLOW_FACTORY_
RESET()

Unenrollment

Unenroll TOE from
management

App to uninstall

uninstall() — this API can

be used to uninstall the
MDM Agent from the
device. Uninstalling the
MDM agent from an
enterprise profile will
delete the entire profile
and all its applications.

This API can be used to uninstall
enterprise apps. If an admin
uninstalls the MDM agent installed
on an enterprise profile, the entire
profile and all enterprise
applications are deleted.

Allow Developer | Controls Developer Enable/Disable DISALLOW_DEBUGGIN
Mode Mode access are available G_FEATURES()

options
Sharing Data Controls data sharing | Enable/Disable DISALLOW_ CROSS P

Between
Enterprise and
Personal Apps

between enterprise
and work apps

ROFILE_COPY_ PASTE(

)
addCrossProfileIntentFilt

erQ

3.7 Password Recommendations
When setting a password, you should select a password that:

Does not use known information about yourself (e.g. pets names, your name, kids names or any
information available in the public domain);

Is significantly different from previous passwords (adding a ‘1’ or
sufficient); or

Does not contain a complete word (such as Password!).
Does not contain repeating or sequential numbers and/or letters.

3.8 Bug Reporting Process

to the end of the passwordis not

Zebra supports a bug filing system for the Android OS. For more information, see
zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html.

4.0 Bluetooth Configuration

Follow the below steps to pair and connect your device using Bluetooth.

4.1 Pair

18

NOTE: If your device is connected to another device via Bluetooth, you will see a Bluetooth icon | at the
top of the screen.

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/content/pm/PackageInstaller.html#uninstall(android.content.pm.VersionedPackage%2C%2520android.content.IntentSender)
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName%2C%20android.content.IntentFilter%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName%2C%20android.content.IntentFilter%2C%20int)
https://www.zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html

Zebra Android 13 Administrator Guidance

Open your phone or tablet's Settings application @

Tap Connected devices > Connection preferences > Bluetooth. Make sure Bluetooth is turned on.
Tap Pair new device.

Tap the name of the Bluetooth device you want to pair with your phone or tablet.

Follow the on-screen steps.

apbr wWNPE

231 owa
& Pair new device Q ®

Device name
Pliyes XL

Avallable devices

L. Test BT Device

Pair with Test BT Device?

tooth pairing coce

927431

4.2 Connect

E" NOTE: If your device is connected to another device via Bluetooth, you will see a Bluetooth icon % atthe
= top of the screen.

Open your phone or tablet's Settings application @
Tap Connected devices > Connection preferences > Bluetooth.
Make sure Bluetooth is turned on.

In the list of paired devices, tap a paired but unconnected device.

When your phone or tablet and the Bluetooth device are connected, the device
shows as"Connected" in the list.

g > wDdhpE

19

Zebra Android 13 Administrator Guidance

4.3 Remove Previously Paired Device

E_/‘ NOTE: If your device is connected to another device via Bluetooth, you will see a Bluetooth icon * at the
e top of the screen.

Open your phone or tablet's Settings application @

6.

7. Tap Connected devices > Previously connected devices.

8. Tap the gear icon to the right of the device you want to unpair.

9. Tap Forget and confirm in the popup window by tapping Forget device.
232 O wa
¢ Device details Z QA @

! Test BT Device
o

Internet access

Contact sharing Forget device?

Your phone will no longer be patred with
(ﬁ Device's Bluetooth address: 1051 F2F31E09 Test BT Device

Cancef Fargoet device

NOTES:

iy
'{ ¢ For additional support information around Bluetooth, see_
developer.android.com/reference/android/bluetooth/package-summary.html.

* For Zebra Bluetooth-specific configuration, see the BluetoothTechDoc.

@ IMPORTANT: On Update from A10 to A13 in CC mode, BT encrypted keys of A10 will not be accessible in
A13 and paired device list in Setting Ul will not be persisted.

5.0 Wi-Fi Configuration

Android supports the WPA2-Enterprise and WPA3-Enterprise protocol, which is specifically designed for
enterprise networks and can be integrated into a broad range of Remote Authentication Dial-In User
Service (RADIUS) authentication servers. Zebra devices also support WPA3-Enterprise 192-bit mode
which is aligned with the CNSA (Commercial National Security Algorithm) security recommendations for
high-security Wi-Fi networks.

IT admins have several abilities to control the environment for your devices. They can:

» Silently provision enterprise WiFi configurations on managed devices via the EMM’s DPC, including:

e SSID
e Password
e Identity

e Certificate for clients authorization
e CA certificate(s)

¢ Lock down Wi-Fi configurations on managed devices to prevent users from creating new

20

https://developer.android.com/reference/android/bluetooth/package-summary.html
https://developer.android.com/reference/android/bluetooth/package-summary.html
http://zebra-stage.github.io/mx/bluetoothmgr/#mainfunctionality
https://developer.android.com/reference/android/net/wifi/WifiConfiguration.html#SSID
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setPassword(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setIdentity(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setClientKeyEntry(java.security.PrivateKey%2C%20java.security.cert.X509Certificate)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setCaCertificate(java.security.cert.X509Certificate)

Zebra Android 13 Administrator Guidance

configurations or modifying corporate configurations.
e Lock down corporate Wi-Fi configurations in either of the following configurations:

e Users cannot modify any WiFi configurations provisioned by the EMM, but may add and modify their
own user-configurable networks (for instance personal networks).

* Users cannot add or modify any WiFi network on the device, limiting Wi-Fi connectivity to just
those networks provisioned by the EMM.

When the device tries to connect to a WiFi network it performs a standard captive portal check which
bypasses the full tunnel VPN configuration. If the administrator wants to turn the captive portal check off,
they need to do this physically on the device before enrolling it in to the MDM by:

* Enable Developer Options by tapping on Settings > About phone and tapping on Build number
five times until they see that Developer options has been enabled.

e Enable Android Debug Bridge (ADB) over USB by tapping on
Settings > System > Advanced > Developer options and scroll down to USB debugging and enable
the toggle to On.

* Connect to the device to a workstation that has ADB installed and type in “adb shell settings put global
captive_portal_mode 0” followed by pressing Enter.

¢ You can verify the change by typing “adb shell settings get global captive_portal_mode” and
confirming that the return value is “@”.

e Turn off Developer options by tapping on Settings > System > Advanced>Developer options
and toggling the On option to Off at the top.

If a WiFi connection unintentionally terminates, the end user will need to reconnect to re-establish the
session.

6.0 VPN Configuration

Android supports securely connecting to an enterprise network using VPN:

¢ Always-on VPN—The VPN can be configured so that apps don’t have access to the network untila
VPN connection is established, which prevents apps from sending data across other networks.

Always-on VPN supports VPN clients that implement VpnService. The system automatically starts that
VPN after the device boots. Device owners and profile owners can direct work apps to always connect
through a specified VPN. Additionally, users can manually set Always-on VPN clients that implement
VpnService methods using Settings > More > VPN. Always-on VPN can also be enabled manually
from the Settings menu.

7.0 Secure Update Process

Over the Air (OTA) updates (which includes baseband processor updates) using a public key chaining will
be verified against a zip file of certificates present on the device. Verification succeeds if the OTA package
is signed by the private key corresponding to any public key in this file. Should this verification fail, the
software update will fail and the update will not be installed. On A13, the bootloader will fall back to the old
OS. Zebra devices do not support Google OTA update. Zebra recommends using OEMConfig as the
method for administrator to upgrade/downgrade the device.

Downgrade

Default zebra devices supports Downgrade, but once you have created a StageNow Profile, and used it to
apply the CC Readiness package on the device as detailed in step 2 in 3.1 Entering into Common Criteria
State, then it will be possible to update but it will no longer be possible to downgrade.

To enable downgrade, you must follow the steps from 3.3 Exiting from Common Criteria State.

To upgrade a Zebra device with a new Over the Air (OTA) update, you must Acquire and Transfer/Apply
the suitable update file(s).

In A13, incremental patches are created as true delta packages and are applied sequentially.

21

https://developer.android.com/reference/android/provider/Settings.Global#WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN
https://developer.android.com/reference/android/os/UserManager#DISALLOW_CONFIG_WIFI

Zebra Android 13 Administrator Guidance

7.1 Acquire

Find the build you want on the Zebra support central:
https://www.zebra.com/us/en/support-downloads.html. Depending on the build you choose, you may need
a patch file, a base line file, or both in order to get the file(s) from the current build to desired build.
Download the necessary file(s) and then perform the appropriate steps based on whether you haveto
install one file or two files.

7.2 Transfer/Apply

7.2.1 One File — New Patch or New Base Line
1. Place the downloaded file on the https server that is reachable from the device.

2. Acquire the URL of the file location on the server. (If server requires authentication provide
the credentials).
3. Use OEMConfig - File Management-Download File Source URL.

See https://techdocs.zebra.com/oemconfig/13-3/mc2/ and Download Destination Path and File Name
to copy the file from the server to the device.

4. Use OEMConfig-Firmware Over The Air Configuration-Mode Manual Action=0S Update andOS
Update/Upgrade/Downgrade File to apply the update from downloaded file.

IMPORTANT: In a situation where any future Zebra OS security patch installs successfully but fails to
@ boot into a new installed image, On A13, the bootloader will fall back to the old OS.
¢ If the baseline OS is CC compliant:
a. The device will be Factory Reset.
b. User data will be erased.
e If the baseline OS is non-CC compliant:

a. The device will be Factory Reset.
b. User data will be erased.
c. The device will be in a non-CC compatible OS image.

To recover from a non-CC compliant baseline OS image, the user must follow the steps in 3.1 Entering into
Common Criteria State.

7.2.2 Two Files — New Base Line and Patch
To create a UPL file on A13, please refer - https://www.zebra.com/content/dam/support-
dam/en/documentation/unrestricted/release-notes/4490-A13-0s-update-instructions.pdf
Please note the difference in UPL file usage on A1l and above for OS update.
User may use Full OTA package of a patch on A11 and above instead of using multiple (Two Files) files.

Place the downloaded files and the created UPL file on to the https server that is reachable from the
device.

Acquire the URI of the UPL file location on the server. (If server requires authentication provide the
credentials).
Use OEMConfig - File Management-Download File Source URI

[Refer- https://techdocs.zebra.com/oemconfig/13-3/mc2/ | and Download Destination Path and File Name
to copy the downloaded files and UPL file from the server to the device

Use OEMConfig-Firmware Over The Air Configuration-Mode Manual Action=0S Update and OS
Update/Upgrade/Downgrade File to apply the update using the UPL file and the downloaded files.

8.0 Audit Logging
8.1 Security Logs

A MDM agent acting as Device Owner can control the logging
with DevicePolicyManager#setSecurityl oggingEnabled. When security logs are enabled, Device Owner
apps receive periodic callbacks from DeviceAdminReceiver#onSecurityl ogsAvailable, at which time new

22

https://www.zebra.com/us/en/support-downloads.html
https://www.zebra.com/us/en/support-downloads.html
http://www.zebra.com/us/en/support-downloads.html
https://techdocs.zebra.com/oemconfig/13-3/mc2/
https://www.zebra.com/content/dam/support-dam/en/documentation/unrestricted/release-notes/4490-A13-os-update-instructions.pdf
https://www.zebra.com/content/dam/support-dam/en/documentation/unrestricted/release-notes/4490-A13-os-update-instructions.pdf
https://techdocs.zebra.com/oemconfig/13-3/mc2/
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html#onSecurityLogsAvailable(android.content.Context%2C%20android.content.Intent)

Zebra Android 13 Administrator Guidance

batch of logs can be collected viaDevicePolicyManager#retrieveSecurityLogs. SecurityEvent describes the
type and format of security logs being collected.

Audit events from the Security Log are those where the "Keyword" field appears first in the format. For
example: <Keyword> (<Date><Timestamp>): <message>

8.2 Logcat Logs

Logcat logs can be read by a command issued via an ADB shell running on the phone. Information about
reading Logcat logs can be found at developer.android.com/studio/command-line/logcat. The command to
issue a dump of the logcat logs is:

> adb logcat

Logcat logs cannot be exported from the device outside of using the above ADB command to dump to a
file, then retrieving the file from the device (which requires developer settings enabled and administrative
permissions).

Logcat logs can also be read by an application (for example an MDM agent) granted permission froman
ADB shell:

> adb shell pm grant <application_package_name> android.permission.READ_LOGS

Audit events from the Logcat log are those where the "Keyword" field appears after the timestamp field in
the format. For example: <Date> <Time> <ID> | <Keyword> <Message>

23

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/studio/command-line/logcat

Zebra Android 13 Administrator Guidance

Table 3 shows examples of audit events:

Table 3 Audit Events

Requirement

Auditable Events

Additional Audit Record

Contents

Log Events & Examples

FAU_GEN.1

Start-up and shutdown of the audit
functions

Start-up:
LOGGING_STARTED (<Date> <Timestamp>):

Shutdown:

All logs are stored in memory. When audit
functions are disabled, all memory being used
by the audit functions is released by the OS,
and so this log cannot be seen.

All administrative actions

See Management Function
Table

Start-up and shutdown of the Rich
0os

Start-up:
OS_STARTUP (<Date> <Timestamp>): <verified
boot status color> <dm-verity status>

Shutdown:

All logs are stored in memory. This log is not
capturable or persistent through boot, and thus
isn't available to an MDM Administrator

FCS_CKM_EXT.1 [None]. No additional information.
FCS_CKM_EXT.5 [None]. No additional information.
FCS_CKM.1 [None]. No additional information.

FCS_STG_EXT.1

Import or destruction of key.

Identity of key. Role and identity
of requestor.

KEY_IMPORT (<Date> <Timestamp>):
<success-boolean> <key name> <requesting
process / role / identify>

[No other events]

KEY_DESTRUCTION (<Date> <Timestamp>):
<success-boolean> <key name> <requesting
process / role / identify>

FCS_STG_EXT.3

Failure to verify integrity of stored
key.

Identity of key being verified.

KEY_INTEGRITY_VIOLATION (<Date>
<Timestamp>):

<key name> <requesting process / role /
identify>

FDP_DAR_EXT.1

[None].

No additional information.

N/A

FDP_DAR_EXT.2

[None].

No additional information.

N/A

FDP_STG_EXT.1

Addition or removal of certificate
from Trust Anchor Database.

Subject name of certificate.

CERT_AUTHORITY_INSTALLED (<Date>
<Timestamp>): <success-boolean> <cert
authority> <user id>

CERT_AUTHORITY_REMOVED (<Date>
<Timestamp>): <success-boolean> <cert
authority> <user id>

FIA_X509_EXT.1

Failure to validate X.509v3
certificate.

Reason for failure of validation.

<Date> <Time> <ID> System.err:
java.security.cert.CertPathValidatorException
[<error message>]

<Date> <Time> <ID> ValidatableSSLSocket:
Failed to establish a TLS connection to <IP
address> ... [<error message>]

24

Zebra Android 13 Administrator Guidance

Table 3 Audit Events (Continued)

Requirement

Auditable Events

Additional Audit Record

Contents

Log Events & Examples

FMT_SMF_EXT.2

[none].

[none].

FPT_NOT_EXT.1

[None].

[No additional information].

FPT_TST_EXT.1

Initiation of self-test.

[none]

CRYPTO_SELF_TEST_COMPLETED
(<Date><Timestamp>): 1

Failure of self-test.

CRYPTO_SELF_TEST_COMPLETED
(<Date><Timestamp>): 0

FPT_TST_EXT.2(1)
(Selection is optional)

Start-up of TOE.

No additional information.

See audits for FAU_GEN.1 - Start-up and
shutdown of the Rich OS

[none]

No additional information.

WLAN EP Audit Logs:

FCS_TLSC_EXT.1/WL
AN

Failure to establish an EAP-TLS
session.

Reason for failure

Errors:

<Date> <Time> <ID> wpa_supplicant: wlanO:
CTRL-EVENT-EAP-TLS-CERT-ERROR <Error
Details>

<Date> <Time> <ID> wpa_supplicant: wlanO:
CTRL-EVENT-EAP-FAILURE EAP
authentication failed

<Date> <Time> <ID> wpa_supplicant: TLS -
SSL error: <error message>

Termination (follows after above error log):
<Date> <Time> <ID> wpa_supplicant: wlan0:
CTRL-EVENT-DISCONNECTED
bssid=<BSSID> reason=<reason code>

Establishment/termination of an
EAP-TLS session.

Non-TOE endpoint of
connection

Establishment:

<Date> <Time> <ID> wpa_supplicant: wlanO:
CTRL-EVENT-CONNECTED - Connection to
<BSSID> completed.

Termination

<Date> <Time> <ID> wpa_supplicant: wlanO:
CTRL-EVENT-DISCONNECTED
bssid=<BSSID> reason=<reason code>

25

Zebra Android 13 Administrator Guidance

Table 3 Audit Events (Continued)

Requirement

Auditable Events

Additional Audit Record

Contents

Log Events & Examples

FIA_X509_EXT.1/WLAN

Failure to validate X.509v3
certificate

Reason for failure of
validation

CERT_VALIDATION_FAILURE
(<Date><Timestamp>): [<error>]

FIA_X509_EXT.6

Attempts to load/revoke
certificates

no additional information].

See audits for FCS_STG_EXT.1 — Import and
Destruction of keys

FPT_TST_EXT.1/WLAN
(note: can be performed
by

TOE or TOE platform)

Execution of this set of TSF
self-tests.
[none].

[no additional information].

See the audits for MDFPP FPT_TST_EXT.1,
these self-tests are included in the same audit
message.

FTA_WSE_EXT.1

All attempts to connect to access
points.

Identity of access point being
connected to as well as success
and failures (including reason for
failure).

<Date> <Time> <ID> wpa_supplicant: wlanO:
Trying to associate with SSID <SSID>

<Date> <Time> <ID> wpa_supplicant: wlanO:
Trying to associate with SSID 'fscaesdot1x

<Date> <Time> <ID> wpa_supplicant: wlanO:
Associated with <MAC>

<Date> <Time> <ID> wpa_supplicant: wlanO:
Associated with 94:64:24:89:b2:d2

See audits for FIA_X509_EXT.1/WLAN and
FCS_TLSC_EXT.1/WLAN for failures to connect

FTP_ITC_EXT.1/WLAN

All attempts to establish a trusted
channel.

Identification of the non-TOE
endpoint of the channel.

Same as above

FIA BLT_EXT.1

Failed Authorization of Bluetooth
device

User authorization decision

See audits for FIA_BLT_EXT.2 — Failure of
Bluetooth Connection

Status:
9 - BT_STATUS_AUTH_FAILURE
11 - BT_STATUS_AUTH_REJECTED

HCI Reason:

5 = Authentication Failure

19 = Remote Request Disconnect
26 = Remote Error

FIA_ BLT_EXT.1

Failed user authorization for local
Bluetooth Service

Complete BD_ADDR and no
other information

Bluetooth profile
Identity of local service with
profile name

<Date> <Time> <ID> V BluetoothDatabase:
getProfileConnectionPolicy: <BD_ADDR>,
profile=<PROFILE_ID>, connectionPolicy =
<CONNECTION_POLICY>

<Date> <Time> <ID> D AdapterProperties:
PROFILE_CONNECTION_STATE_CHANGE:
profile=<PROFILE_ID>, device=<BD_ADDR>, 1
> 0

<Date> <Time> <ID> D CachedBluetoothDevice:
onProfileStateChanged: profile
<PROFILE_NAME>, device <BD_ADDR>,
newProfileState 0

FIA_BLT_EXT.2

Initiation of Bluetooth connection

Complete BD_ADDR and no
other information

<Date> <Time> <ID> |
BluetoothBondStateMachine:
bondStateChangeCallback: Status: 0 Address:
<MAC address> newState: 2 hciReason: 0

<Date> <Time> <ID>
BluetoothBondStateMachine: Bond State
Change Intent:<MAC Address>

BOND BONDING => BOND BONDED

Table 3 Audit Events (Continued)

26

Requirement

FIA_BLT_EXT.2

Zebra Android 13 Administrator Guidance

Auditable Events

Failure of Bluetooth connection

Additional Audit Record
Contents
Reason for failure

Log Events & Examples

<Date> <Time> <ID> |
BluetoothBondStateMachine:
bondStateChangeCallback: Status: <Status>
Address: <MAC address> newState: 0
hciReason: <hci reason>

<Date> <Time> <ID> |
BluetoothBondStateMachine: Bond State
Change Intent:<MAC address>
BOND_BONDING => BOND_NONE

FIA_BLT_EXT.3

Duplicate connection attempt

BD_ADDR of connection attempt

This is performed at the HCI layer and is not
able to be logged.

27

Zebra Android 13 Administrator Guidance

Table 4 shows examples of sample management function audits.

Table 4 Sample Management Function Audits

REQUIREMENT
FMT_SMF_EXT.1.1

FUNCTION

Configure password policy

Required Value

AUDIT LOG

Function 1

FMT_SMF_EXT.1.1 a. minimum password length Greater than or equal to 8 PASSWORD_COMPLEXITY_SET

Function la (<Date><Timestamp>):
<package>00065536 10100
1

FMT_SMF_EXT.1.1 b. minimum password No required value PASSWORD_COMPLEXITY_SET

Function 1b complexity (<Date><Timestamp>):
<package>000 13107210100
1

FMT_SMF_EXT.1.1 c. maximum password lifetime PASSWORD_EXPIRATION_SET

Function 1c

(<Date><Timestamp>): <package>
0 0 500000

FMT_SMF_EXT.1.1

Configure session locking policy

10 minutes or less

Function 2

FMT_SMF_EXT.1.1 a. screen-lock enabled/disabled | Enabled PASSWORD_COMPLEXITY_SET

Function 2a (<Date><Timestamp>):
<package>0050101001

FMT_SMF_EXT.1.1 a. screen-lock enabled/disabled | No required value <Date> <Time> <ID> ActivityTaskManager:

Function 2a

(after requiring a password above,
admin can
request the user set a password)

START u0
{act=android.app.action.SET_NEW_PASSWO
RD
cmp=com.android.settings/.password.SetNewP
asswordActivity} from uid <UID>

FMT_SMF_EXT.1.1
Function 2a

a. screen-lock enabled/disabled
(after requiring a password above,
admin can

forcibly set a password)

<Date> <Time> <ID> PolicyManagement:
starting
android.app.action.SET_NEW_PASSWORD

<Date> <Time> <ID> ActivityTaskManager:
START u0
{act=android.app.action.SET_NEW_PASSWO
RD
cmp=com.android.settings/.password.SetNewP
asswordActivity} from uid 10247

FMT_SMF_EXT.1.1
Function 2b

b. screen lock timeout

10 minutes or less

MAX_SCREEN_LOCK_TIMEOUT_SET
(<Date><Timestamp>):
<package> 0 0 100000

28

Zebra Android 13 Administrator Guidance

Table 4 Sample Management Function Audits (Continued)

REQUIREMENT FUNCTION Required Value AUDIT LOG ‘
FMT_SMF_EXT.1.1 b. screen lock timeout USER_RE_STRICTION_ADDED
Function 2b (after setting a max time, the admin (<Date><Timestamp>): <package>
can prevent 0 no_config_screen_timeout

any user changes with this)

FMT_SMF_EXT.1.1 C. number of authentication 10 or less MAX_PASSWORD_ATTEMPTS_SET
Function 2¢ failures (<Date><Timestamp>):
<package>00 10

FMT_SMF_EXT.1.1 Configure application installation Disable USER_RESTRICTION_REMOVED
Function 8a policy (<Date><Timestamp>):
a. restricting the sources of <package> 0
applications no_install_unknown_sources
FMT_SMF_EXT.1.1 Configure application installation Enable USER_RESTRICTION_ADDED
Function 8a policy (<Date><Timestamp>): <package>
a. restricting the sources of 0 no_install_unknown_sources
applications
FMT_SMF_EXT.1.1 Configure application installation Enable USER_RESTRICTION_ADDED
Function 8c policy (<Date><Timestamp>): <package>
c. denying installation of 0 no_install_apps
applications
FMT_SMF_EXT.1.1 Configure application installation Disable USER_RESTRICTION_REMOVED
Function 8c policy (<Date><Timestamp>): <package> 0
c. denying installation of no_install_apps
applications

29

Zebra Android 13 Administrator Guidance

9.0 FDP_DAR_EXT.2 & FCS_CKM.2(2) — Sensitive Data
Protection Overview

Using the NIAPSEC library, sensitive data protection including Biometric protectionsare enabled by
default by using the Strong configuration.

To request access to the NIAPSEC library, please reach out to: niapsec@google.com.

The library provides APIs via SecureContextCompat to write files when the device is either locked or

unlocked. Reading an encrypted file is only possible when the device is unlocked and authenticated

biometrictrically.

Saving sensitive data files requires a key to be generated in advance. See 10.2.2 SecureKeyGenerator.

Supported Algorithms via SecureConfig.getStrongConfig():

* File Encryption Key: AES256 - AES/GCM/NoPadding

¢ Key Encryption Key: RSA3072 - RSA/ECB/OAEPWithSHA-256 AndMGF1Padding

Writing Encrypted (Sensitive) Files:

* SecureContextCompat opens a FileOutputStream for writing and uses SecureCipher (below) to encrypt
the data.

¢ The Key Encryption Key, which is stored in the AndroidKeystore encrypts the File Encryption Key which
is encoded with the file data.
Reading Encrypted (Sensitive) Files:

¢ SecureContextCompat opens a FilelnputStream for reading and uses SecureCipher (below) to decrypt
the data.

e The Key Encryption Key, which is stored in the AndroidKeystore decrypts the File Encryption Key which
is encoded with the file data.

The File encryption key material is automatically destroyed and removed from memory after each
operation. See EphemeralSecretKey for more information.

9.1 SecureContextCompat

NOTE: SecureContextCompat is included in the NIAPSEC library.

SecureContextCompat is used to encrypt and decrypt files that require sensitive data protection.
Supported Algorithms

e AES256 - AES/GCM/NoPadding

* RSA3072 - RSA/ECB/OAEPWIithSHA-256 AndMGF1Padding

Table 5 SecureContextCompat Public Constructors
Constructor Descriptio

n
SecureContextCompat new SecureContextCompat(Context, BiometricSupport)
See BiometricSupport
Constructor to create an instance of the SecureContextCompat with Biometric support.

Table 6 SecureContextCompat Public Methods

Method Descriptio

n

FileOutputStream openEncryptedFileOutput
(String name, int mode, String keyPairAlias)
Gets an encrypted file output stream using the asymmetric/ephemeral algorithms specified by the
default configuration, using NIAP standards.
-name - The file name
-mode - The file mode, usually Context. MODE_PRIVATE
-keyPairAlias - Encrypt data with the AndroidKeyStore key referenced - Key Encryption Key

30

mailto:niapsec@google.com

Zebra Android 13 Administrator Guidance

10.0 API

void openEncryptedFilelnput

(String name, Executor executor, EncryptedFilelnputStreamListener listener)

Gets an encrypted file input stream using the asymmetric/ephemeral algorithms specified by the
default configuration, using NIAP standards.

-name - The file name

-Executor - to handle the threading for BiometricPrompt. Usually
Executors.newSingleThreadExecutor()

-Listener for the resulting FilelnputStream.

Code Examples

SecureContextCompat secureContext = new SecureContextCompat(getApplicationContext(),
SecureConfig.getStrongConfig(biometricSupport));

// Open a sensitive file for writing

FileOutputStream outputStream = secureContext.openEncryptedFileOutput(FILE_NAME,
Context.MODE_PRIVATE, KEY_PAIR_ALIAS);

// Write data to the file, where DATA is a String of sensitive information.
outputStream.write(DATA.getBytes(StandardCharsets.UTF_8));
outputStream.flush();

outputStream.close();

// Read a sensitive data file

secureContext.openEncryptedFileInput(FILE_NAME, Executors.newSingleThreadExecutor(),
inputStream -> {
byte[] clearText = new byte[inputStream.available()];
inputStream.read(encodedData);
inputStream.close();

// do something with the decrypted data
1

NOTE: Built using the JCE libraries. For more information see the following resources:
* AndroidKeyStore — developer.android.com/training/articles/keystore.
e BiometricPrompt — developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Specification

This section provides a list of the evaluated cryptographic APIs that developers can use when writing their
mobile applications.
* 10.1 Cryptographic APIs - this section lists the APIs for the algorithms and random number generation.
¢ 10.2 Key Management - this section lists the APIs for importing, using, and destroying keys.
* 10.3FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS - this section lists the following:

* APIs used by applications for configuring the reference identifier.

* APIs for validation checks (should match the test program provided).

* TLS, HTTPS, Bluetooth BR/EDR, BLE (any other protocol available to applications).

10.1 Cryptographic APIs

This section includes code samples for encryption and decryption, including random number generation.

10.1.1 Code Examples

// Data to encrypt
byte[] clearText = "Secret Data".getBytes(StandardCharsets.UTF_8);

// Create a Biometric Support object to handle key authentication
BiometricSupport biometricSupport = new BiometricSupportImpl(activity,
getApplicationContext()) {

31

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Zebra Android 13 Administrator Guidance

}s
SecureCipher secureCipher = SecureCipher.getDefault(biometricSupport);
secureCipher.encryptSensitiveData("niapKey", clearText, new
SecureCipher.SecureSymmetricEncryptionCallback() {
@Override
public void encryptionComplete(byte[] cipherText, byte[] iv) {
// Do something with the encrypted data

}
1
// to decrypt
secureCipher.decryptSensitiveData("niapKey", cipherText, iv, new
SecureCipher.SecureDecryptionCallback() {
@Override

public void decryptionComplete(byte[] clearText) {
// do something with the encrypted data

}
s

// Generate ephemeral key (random number generation)

int keySize = 256;

SecureRandom secureRandom = SecureRandom.getInstanceStrong();
byte[] key = new byte[keySize / 8];

secureRandom.nextBytes(key);

// Encrypt / decrypt data with the ephemeral key
EphemeralSecretKey ephemeralSecretKey = new EphemeralSecretKey(key,
SecureConfig.getStrongConfig());

Pair<byte[], byte[]> ephemeralCipherText =
secureCipher.encryptEphemeralData(ephemeralSecretKey, clearText);
byte[] ephemeralClearText = secureCipher.decryptEphemeralData(ephemeralSecretKey,
ephemeralCipherText.first, ephemeralCipherText.second);

10.1.2 SecureCipher

NOTE: SecureCipher is included in the NIAPSEC library.

SecureCipher handles low-level cryptographic operations including encryption and decryption. For
sensitive data protection, this library is not used directly by developers.

Supported Algorithms

¢ AES256 - AES/GCM/NoPadding

¢ RSA3072 - RSA/ECB/OAEPWIithSHA-256AndMGF1Padding

Table 7 SecureCipher Public Static Accessors

Accessor

SecureCipher

Description

SecureCipher.getDefault(BiometricSupport)
See BiometricSupport
API to get an instance of the SecureCipher with Biometric support.

32

Zebra Android 13 Administrator Guidance

Table 8 SecureCipher Public Methods

Method Description

void encryptSensitiveData (String keyAlias, byte[] clearData, SecureSymmetricEncryptionCallback callback)

Encrypt sensitive data using the symmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-clearData - the data to be encrypted
-callback, the callback to return the cipherText after encryption is complete.

void encryptSensitiveDataAsymmetric (String keyAlias, byte[] clearData, SecureAsymmetricEncryptionCallback callback)
Encrypt sensitive data using the asymmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is RSA3072 with OAEP.

-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-clearData - the data to be encrypted

-callback, the callback to return the cipherText after encryption is complete.

Pair<byte[], byte[]> encryptEphemeralData

(EphemeralSecretKey ephemeralSecretKey,

byte[] clearData)

Encrypt data with an Ephemeral AES 256 GCM key, used for encrypting file data for SDP.

-The Ephemeral key to use
-clearData, the data to be encrypted
Returns a Pair of the cipherText, and IV byte arrays respectively.

void decryptSensitiveData (String keyAlias,
byte[] encryptedData,

byte[] initializationVector,
SecureDecryptionCallback callback)

Decrypt sensitive data using the symmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-encryptedData - the data to be decrypted
-initializationVector - the IV used for encryption
-callback, the callback to return the clearText after decryption is complete.

void decryptSensitiveData (String keyAlias,
byte[] encryptedData, SecureDecryptionCallback callback)

Decrypt sensitive data using the asymmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is RSA3072 with OAEP.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-encryptedData - the data to be decrypted
-callback, the callback to return the clearText after decryption is complete.

byte[] decryptEphemeralData
(EphemeralSecretKey ephemeralSecretKey,
byte[] encryptedData, byte[] initializationVector)

Decrypt data with an Ephemeral AES 256 GCM key, used for encrypting file data for SDP.
-The Ephemeral key to use
-encryptedData - the data to be decrypted

-initializationVector - the IV used for encryption
Returns a byte array of the clear text.

s NOTE: Built using the JCE libraries. For more information see the following resources:
-l ¢ AndroidKeyStore — developer.android.com/training/articles/keystore

* Cipher — developer.android.com/reference/javax/crypto/Cipher

* SecretKey — developer.android.com/reference/javax/crypto/SecretKey

* SecureRandom — developer.android.com/reference/java/security/SecureRandom

» BiometricPrompt — developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

33

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/javax/crypto/SecretKey
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Zebra Android 13 Administrator Guidance

10.1.3 FCS_CKM.2(1) — Key Establishment (RSA)

Assume that Alice knows a private key and Bob knows Alice’s public key. Bob sent a key encrypted by the
public key. This example shows how Alice gets a plain key sent by Bob. Alice needs her own private key to
decrypt an encrypted key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA", "AndroidOpenSSL");
keyGen.initialize(keySize);

KeyPair keyPair = keyGen.generateKeyPair();

RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();

RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

// Encrypt

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");

cipher.init(Cipher.ENCRYPT_MODE, publicKey, new OAEPParameterSpec("SHA-256",
"MGF1", new MGF1ParameterSpec("SHA-1"), PSource.PSpecified.DEFAULT));

byte[] cipherText = cipher.doFinal(data.getBytes(StandardCharsets.UTF_8));

// Decrypt

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");

cipher.init(Cipher.DECRYPT_MODE, privateKey, new OAEPParameterSpec("SHA-256",
"MGF1", new MGF1ParameterSpec("SHA-1"), PSource.PSpecified.DEFAULT));

Byte[] plainText = cipher.doFinal(cipherText);

Algorithms
RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Reference
Cipher — developer.android.com/reference/javax/crypto/Cipher

10.1.4 FCS_CKM.2(1) — Key Establishment (ECDSA) & FCS_COP.1(3) — Signature
Algorithms (ECDSA)

Assume that Alice knows a private key and Bob's public key. Bob knows his private key and Alice's public
key. Alice and Bob can then sign and verify the contents of a message.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC", "AndroidOpenSSL");
ECGenParameterSpec ecParams = new ECGenParameterSpec(spec);

keyGen.initialize(ecParams);

KeyPair keyPair = keyGen.generateKeyPair();

ECPublicKey pubKey = (ECPublicKey) keyPair.getPublic();

ECPrivateKey privKey = (ECPrivateKey) keyPair.getPrivate();

// Sign

Signature signature = Signature.getInstance(algorithm);
signature.initSign(privateKey);
signature.update(data.getBytes(StandardCharsets.UTF_8));
byte[] signature = signature.sign();

// Verify

Signature signature = Signature.getInstance(algorithm);
signature.initVerify(publicKey);

34

https://developer.android.com/reference/javax/crypto/Cipher

Zebra Android 13 Administrator Guidance

signature.update(data.getBytes(StandardCharsets.UTF_8));
boolean verified = signature.verify(sig);

Algorithms
* "SHA256withECDSA", "secp256rl1"
* "SHA384withECDSA", "secp384rl1"

Reference
Signature — developer.android.com/reference/java/security/Signature

10.1.5 FCS_CKM.1 - Key Generation (ECDSA)

Assume that Alice knows a private key and Bob's public key. Bob knows his private key and Alice's public
key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC", "AndroidOpenSSL");
ECGenParameterSpec ecParams = new ECGenParameterSpec(spec);

keyGen.initialize(ecParams);

KeyPair keyPair = keyGen.generateKeyPair();

ECPublicKey pubKey = (ECPublicKey) keyPair.getPublic();

ECPrivateKey privKey = (ECPrivateKey) keyPair.getPrivate();

Algorithms
e "SHA256wWIthECDSA", "secp256rl"
* "SHA384withECDSA", "secp384rl1"

Reference
Signature — developer.android.com/reference/java/security/Signature

10.1.6 FCS_COP.1(1) — Encryption/Decryption (AES)
Cipher class encrypts or decrypts a plain text.

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES", "AndroidOpenSSL");
keyGenerator.init(keySize);
SecretKey key = keyGenerator.generateKey();

// Encrypt

Cipher cipher = Cipher.getInstance(transformation);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);

byte[] iv = cipher.getIV();

byte[] clearData = data.getBytes(UTF_8);

byte[] cipherText = cipher.doFinal(clearData);
Pair<byte[], byte[]> result = Pair<>(cipherText, iv);

// Decrypt

Cipher cipher = Cipher.getInstance(transformation);
cipher.init(Cipher.DECRYPT_MODE, secretKey, spec);

String plainText = new String(cipher.doFinal(cipherText), UTF_8);

35

https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/java/security/Signature

Zebra Android 13 Administrator Guidance

Algorithms
e AES/CBC/NoPadding
* AES/GCM/NoPadding

Reference
Cipher — developer.android.com/reference/javax/crypto/Cipher

36

https://developer.android.com/reference/javax/crypto/Cipher

Zebra Android 13 Administrator Guidance

10.1.7 FCS_COP.1(2) — Hashing (SHA)

You can use MessageDigest class to calculate the hash of plaintext.
MessageDigest messageDigest = MessageDigest.getInstance(algorithm);
messageDigest.update(data.getBytes(StandardCharsets.UTF_8));

byte[] digest = messageDigest.digest();

Algorithms

e SHA-1

* SHA-256
 SHA-384
e SHA-512
Reference

MessageDigest — developer.android.com/reference/java/security/MessageDigest

10.1.8 FCS_COP.1(3) — RSA (Signature Algorithms)

KeyFactory class generates RSA private key and public key. Signature class signs a plaintext with private
key generated above and verifies it with public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA", "AndroidOpenSSL");
keyGen.initialize(keySize);

KeyPair keyPair = keyGen.generateKeyPair();

RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();

RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

// Sign

Signature signature = Signature.getInstance(algorithm);
signature.initSign(privateKey);
signature.update(data.getBytes(StandardCharsets.UTF_8));
byte[] sig = signature.sign();

// Verify

Signature signature = Signature.getInstance(algorithm);
signature.initVerify(publicKey);
signature.update(data.getBytes(StandardCharsets.UTF_8));
boolean verified = signature.verify(sig);

Algorithms
* SHA256withRSA
* SHA384withRSA

Reference
Signature — developer.android.com/reference/java/security/Signature

37

https://developer.android.com/reference/java/security/MessageDigest
https://developer.android.com/reference/java/security/Signature

Zebra Android 13 Administrator Guidance

10.1.9 FCS_CKM.1 - Key Generation (RSA)

KeyFactory class generates RSA private key and public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA", "AndroidOpenSSL");
keyGen.initialize(keySize);

KeyPair keyPair = keyGen.generateKeyPair();

RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();

RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

Algorithms
* SHA256withRSA
e SHA384withRSA

Reference
Signature — developer.android.com/reference/java/security/Signature

10.1.10 FCS_COP.1(4) - HMAC

Mac class calculates the hash of plaintext with key.

KeyGenerator keyGenerator = KeyGenerator.getInstance(
algorithm, "AndroidOpenSSL");

keyGenerator.init(keySize);

SecretKey key = keyGenerator.generateKey();

// Mac
Mac mac = Mac.getInstance(algorithm);

mac.init(secretKey);
byte[] mac = mac.doFinal(data.getBytes(StandardCharsets.UTF_8));

Algorithms

¢ HmacSHA1

¢ HmacSHA256
¢ HmacSHA384
¢ HmacSHA512

Reference
Mac — developer.android.com/referencel/javax/crypto/Mac

10.2 Key Management

This section provides code samples for key management.

10.2.1 Code examples:

SecureKeyGenerator keyGenerator = SecureKeyGenerator.getInstance();

// Generate Keypair
keyGenerator.generateAsymmetricKeyPair(KEY_PAIR_ALIAS);
// Generate Symmetric Key

keyGenerator.generateKey (KEY_ALIAS);

// Generate ephemeral key (random number generation)
keyGenerator.generateEphemeralDataKey();

// To delete a key stored in the Android Keystore

KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");
keyStore.load(null);
keyStore.deleteEntry("KEY_TO_REMOVE");

10.2.2 SecureKeyGenerator

NOTE: SecureKeyGenerator is included in the NIAPSEC library.
38

https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/javax/crypto/Mac

Zebra Android 13 Administrator Guidance

SecureKeyGenerator handles low-level key generation operations using the AndroidKeyStore. For
sensitive data protection, this library is not used directly by developers.

Supported Algorithms
¢ AES256 - AES/GCM/NoPadding
* RSA3072 - RSA/ECB/OAEPWIithSHA-256 AndMGF1Padding

Table 9 SecureKeyGenerator Public Static Accessories
Accessors Description

SecureKeyGenerator SecureCipher.getDefault()
API to get an instance of the SecureCipher with NIAP settings.

Table 10 SecureKeyGenerator Public Methods

Methods Description

boolean generateKey(String keyAlias)

Generate an AES key with NIAP settings that is stored and protected in the AndroidKeyStore.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.
-keyAlias - name for the key

boolean generateKeyAsymmetricKeyPair(String keyAlias)

Generate an RSA key pair with NIAP settings that is stored and protected in the AndroidKeyStore.
See SecureConfig.getStrongConfig() - Default is RSA3072 OAEP.
-keyAlias - name for the key pair

EphemeralSecretkey generateEphemeralDataKey()

Generate an AES key with NIAP settings. This key is not stored in the AndroidKeyStore
Uses SecureRandom.getinstanceStrong() to generate a random key.

See SecureConfig.getStrongConfig() - Default is AES256 GCM.

~ NOTE: Built using the JCE libraries. For more information see the following resources:
l * AndroidKeyStore — developer.android.com/training/articles/keystore

« KeyPairGenerator — developer.android.com/reference/java/security/KeyPairGenerator
* SecretKey — developer.android.com/reference/javax/crypto/SecretKey

* SecureRandom — developer.android.com/reference/java/security/SecureRandom

* KeyGenParameterSpec —
developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

39

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/java/security/KeyPairGenerator
https://developer.android.com/reference/javax/crypto/SecretKey
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

Zebra Android 13 Administrator Guidance

10.3 FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS

NOTE: SecureURL is included in the NIAPSEC library.

]
'{ SecureURL automatically configures TLS and can perform certificate and host validation checking. At
construction, SecureURL requires a reference identifier.

Code examples:

SecureURL url = new SecureURL(referenceldentifier, "google_cert");
HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
conn.setRequestMethod("GET");

conn.setDoInput(true);

conn.connect();

// Manual check

SecureURL url = new SecureURL(referenceldentifier, "google_cert");
boolean valid = url.isValid(urlConnection);

Table 11 SecureURL Public Constructors
Constructors Descriptio

n
SecureURL new SecureURL(String referenceldentifier, String clientCert)
API to create an instance of the SecureURL with NIAP settings. clientCert is optional.

Table 12 SecureURL Public Methods

Method Descriptio
S n
HttpsURLConnection openConnection

Opens an HttpsUrlConnection using TLS by default and handles OCSP validation checks and does a
hostname verification check on initiation of the connection.

boolean isValid(String hostname, SSLSocket socket)

A manual OCSP certificate and hostname check.
Based on a hostname and underlying SSLSocket.

boolean isValid(HttpsURLConnection conn)

A manual OCSP certificate and hostname check.
Based on an existing HttpsUrlConnection.

boolean isValid(Certificate cert)
A manual OCSP certificate check.

boolean isValid(List<Certificate> certs)
A manual OCSP certificates check.

/x NOTE: Built using the networking libraries. For more information see the following resources:
= ¢ PKIXRevocationChecker —
developer.android.com/reference/java/security/cert/PKIXRevocationChecker
e SSl Socket — developer.android.com/reference/javax/net/ssl/SSLSocket

40

https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker
https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker
https://developer.android.com/reference/javax/net/ssl/SSLSocket

Zebra Android 13 Administrator Guidance

10.3.1 Cipher Suites

By default, the device is restricted to only support TLS Ciphersuites that are RFC compliant and can be
claimed under MDFPP. As such, no configuration is needed to restrict or allow ciphersuites to be
compliant. A list of the ciphersuites supported by Android 13 can be found below:

Table 13 TLS 1.2 Cipher Suites

Approved Cipher TLS Version
Suites
TLS_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5288, TLSv1.2

TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,
TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,
TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

The device supports TLS versions 1.0, 1.1, and 1.2 for use with EAP-TLS as part of WPA2 and WPA3.
The TOE supports the following cipher suites for this:

* TLS_RSA_WITH_AES_128 CBC_SHA as defined in RFC 5246,

* TLS_RSA WITH_AES_128_GCM_SHA256 as defined in RFC 5288,

* TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

* TLS_ECDHE_ECDSA WITH_AES 128 GCM_SHAZ256 as defined in RFC 5289,

* TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

* TLS_ECDHE_RSA_WITH_AES_128 GCM_SHA256 as defined in RFC 5289,

* TLS _ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

10.3.2 Guidance for Bluetooth Low Energy APIs

Provides classes that manage Bluetooth functionality, such as scanning for devices, connecting with
devices, and managing data transfer between devices. The Bluetooth API supports both Classic Bluetooth
and Bluetooth Low Energy (BLE).

For more information about Classic Bluetooth, see the Android Bluetooth guide. For more information
about Bluetooth Low Energy, see the Android Bluetooth Low Energy (BLE) guide.

The Bluetooth APIs allow applications to do the following:

» Scan for other Bluetooth devices (including BLE devices).

* Query the local Bluetooth adapter for paired Bluetooth devices.

» Establish RFCOMM channels/sockets.

* Connect to specified sockets on other devices.

* Transfer data to and from other devices.

* Communicate with BLE devices, such as proximity sensors, heart rate monitors, and fitness devices.
e Actas a GATT client or a GATT server (BLE).

To perform Bluetooth communication using these APIs, an application must declare the BLUETOOTH
permission. Some additional functionality, such as requesting device discovery, also requires the
BLUETOOTH_ ADMIN permission.

41

https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN

Zebra Android 13 Administrator Guidance

Table 14 Bluetooth Interfaces

Interfac
e
BluetoothAdapter.LeScanCallback

BluetoothProfile

BluetoothProfile.ServicelListener

Table 15 Bluetooth Classes
Class

BluetoothA2dp

BluetoothAdapter

BluetoothAssignedNumbers

BluetoothClass

BluetoothClass.Device

BluetoothClass.Device.Major

BluetoothClass.Service

BluetoothDevice
BluetoothGatt
BluetoothGattCallback

BluetoothGattCharacteristic

BluetoothGattDescriptor

BluetoothGattServer

BluetoothGattServerCallback

BluetoothGattService

BluetoothHeadset

Description

Callback interface used to deliver LE scan results.
Public APIs for the Bluetooth Profiles.

An interface for notifying BluetoothProfile IPC clients when they have been
connected or disconnected to the service.

Description

This class provides the public APIs to control the Bluetooth A2DP profile.
Represents the local device Bluetooth adapter.
Bluetooth Assigned Numbers.

Represents a Bluetooth class, which describes general characteristics and capabilities
of a device.

Defines all device class constants.

Defines all major device class constants.

Defines all service class constants.

Represents a remote Bluetooth device.

Public API for the Bluetooth GATT Profile.

This abstract class is used to implement BluetoothGatt callbacks.
Represents a Bluetooth GATT Characteristic

A GATT characteristic is a basic data element used to construct a GATT
service,BluetoothGattService.

Represents a Bluetooth GATT Descriptor

GATT Descriptors contain additional information and attributes of a GATT
characteristic, BluetoothGattCharacteristic.

Public API for the Bluetooth GATT Profile server role.

This abstract class is used to implement BluetoothGattServer callbacks.

Represents a Bluetooth GATT Service
Gatt Service contains a collection of BluetoothGattCharacteristic, as well as referenced
services.

Public API for controlling the Bluetooth Headset Service.

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.LeScanCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.html
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.ServiceListener.html
https://developer.android.com/reference/android/bluetooth/BluetoothA2dp.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothAssignedNumbers.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.Major.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Service.html
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattDescriptor.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServerCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothHeadset.html

Zebra Android 13 Administrator Guidance

Table 16 Bluetooth Classes (Continued)

Class Description

BluetoothHealth This class was deprecated in API level 29. Health Device Profile (HDP) and MCAP
protocol are no longer used. New apps should use Bluetooth Low Energy based
solutions such as BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),
orBluetoothDevice#createL2capChannel(int)

BluetoothHealthAppConfiguration This class was deprecated in API level 29. Health Device Profile (HDP) and MCAP
protocol are no longer used. New apps should use Bluetooth Low Energy based
solutions such as BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),
orBluetoothDevice#createL2capChannel(int)

BluetoothHealthCallback This class was deprecated in API level 29. Health Device Profile (HDP) and MCAP
protocol are no longer used. New apps should use Bluetooth Low Energy based
solutions such as BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),
orBluetoothDevice#createL2capChannel(int)

BluetoothHearingAid This class provides the public APIs to control the Hearing Aid profile.

BluetoothHidDevice Provides the public APIs to control the Bluetooth HID Device profile.

BluetoothHidDevice.Callback The template class that applications use to call callback functions on events from the
HID host.

BluetoothHidDeviceAppQosSettings Represents the Quality of Service (QoS) settings for a Bluetooth HID Device
application.

BluetoothHidDeviceAppSdpSettings Represents the Service Discovery Protocol (SDP) settings for a Bluetooth HID Device
application.

High level manager used to obtain an instance of an BluetoothAdapter and to conduct

BluetoothManager
overall Bluetooth Management.

BluetoothServerSocket A listening Bluetooth socket.

BluetoothSocket A connected or connecting Bluetooth socket.

For more information, see developer.android.com/reference/android/bluetooth/package-summary.html.
How to connect and pair with a bluetooth device:

// get bluetooth adapter

BluetoothAdapter bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();

if (bluetoothAdapter == null) {
// Device doesn't support Bluetooth

}

// make sure bluetooth is enabled
if (!bluetoothAdapter.isEnabled()) {
Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

43

https://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothHealthAppConfiguration.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothHealthCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothHearingAid.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDevice.Callback.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDeviceAppQosSettings.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDeviceAppSdpSettings.html
https://developer.android.com/reference/android/bluetooth/BluetoothManager.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothServerSocket.html
https://developer.android.com/reference/android/bluetooth/BluetoothSocket.html
https://developer.android.com/reference/android/bluetooth/package-summary.html

Zebra Android 13 Administrator Guidance

startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);

}
// query for devices
Set<BluetoothDevice> pairedDevices = bluetoothAdapter.getBondedDevices();
if (pairedDevices.size() > @) {
// There are paired devices. Get the name and address of each paired device.
for (BluetoothDevice device : pairedDevices) {
String deviceName = device.getName();

String deviceHardwareAddress = device.getAddress(); // MAC address

}
// Connect to devices.
private class AcceptThread extends Thread {
private final BluetoothServerSocket mmServerSocket;
public AcceptThread() {
// Use a temporary object that is later assigned to mmServerSocket
// because mmServerSocket is final.
BluetoothServerSocket tmp = null;

try {
// MY_UUID is the app's UUID string, also used by the client code.

tmp = bluetoothAdapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);
} catch (IOException e) {

Log.e(TAG, "Socket's listen() method failed", e);
}

mmServerSocket = tmp;

}
public void run() {
BluetoothSocket socket = null;
// Keep listening until exception occurs or a socket is returned.
while (true) {
try {
socket = mmServerSocket.accept();
} catch (IOException e) {
Log.e(TAG, "Socket's accept() method failed"”, e);
break;
}
if (socket != null) {
// A connection was accepted. Perform work associated with
// the connection in a separate thread.
manageMyConnectedSocket(socket);
mmServerSocket.close();
break;

}

// Closes the connect socket and causes the thread to finish.
public void cancel() {

try {
mmServerSocket.close();

44

Zebra Android 13 Administrator Guidance

} catch (IOException e) {
Log.e(TAG, "Could not close the connect socket", e);

}

For more information, see developer.android.com/guide/topics/connectivity/bluetooth.html#SettingUp.

Sample service to interact with a bluetooth APIs:
// A service that interacts with the BLE device via the Android BLE API.
public class BLEService extends Service {

private final static String TAG = "BLEService";

private
private
private
private
private
private
private
private
public final

public final
"com
public final
"com
public final
"com
public final

com

com.

BluetoothManager mBluetoothManager;
BluetoothAdapter mBluetoothAdapter;
String mBluetoothDeviceAddress;
BluetoothGatt mBluetoothGatt;

int mConnectionState =
static final int STATE_DISCONNECTED =
static final int STATE_CONNECTING = 1;
static final int STATE_CONNECTED = 2;

STATE_DISCONNECTED;
0;

static String ACTION_GATT_CONNECTED =
niap.ble.ACTION_GATT_CONNECTED";

static String ACTION_GATT_DISCONNECTED =

.niap.ble.ACTION_GATT_DISCONNECTED";

static String ACTION_GATT_SERVICES_DISCOVERED =

.niap.ble.ACTION_GATT_SERVICES_DISCOVERED";

static String ACTION_DATA_AVAILABLE =

.niap.ble.ACTION_DATA_AVAILABLE";

static String EXTRA_DATA =

.niap.ble.EXTRA_DATA";

// Various callback methods defined by the BLE API.
private final BluetoothGattCallback mGattCallback =
new BluetoothGattCallback() {
@Override
public void onConnectionStateChange(BluetoothGatt gatt,

int newState) {

int status,

String intentAction;

if (newState BluetoothProfile.STATE_CONNECTED) {
intentAction = ACTION_GATT_CONNECTED;
mConnectionState = STATE_CONNECTED;
broadcastUpdate(intentAction);
Log.i(TAG, "Connected to GATT server.");

Log.i(TAG, "Attempting to start service discovery:" +
mBluetoothGatt.discoverServices());
} else if (newState BluetoothProfile.STATE_DISCONNECTED) {
intentAction = ACTION_GATT_DISCONNECTED;
mConnectionState = STATE_DISCONNECTED;
Log.i(TAG, "Disconnected from GATT server.");
broadcastUpdate(intentAction);

45

https://developer.android.com/guide/topics/connectivity/bluetooth.html#SettingUp

Zebra Android 13 Administrator Guidance

}
@Override
// New services discovered
public void onServicesDiscovered(BluetoothGatt gatt, int status) {
if (status == BluetoothGatt.GATT_SUCCESS) {
broadcastUpdate (ACTION_GATT_SERVICES_DISCOVERED);
} else {

Log.w(TAG, "onServicesDiscovered received:

+ status);

}
@Override
// Result of a characteristic read operation
public void onCharacteristicRead(BluetoothGatt gatt,
BluetoothGattCharacteristic
characteristic,

int status) {
if (status == BluetoothGatt.GATT_SUCCESS) {
broadcastUpdate(ACTION_DATA AVAILABLE, characteristic);

46

Zebra Android 13 Administrator Guidance

}

11.0 Annexure
11.1 Creating and Applying the StageNow Profile

11.1.1 Install StageNow

Installing StageNow is dependent on the version you are using. The instructions for each version are found
on the StageNow support page. Follow the instructions for the version you are installing.

1.

Install StageNow on your workstation tool from Zebra support portal at.
zebra.com/us/en/support-downloads/software/utilities/stagenow.html.

2. Select the version you are installing; typically you will install the newest version.

Click the version number to expand the options and access the Installation Guide, Release Notes, and
install file. Follow the instructions in the Installation Guide to install StageNow.

Follow the instructions to create the StageNow Profiles. This example uses the instructionsfrom

version 5.12, https://techdocs.zebra.com/stagenow/5-12/stagingprofiles/
Download CCReadinesspackage A13 4490.zip from HERE.

6. Refer the steps to create Xpert Mode profiles at_

techdocs.zebra.com/stagenow/4-2/Profiles/xpertmode/.

7. Refer to the settings type at techdocs.zebra.com/stagenow/4-2/settingtypes/.

Once you are familiar with StageNow usage, continue with 11.1.2 Create the StageNow Profiles to
connect the device to your network. Download CC Readiness package from StageNow workstation
andupdate the device.

NOTE: You can use the profiles attached at the end of this document and import to StageNow and update

"3
'{ the network and Package details.
9.

Navigate to the All Profiles page.

10. Click on Import Profiles to import the zip file as detailed in the following section.

11.1.2 Create the StageNow Profiles

P wbd e

o

Launch StageNow tool on your Workstation.

Login with Admin credentials.

From the home page, click on Create New Profile.

On the Select a Wizard pop up page, choose the Please select MX version on your device drop
down, and set the value same as device MX version - example MX 13.2.Select the Xpert Mode
wizard and then click on Create.

Enter the Profile name and then click on Start.

In the CONFIG section, add two Wi-Fi network settings; one for configuring the network settings anda
second one to connect the device to that network.

a7

https://www.zebra.com/us/en/support-downloads/software/utilities/stagenow.html
https://www.zebra.com/us/en/support-downloads/software/utilities/stagenow.html
https://techdocs.zebra.com/stagenow/5-12/stagingprofiles/
https://www.zebra.com/us/en/support-downloads/security-certification.html
https://techdocs.zebra.com/stagenow/4-2/Profiles/xpertmode/
https://techdocs.zebra.com/stagenow/4-2/Profiles/xpertmode/
https://techdocs.zebra.com/stagenow/4-2/settingtypes/

Zebra Android 13 Administrator Guidance

tam Gare otnn Add x
SettingsMgr © X
0 StansMgr o . T+ B
{) ThressMigr [+
TouchMgr '+
Uikigr +
UssMgr o
Wi-F o
— o}
'3 ~

7. Inthe DEPLOY section, add FileMgr to allow settings that transfer the FBE file to the device,and
PowerMgr settings to update the device OS using the FBE package.

Noame Descylptian Add 3 x
PersonaiDictionary Marage p o =T
PowerKeyMgr Mamage Powar Kay Configuraban 0
PowerMgr Perform powet mansg=ment opetatinn o
RemotaScannerigr Remote Goannes Marggement o
RfidMgr T configuratinn o
ScanModeMgr &t Sean Mode [+ '

W SdCardMgr My st Tunhguratior o

A SettingsMge Marmage Sategs U configurancer o

8. Click Update and then enter the settings data.

48

Zebra Android 13 Administrator Guidance

9. Enter your network details and click Continue.

7 XpertConhg: Steg

s &

StageNow Config

RF Sana

Uncrarges
Speaty Dsagnostic Options
Speafy Advanced Optiven?
Network Actin
Acd o New Netwark
SSID:
MentienYourNW_ S50
Securty Mo

Op Frrara

YPA Mode
Weaz

Ercryption Typs

Frotect Key?
Fassphrase
1234540

se DHCP?

v

49

Zebra Android 13 Administrator Guidance

Network Notfication:

Do not e
o e netwees

Ersable Wi verbose loggng?

‘.M =

Tum on WeFi autamaticalty:

e ficen

Configure Country (Auto/Manuasl)?

RF Band:

Unchanged

Specify Diagnostic Dptians 7

Specify Adwvanced Options?

Network Action

Connect 1o an Existing Netwark

SSD

MensionToarhW_SSit| Q
Specify Hotspot Opbons?

Speaty OmmTrail Opbons?

10. Enter file path details and then select the CCReadinesspackage A13 4490.zip to be downloaded to the
device.

Note:In case of Exit from CC use the file CCExitPackage_A13_4490.zip or relevant package from HERE
11. Click on Continue.

50

https://www.zebra.com/us/en/support-downloads/security-certification.html

Zebra Android 13 Administrator Guidance

5]
i
*

) § * Ths PC » Desktop » CC ~ () Search (L
Crganize = New toie S
" This % T Name Date mocdied Type
¥ 30 Ovjects | CCReadimessPaciagezip Q/2T/2021 254 PM Canipres
B8 Deskiop
4 Documents
& Downloacs

_‘ fierila
5 tiensatp

.o

Select a File

CCReadinessHackage 2

51

Zebra Android 13 Administrator Guidance

12. Enter the FBE package name in the PowerMgr setting to apply the patch on the device.

* Notel: On A10 devices, sample path for ZIP or UPL file is /storage/sdcard0/
CCReadinesspackage A13_4490.zip

* Note 2: On A1l and above devices, sample path for ZIP or UPL file is /sdcard/
CCReadinesspackage_A13_4490.zip

1

FleMgr

05 Upgrade (Upgrade only, supporned on Anceo,

Z1P or UPL File

¥torage/sccancl/CCReadingssPackage i [%]

Suppress Reboot

Do Nothing Trw Twan

Port Contral Action
Tum Curput Tuen Dusprat
Prrmis ON Power OFF

Configure Auto Powe

Haater Action

Do Nostang -

13. While upgrading device from A10 CC state to A13 with all the critical setting already applied via StageNow,
then follow step 15 else move to stepl6
14. On Review screen, Select Barcode as Trusted and opt the certificate which was imported while following

11.1.2 Create the StageNow Profiles

Staging Profile

StageNow Config 2

Deployment 2

Profile Description : XpertConfig (&

Encrypt Barcode, Security Warning:
NEC Data: Your Barcode, NFC data will be | Trusted w | using certificate

52

Zebra Android 13 Administrator Guidance

15. Click on “Continue” and complete the profile
16. On the Publish page, select JS PDF417 type, and then click on Test to generate barcodes.

w| gt b 8 | Bapt by MO o] Copert bw T

Haest the Deplayment Pachage Outside of StogefNom FTP Server

Rarcnde MFC/ DR
T Bgrs (heme ot T L T Tegee
E'm oy Tragitrm
X b .
T2 heee
o
| | Bt i
B
L Laae
Savw
Fta%l
1
| ||
= L2 (=]
- = [v =3

17. Do one of the following:

* For afactory-fresh (or factory-reset) device at the Welcome screen, select FIPS-enabled device and
scan the barcode(s) from the device, or

* Launch the StageNow application from the page and then scan the barcode(s).
18. Once the device connects to the network, download the patch and then apply the patch.

53

Zebra Android 13 Administrator Guidance

11.2 Configuring Critical Settings Using Stage Now

NOTES:

]
'-{ e For settings type details for SDCardMgr, PersistMgr, USBMgr and AccessMgr settings, see.
techdocs.zebra.com/stagenow/4-2/settingtypes/.

e Forinformation on Trusted Staging, see techdocs.zebra.com/stagenow/4-2/trustedstaging/.

1. Referto 11.1.2 Create the StageNow Profiles. Follow steps to create new StageNow Profile # 2 with the
settings shown in the figure below. Add two Wi-Fi settings to the CONFIG section to create a network
and then connect to it.

ADD / EDIT
WZARD -. DERLOY

X

»
2

Name Description

SettingsMagr X

StatusMigr Hequess “Lates peencInen whise pro

ThreatMgr Manag= Threat Martager cordigurat

TouchMgr

Uitdgr

UskMgr Matiage figuratican

Wi-F

WirelessMgr Matrage Worels Ngutatian

P OC|O|000|0| 0

|

Feee WIEIM

2. Add the following settings in DEPLOY Section and then click on update.
e SDCardMgr — Disable SD card access (Unmount)
e AccessMgr — Protect USB Manager CSP
* AccessMgr - Protect Persist Manager CSP
e AccessMgr — Protect SDCard Manager CSP
* AccessMgr - Protect Access Manager CSP
* BatchMgr — Enable Trusted Staging
* FileMgr — Download MDM agent to the device
e AppMgr - Install MDM agent
* IntentMgr — Set/enroll MDM agent as a Device Owner

ADD / toay

WZARD CONRAG DEFLOY

Name Dwacription Add ﬁl %
e —— o @ 1 | e X
AralytsMar [+ ‘ oy XV
Applsallarytigr 6 . ! \ Mg)(“
e RIS x |
prarers T o || x
AudioNolUIMgr © || —X
AroTrggerMgr o o j i s x |
Batch o ‘ x
ORI P

Cances poiale

54

https://techdocs.zebra.com/stagenow/4-2/settingtypes/
https://techdocs.zebra.com/stagenow/4-2/settingtypes/
https://techdocs.zebra.com/stagenow/4-2/trustedstaging/

Zebra Android 13 Administrator Guidance

55

Zebra Android 13 Administrator Guidance

3. Enter valid data for network creation and connecting to the same network

XpertConfig: ¢

StageNow Config

RF Sana
Unzrarges
Speaty Dsagnostic Options

Speafy Advnced Optioea?

Network Acti
Ackd o New Netwark
SSID:

MentienYourh'W S50 (-]

Securmy Mode

Op= Frraal T

YiPA Mode:
WAz

Ercryption Type

Frotect Koy
Fassphrase
12345t [+]

Use DHCP?

Metwork Notihcaton

Du ot e
g g ‘:'M'm"o"" plsmidvey
netlicaten

Enabile Wi-H verbose loggng!?

Tum on Wi-Fi automarncalty

a5 o

Configurs Country (Auta/Manual)?

RF Band:

Unchanged
Spectly Dsgnastic Options

Specdy Advanced Optons?

Netwark Action:

Coonect to am Eosbing Netwodk

SSiD:

MentonYourNW_SS0Y Q
Specty Hotspot Options?

Specty OmniTeail Cptons?

56

Zebra Android 13 Administrator Guidance

4. Follow the steps below to configure the deployment settings, first to disable SD card.
Note: Step 4 is not applicable on devices that doesn’t support sdcard

Deployment

o v v v v

SdCaraMgr AccessMagl AccessMar AccessMar AlcessMagr

o A
S ared ;
fl SaCardMar

Description: Manage SdCard Configuration [

Create New Setting

Save Satting for Re-use

Enable or Disable use of SACard

R “

5. Protect USBMgr.

Doploymaont

1

ApyAagr

& Ac

Descripton: Pardoem Mamagement of Accen features (eg. Authentizstion. Whitelist. etc)

7

Craate New Setang

Jodratn Mide
Exge b Loge Ui ww
el Wl wrws
Toveecw Aczaes Actun
Oc hatteng
P Access Actmm

Oncarw o CVF s Proswond

[resT™

Ao Apg ’

u Gronop Aczuss A
O hotteng

wer » !
Oc hattury

57

Zebra Android 13 Administrator Guidance

6. Protect PersistMgr.

Doploymaont

Doployment

Moty

AccesdA)

=

Desctiption: Mertaen Maragurrect of Accoss lestmes (5.3 Acthwrscation Whitetit o) [

Comam Wow \asTimy

o .. o
— e

T Woteey

Ducsee 4 T as Prosarser

st

e
S~
D% Mty

7. Protect SDCardMgr (Note: This step is not applicable on devices that does not support sdcard)

Deployment
o v

Batch FoledMyr Apphgt

AccessMor AccessMoge

Jparation Mode

Singw L Sasgiv Unar win
’ WATHoOE Witada Wihtaiat

Service Access Action
Do Notheg
5P Access Actior
Declare a C5P as Provectad
5P Name
SaCarahigr
AUD-Approve: «
Function Group Access Action
Do Nothing
Permission Access Action

Do Noshing

58

Zebra Android 13 Administrator Guidance

8. Protect AccessMgr

Deployment

©
Acoirss Mo FaaMor Apphagr Intont

Description: Perform Management of Access foatures (0.9 Authenscation. Whitetst, etc) (2

Craute Nuw Setting
Savwe Setung 101 Ra-use
Opeeston Made

Lgm e 10gt Ulet win
e Wesa it weasagt

Acoess Actioes

Do fyottvrg

59

Zebra Android 13 Administrator Guidance

9. Set StageNow to Trusted Mode.

IMPORTANT: This step requires the use of Trusted certificates. See
techdocs.zebra.com/stagenow/4-2/trustedstaging/ for more information.

Deployment

Intent

Description: Process a Batch File contaming o streans of XML or XML encoded s Binary ‘:/

Create Now Setting

Deployment

Description: Pertarm the marsgenent cgeations |2

Craato New Setting

60

https://techdocs.zebra.com/stagenow/4-2/trustedstaging/

Zebra Android 13 Administrator Guidance

11. Install MDM agent package on the device.

Deployrment

Deployment

 Intent

Description: Seod ao istent 10 an activity or service (7

Create New Sartiey

Ve Setting for Ro-use

frrcil o Dware Qumer

Fackage Namu

samuatwenmp ey teutdpe o
Clazz Name

somabsaarpien lestidp DtrxabdrrirRecens Q

o D

12. Enroll MDM agent as Device Owner.
13. 14.0n the Publish page, select JS PDF417 type, and then click on Test to generate barcodes.

ol gt b 8 ol Bapt by MEMW o] Copent b oo
Haest the Deplayment Pacbage Outside of Stagefiom FTP Server
Harcnde NFC/SDER
Trew e (et R] L T Tege
E'm oy Tragitem
¥ [——
o 0 R
—
]| | M s
bonre
o 10 L
avw
i
R [
| | | e
[Te———
= w [+
- -
| e] [e |

* Work Profile Separation
¢ MultiUser
* SDCard

@ IMPORTANT: Zebra devices in CC mode will not support the following:

Zebra Android 13 Administrator Guidance

ﬁn‘_ ZEBRA www.zebra.com

http://www.zebra.com/

