
449oemcofnigBLT

Android 13
Common Criteria

Administrator
Guidance for Zebra
Devices (4490)

Version 1.2
2025/02/12

2

ZEBRA and the stylized Zebra head are trademarks of Zebra Technologies Corporation, registered in many
jurisdictions worldwide. All other trademarks are the property of their respective owners.
© 2024 Zebra Technologies Corporation and/or its affiliates. All rights reserved.

Information in this document is subject to change without notice. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in
accordance with the terms of those agreements.

For further information regarding legal and proprietary statements, please go to:
SOFTWARE: http://www.zebra.com/linkoslegal
COPYRIGHTS: http://www.zebra.com/copyright
WARRANTY: http://www.zebra.com/warranty
END USER LICENSE AGREEMENT: http://www.zebra.com/eula

Terms of Use

Product Improvements

Continuous improvement of products is a policy of Zebra Technologies. All specifications and designs are subject
to change without notice.

Liability Disclaimer

Zebra Technologies takes steps to ensure that its published Engineering specifications and manuals are correct;
however, errors do occur. Zebra Technologies reserves the right to correct any such errors and disclaims liability
resulting therefrom.

Limitation of Liability

In no event shall Zebra Technologies or anyone else involved in the creation, production, or delivery of the
accompanying product (including hardware and software) be liable for any damages whatsoever (including,
without limitation, consequential damages including loss of business profits, business interruption, or loss of
business information) arising out of the use of, the results of use of, or inability to use such product, even if Zebra
Technologies has been advised of the possibility of such damages. Some jurisdictions do not allow the exclusion
or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.

Publication Date
2025/02/12

http://www.zebra.com/linkoslegal
http://www.zebra.com/copyright
http://www.zebra.com/warranty
http://www.zebra.com/eula

3

Contents
1.0 Document Introduction .. 5

1.1 Evaluated Devices .. 5

1.2 Acronyms .. 6

2.0 Evaluated Capabilities ... 6

2.1 Data Protection ... 7

2.1.1 File-Based Encryption .. 7

2.2 Key Management .. 7

2.2.1 KeyStore .. 7

2.2.2 KeyStore key Attestation ... 8

2.2.3 KeyChain ... 8

2.3 Device Integrity ... 8

2.3.1 Verified Boot .. 8

2.3.2 Secure Boot ... 9

2.4 Device Management ... 9

2.4.1 EMM/MDM console ... 9

2.4.2 DPC (MDM Agent) ... 9

2.4.3 Managed Configuration ... 10

2.5 VPN Connectivity .. 10

2.6 Audit Logging .. 10

3.0 Security Configuration ... 11

3.1 Entering into Common Criteria State .. 11

3.2 Successfully Achieving Common Criteria State .. 12

3.2.1 Limitations ... 12

3.3 Exiting from Common Criteria State .. 12

3.4 Cryptographic Module Identification .. 12

3.5 Permissions Model .. 13

3.6 Common Criteria Related Settings .. 13

3.7 Password Recommendations ... 18

3.8 Bug Reporting Process ... 18

4.0 Bluetooth Configuration ... 18

4.1 Pair 18

4.2 Connect ... 19

Contents

4

4.3 Remove Previously Paired Device .. 20

5.0 Wi-Fi Configuration .. 20

6.0 VPN Configuration ... 21

7.0 Secure Update Process ... 21

7.1 Acquire .. 22

7.2 Transfer/Apply ... 22

7.2.1 One File – New Patch or New Base Line 22

7.2.2 Two Files – New Base Line and Patch .. 22

8.0 Audit Logging ... 22

8.1 Security Logs .. 22

8.2 Logcat Logs .. 23

9.0 FDP_DAR_EXT.2 & FCS_CKM.2(2) – Sensitive Data Protection Overview ... 30

9.1 SecureContextCompat .. 30

10.0 API Specification ... 31

10.1 Cryptographic APIs ... 31

10.1.1 Code Examples ... 31

10.1.2 SecureCipher ... 32

10.1.3 FCS_CKM.2(1) – Key Establishment (RSA) 34

10.1.4 FCS_CKM.2(1) – Key Establishment (ECDSA) & FCS_COP.1(3) –
Signature Algorithms (ECDSA) .. 34

10.1.5 FCS_CKM.1 – Key Generation (ECDSA) 35

10.1.6 FCS_COP.1(1) – Encryption/Decryption (AES) 35

10.1.7 FCS_COP.1(2) – Hashing (SHA) .. 37

10.1.8 FCS_COP.1(3) – RSA (Signature Algorithms) 37

10.1.9 FCS_CKM.1 – Key Generation (RSA) ... 38

10.1.10 FCS_COP.1(4) - HMAC ... 38

10.2 Key Management .. 38

10.2.1 Code examples: ... 38

10.2.2 SecureKeyGenerator ... 38

10.3 FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS 40

10.3.1 Cipher Suites ... 41

10.3.2 Guidance for Bluetooth Low Energy APIs 41

11.0 Annexure ... 47

11.1 Creating and Applying the StageNow Profile .. 47

11.1.1 Install StageNow .. 47

11.1.2 Create the StageNow Profiles ... 47

11.2 Configuring Critical Settings Using Stage Now ... 54

5

1.0 Document Introduction

This guide includes procedures for configuring Zebra Devices running Android 13 into a Common Criteria
evaluated configuration and additionally includes guidance to application developers wishing to write
applications that leverage the Zebra Device’s Common Criteria compliant APIs and features.

1.1 Evaluated Devices

The evaluated devices include the following models and versions:

Table 1 Evaluated Devices

Model # CPU Kernel Android OS Version Security Patch Level

MC9400 QCM4490 5.10.205 Android 13 Aug 05, 2024

MC9450 QCM4490 5.10.205 Android 13 Aug 05, 2024

PS30 QCM4490 5.10.205 Android 13 Aug 05, 2024

TC58e QCM4490 5.10.205 Android 13 Aug 05, 2024

TC53e QCM4490 5.10.205 Android 13 Aug 05, 2024

MC3400 QCM4490 5.10.205 Android 13 Aug 05, 2024

WT5400 QCM4490 5.10.205 Android 13 Aug 05, 2024

WT6400 QCM4490 5.10.205 Android 13 Aug 05, 2024

Zebra Android 13
Administrator
Guidance

Zebra Android 13 Administrator Guidance

6

To verify the OS Version and Security Patch Level on your device:

1. Tap on Settings.

2. Tap on About phone.

3. Scroll down and tap on Android version.

1.2 Acronyms

Acronym Description

AE Android Enterprise

AES Advanced Encryption Standard

API Application Programming Interface

BYOD Bring Your Own Device

CA Certificate Authority

DO Device Owner

DPC Device Policy Controller

EMM Enterprise Mobility Management

FBE File Based Encryption

FDE Full Disk Encryption

FIPS Federal Information Processing Standards

MDM Mobile Device Management

MX Mobility Extensions

PKI Public Key Infrastructure

TOE Target of Evaluation

2.0 Evaluated Capabilities

The Common Criteria configuration adds support for many security capabilities. Some of those capabilities
include the following:

• Data Protection

• Key Management

• Device Integrity

• Device Management

• Work Profile Separation

• VPN Connectivity

• Audit Logging

Zebra Android 13 Administrator Guidance

7

2.1 Data Protection

Android uses industry-leading security features to protect user data. The platform creates an application
environment that protects the confidentiality, integrity, and availability of user data.

2.1.1 File-Based Encryption

Zebra devices default uses File Based Encryption [FBE]. To make it compliant to CC state, Zebra devices
should follow the steps mentioned. See step 2 in 2. Create a StageNow Profile, and use it to apply the
CCReadinesspackage_A13_4490.zip on the device.

Encryption is the process of encoding user data on an Android device using an encryption key. With
encryption, even if an unauthorized party tries to access the data, they won’t be able to read it. The device
utilizes File-based encryption (FBE) which allows different files to be encrypted with different keys that can
be unlocked independently.

Direct Boot allows encrypted devices to boot straight to the lock screen and allows alarms to operate,
accessibility services to be available and phones to receive calls before a user has provided their
credential.

With file-based encryption and APIs to make apps aware of encryption, it's possible for these apps to
operate within a limited context before users have provided their credentials while still protecting private
user information.

On a file-based encryption-enabled device, each device user has two storage locations available to apps:

• Credential Encrypted (CE) storage, which is the default storage location and only available after the
user has unlocked the device. CE keys are derived from a combination of user credentials and a
hardware secret. It is available after the user has successfully unlocked the device the first time after
boot and remains available for active users until the device shuts down, regardless of whether the
screen is subsequently locked or not.

• Device Encrypted (DE) storage, which is a storage location available both before the user has unlocked
the device (Direct Boot) and after the user has unlocked the device. DE keys are derived from a
hardware secret that’s only available after the device has performed a successful Verified Boot.

By default, applications do not run during Direct Boot mode. If an application needs to take action during
Direct Boot mode, such as an accessibility service like Talkback or an alarm clock application, the
application can register components to run during this mode.

DE and CE keys are unique and distinct - no user's CE or DE key will match another. File-based
encryption allows files to be encrypted with different keys, which can be unlocked independently. All
encryption is based on AES-256 in XTS mode. Due to the way XTS is defined, it needs two 256-bit keys. In
effect, both CE and DE keys are 512-bit keys.

By taking advantage of CE, file-based encryption ensures that a user cannot decrypt another user’s data.
This is an improvement on full-disk encryption (FDE) where there’s only one encryption key, so all users
must know the primary user’s passcode to decrypt data. Once decrypted, all data is decrypted.

2.2 Key Management

2.2.1 KeyStore

The Android KeyStore class lets you manage private keys in secure hardware to make them more difficult
to extract from the device. The KeyStore enables applications to generate and store credentials used for
authentication, encryption, or signing purposes.

Keystore supports symmetric cryptographic primitives such as AES (Advanced Encryption Standard) and
HMAC (Keyed-Hash Message Authentication Code) and asymmetric cryptographic algorithms such as
RSA and EC. Access controls are specified during key generation and enforced for the lifetime of the key.
Keys can be restricted to be usable only after the user has authenticated, and only for specified purposes
or with specified cryptographic parameters. For more information, see the Authorization Tags and
Functions pages.

https://developer.android.com/training/articles/direct-boot.html
https://developer.android.com/reference/java/security/KeyStore.html
https://source.android.com/security/keystore/features.html
https://source.android.com/security/keystore/tags
https://source.android.com/security/keystore/implementer-ref

Zebra Android 13 Administrator Guidance

8

Additionally, version binding binds keys to an operating system and patch level version. This ensures that
an attacker who discovers a weakness in an old version of system or TEE software cannot roll a device
back to the vulnerable version and use keys created with the newer version.

On Zebra Devices, the KeyStore is implemented in secure hardware.

2.2.2 KeyStore key Attestation

Zebra Devices also support Key Attestation, which empowers a server to gain assurance about the
properties of keys.

2.2.3 KeyChain

The KeyChain class allows applications to use the system credential storage for private keys and
certificate chains. KeyChain is often used by Chrome, Virtual Private Network (VPN) applications, and
many enterprise applications to access keys imported by the user or by the mobile device management
application.

Whereas the KeyStore is for non-shareable application-specific keys, KeyChain is for keys that are meant
to be shared across profiles. For example, your mobile device management agent can import a key that
Chrome will use for an enterprise website.

2.3 Device Integrity

Device integrity features protect the mobile device from running a tampered operating system. With
companies using mobile devices for essential communication and core productivity tasks, keeping the OS
secure is essential. Without device integrity, very few security properties can be assured. Android adopts
several measures to guarantee device integrity at all times.

2.3.1 Verified Boot

Verified Boot is Android's secure boot process that verifies system software before running it. This makes
it more difficult for software attacks to persistent across reboots and provides users with a safe state at
boot time. Each Verified Boot stage is cryptographically signed. Each phase of the boot process verifies
the integrity of the subsequent phase, prior to executing that code. Full boot of a compatible device with a
locked bootloader proceeds only if the OS satisfies integrity checks. Verification algorithms used must be
as strong as current recommendations from NIST for hashing algorithms (SHA-256) and public key sizes
(RSA-2048).

Figure 1 Verified Boot Process

The Verified Boot state is used as an input in the process to derive disk encryption keys. If the Verified
Boot state changes (e.g. the user unlocks the bootloader), then the secure hardware prevents access to
data used to derive the disk encryption keys that were used when the bootloader was locked.

https://source.android.com/security/keystore/attestation
http://developer.android.com/reference/android/security/KeyChain.html
http://source.android.com/security/verifiedboot/index.html

Zebra Android 13 Administrator Guidance

9

Enterprises can check the state of Verified Boot using KeyStore key attestation. This retrieves a statement
signed by the secure hardware attesting to many attributes of Verified Boot along with other information
about the state of the device.

Find out more about Verified Boot here.

2.3.2 Secure Boot

In addition to Google’s mandated Verified. Zebra devices supports additional integrity check with Secure
Boot, to protect OS image’s integrity. Zebra Devices (Secure Boot Enabled) ensures protection against
binary manipulation of software and re-flashing attacks.

Secure boot enabled device protects itself from modification by untrusted subjects using following
methods:

• First level Protection is a Secure Boot process that uses cryptographic signatures to ensure the
authenticity/integrity of bootloader/Kernel. The protection is done using data fused into the device
processor.

• Zebra Devices (Secure Boot Enabled protects its REK (Resource Environment Key) by limiting access
to only trusted applications within the Trusted Environment (TEE).

• Zebra Devices includes a Trusted Module which utilizes the REK to protect all other key in the
hierarchy.

• Bootloader Security offers users no other method of installing new software other than Zebra Secured
prescribed OTA methods.

2.4 Device Management

The TOE leverages the device management capabilities that are provided through Android Enterprise
which is a combination of three components: your EMM/MDM console, a device policy controller (DPC)
which is your MDM Agent, and an EMM/MDM Application Catalog.

Figure 2 Components of an Android Enterprise solution.

2.4.1 EMM/MDM console

EMM solutions typically take the form of an EMM console—a web application you develop that allows IT
admins to manage their organization, devices, and apps. To support these functions for Android, you
integrate your console with the APIs and UI components provided by Android Enterprise.

2.4.2 DPC (MDM Agent)

All Android devices that an organization manages through your EMM console must install a DPC
application during setup. A DPC is an agent that applies the management policies set in your EMM
console to devices. Depending on which development option you choose, you can couple your EMM
solution with the EMM solution’s DPC, Android's DPC, or with a custom DPC that you develop.

End users can provision a fully managed or dedicated device using a DPC identifier (such as "afw#"),
according to the implementation guidelines defined in the Play EMM API developer documentation.

https://developer.android.com/training/articles/security-key-attestation.html
http://source.android.com/security/verifiedboot/index.html
https://developers.google.com/android/work/dev-options
https://developers.google.com/android/management/provision-device
https://developer.android.com/work/dpc/build-dpc.html
https://developers.google.com/android/work/play/emm-api/prov-devices#set_up_device_owner_mode_afw_accts

Zebra Android 13 Administrator Guidance

10

• The EMM's DPC must be publicly available on Google Play, and the end user must be able to install the
DPC from the device setup wizard by entering a DPC-specific identifier.

• Once installed, the EMM's DPC must guide the user through the process of provisioning a fully
managed or dedicated device.

2.4.3 Managed Configuration

Managed configurations allow the organization's IT admin to remotely specify settings for apps. Zebra
OEMConfig is Zebra’s OEM-specific application that conforms to the OEMConfig model. It provides access
to Zebra-specific and privileged functions via Managed Configurations that are exposed by the Zebra
OEMConfig application.

Using EMM DPC enrolled as a Device Owner, you can set EMM policies or managed configuration values
on a device.

IMPORTANT: You must enable security logging via your EMM DPC to achieve CC compliance. This
is required for OemConfig to write to security logs on the application of managed configurations which

are mandatory to be audit logged according to DOD Annexure for MDFPP33.

For more details on OemConfig security logging, see 2.6 Audit Logging.

To Use Zebra OemConfig through Test DPC:

1. Install Test DPC and make DPC as Device Owner.

2. Side load Zebra OEMConfig application from Google Play or from Zebra Support Central.

3. Enable security logging via Test DPC.

4. Select Managed Configurations -> Select OEMConfig from the drop-down.

5. Load Manifest Restrictions.

6. Edit transactionId with any random number.

7. Click on the “steps” edit icon.

8. Select Configure.

9. Click on the Bundle #0 edit icon.

10. Select Configure.

11. Click on the blacklistStep or serviceCspAction edit icon.

12. Set the configuration.

13. Click on Save in all pages.

A Successfully set app restrictions pop up appears.

Broadcast adb shell am broadcast -a
com.android.vending.APPLICATION_RESTRICTIONS_CHANGED
-n com.zebra.oemconfig.release/.BootCompleteReceiver

2.5 VPN Connectivity

IT admins can specify an Always On VPN to ensure that data from specified managed apps will always go
through a configured VPN.

NOTE: This feature requires deploying a VPN client that supports both Always On and per-app VPN
features.

IT admins can specify an arbitrary VPN application (specified by the application package name) to be set
as an Always On VPN. IT admins can use managed configurations to specify the VPN settings for an
application.

See 6.0 VPN Configuration for more information about VPN configuration options.

2.6 Audit Logging

IT admins can gather usage data from devices that can be parsed and programmatically evaluated for
malicious or risky behavior. Activities logged include Android Debug Bridge (adb) activity, application
launches, and screen unlocks. For Audit Logging, IT admins can do the following:

• Enable security logging for target devices, and the EMM's DPC must be able to retrieve both security
logs and pre-reboot security logs automatically.

• Review enterprise security logs for a given device and configurable time window, in the EMMs console.

https://play.google.com/store/apps/details?id=com.zebra.oemconfig.release
https://www.zebra.com/us/en/support-downloads/software/utilities/oemconfig-android-application.html
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#setAlwaysOnVpnPackage(android.content.ComponentName%2C%20java.lang.String%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager#retrievePreRebootSecurityLogs(android.content.ComponentName)
https://developer.android.com/work/dpc/security#monitor_enterprise_process_logs_and_remote_bug_reports

Zebra Android 13 Administrator Guidance

11

• IT admins can export enterprise security logs from the EMMs console.

• Capture relevant logging information from Logcat which does not require any additional configuration to
be enabled.

See Table 4 for an example of a detailed audit logging table, along with information on how to view and
export the different types of audit logs.

Zebra additional Security Logging

IMPORTANT: You must use your EMM DPC enable security logging to meet CC compliance.

Zebra has additional managed configurations which must be audit logged according to DOD Annexure for

MDFPP33.

Zebra performs additional security audit logging through OemConfig, which leverages existing Google
APIs already compatible to CC standards, to write it to security logs.

Zebra Security log entry produce the following information:

• Tag

Zebra is using custom TAG for audit logging-
TAG_MANAGE_CONFIGURATION_APPLIED = 1111111

• Message

A string message includes Date, Time, Caller name, title of the Managed Configuration, Results -
success or failure of applying the Managed Configuration, Failure reason if results = failure.

3.0 Security Configuration

The Zebra Devices offer a rich built-in interface and MDM callable interface for security configuration. This
section identifies the security parameters for configuring your device in Common Criteria mode and for
managing its security settings.

3.1 Entering into Common Criteria State

IMPORTANT: The following 5 steps MUST be performed in order.

1. Zebra Device for CC compliance should be Boring FIPS supported. Below are pre-requisites.

a. Select the device from Table 1.

b. if build fingerprint is greater than or equal to 13-21-11.00-TG-U00-STD-NEM-04 then continue with
step 2.

c. Download and install the BSP from here with build fingerprint higher than 13-21-11.00-TG-U00-
STD-NEM-04.

2. Create a StageNow Profile and use it to apply the CCReadinesspackage_A13_4490.zip on the device.

a. Download CCReadinesspackage_A13_4490.zip from here.

b. Use StageNow to deploy the package to the device. See 11.1 Creating and Applying the StageNow
Profile.

NOTE: See 11.0 Annexure for more details on creating and applying the StageNow Profile.

3. Use StageNow to configure critical settings and to enroll your EMM agent as Device Owner.
As required for CC compliance:

a. Disable use of SDcard.

b. Disable various alternate administrative functions.

c. Enroll the Device Owner to provide administrative functions.

d. Convert Staging method to Trusted Staging and deploy MDM Agent to enroll as Device Owner.

NOTE: See 11.2 Configuring Critical Settings Using Stage Now for more details.

https://www.zebra.com/us/en/support-downloads/mobile-computers.html
https://www.zebra.com/us/en/support-downloads/security-certification.html

Zebra Android 13 Administrator Guidance

12

4. Configure the device into Common Criteria state.

IMPORTANT: You must set the following options using your EMM after enrolled as Device Owner:
a. Turn ON “Enable Common Criteria Mode” via TestDPC
b. Require a lockscreen password.

Please review the Password Management items in 3.6 Common Criteria Related Settings.

c. Disable Smart Lock.

Smart Lock can be disabled using KEYGUARD_DISABLE_TRUST_AGENTS().

d. Disable Debugging Features (Developer options) .

By default Debugging features are disabled. The system administrator can prevent the user from
enabling Debugging features using DISALLOW_DEBUGGING_FEATURES().

e. Disable installation of applications from unknown sources

This can be disabled by using DISALLOW_INSTALL_UNKNOWN_SOURCES().

f. VPN Full Tunnel Configuration In order to leverage full tunnel IPSEC VPN, the VPN client must be
configured to route all traffic (0.0.0.0) through the VPN application.

3.2 Successfully Achieving Common Criteria State

If all steps in 3.1 Entering into Common Criteria State are completed successfully, your device is in CC
state. No additional configuration is required to ensure key generation, key sizes, hash sizes, and all other
cryptographic functions meet NIAP requirements.

3.2.1 Limitations
Zebra devices in CC State will not support the following:

• Management of Work Profile

• Multi-User

• SDCard and USB external storage

• Downgrades are NOT allowed.

3.3 Exiting from Common Criteria State

1. Download CCExitPackage_A13_4490.zip or relevant package from HERE.

2. Use StageNow to deploy the package to the device.

Refer 11.1 Creating and Applying the StageNow Profile for more details.

No additional configuration is required to ensure key generation, key sizes, hash sizes, and all other
cryptographic functions meet NIAP requirements.

3.4 Cryptographic Module Identification

The TOE implements CAVP certified cryptographic algorithms which are provided by the following
cryptographic components:

• BoringSSL Library 1.0

• Hash: 7f02881e96e51f1873afcf384d02f782b48967ca

• Commit hash: beec06d977932d2f7d6f7bf099446fed1fd93ced

• The TOE's LockSettings service

• Android LockSettings service KBKDF (version 77561fc30db9aedc1f50f5b07504aa65b4268b88)

• Hardware Cryptography

• TOE's Wi-FI Chipset provides an AES-CCMP implementation.

• The TOE's application processor (SD4490) provides additional cryptographic algorithms. The
CAVP certificates correctly identify the specific hardware.

The use of other cryptographic components beyond those listed above was neither evaluated nor tested
during the TOE's Common Criteria evaluation.

No additional configuration is needed for the cryptographic modules to be compliant.

Note: Some of the claimed SKUs [TC58e, TC53e] are equipped with Strongbox capabilities; however,
the scope of the evaluation does not cover encompass the validation of this functionality and its use is
not supported within the evaluated configuration.

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_TRUST_AGENTS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://www.zebra.com/us/en/support-downloads/security-certification.html

Zebra Android 13 Administrator Guidance

13

3.5 Permissions Model

Android runs all apps inside sandboxes to prevent malicious or buggy application code from compromising
other apps or the rest of the system. Because the application sandbox is enforced in the kernel, this
enforcement extends to the entire application regardless of the specific development environment, APIs
used, or programming language. A memory corruption error in an application only allows arbitrary code
execution in the context of that particular application, with the permissions enforced by the OS.

Similarly, system components run in least-privileged sandboxes in order to prevent compromises in one
component from affecting others. For example, externally reachable components, like the media server
and WebView, are isolated in their own restricted sandbox.

Android employs several sandboxing techniques, including Security-Enhanced Linux (SELinux), seccomp,
and file-system permissions.

The purpose of a permission is to protect the privacy of an Android user. Android apps must request
permission to access sensitive user data (such as contacts and SMS), as well as certain system features
(such as camera and internet). Depending on the feature, the system might grant the permission
automatically or might prompt the user to approve the request.

A central design point of the Android security architecture is that no application, by default, has permission
to perform any operations that would adversely impact other apps, the operating system, or the user. This
includes reading or writing the user's private data (such as contacts or emails), reading or writing another
application's files, performing network access, keeping the device awake, and so on.

The DPC can pre-grant or pre-deny specific permissions using PERMISSION_GRANT_STATE APIs. In
additio, the end user can revoke a specific apps permission by doing the following:

1. Tap on Settings > Apps¬ifications.

2. Tap on the particular application and then tap Permissions.

From there the user can toggle off specific permissions. You can learn more about Android Permissions on
developer.android.com.

3.6 Common Criteria Related Settings

The Common Criteria evaluation requires a range of security settings to be available. Those security
settings are identified in the table below. In many cases, the administrator or user must have the ability to
configure the setting, but no specific value is required.

Table 2 Common Criteria Settings

Security Feature Setting Description Required Value API User Interface

Encryption Device
Encryption

Encrypts all internal
storage

N/A Encryption on by default
with no way to turn off
wipeData().

To wipe the device go to
Settings > System > Reset
options and select Erase all
date (factory reset). Wipe Device Removes all data

from device
No required value

Wipe Enterprise
Data

Remove all enterprise
data from device

No required value wipeData called from
secondary user.

Password
Management

Password
Length

Minimum number of
characters in a
password

No required value setPasswordMinimumLe
ngth()

To set a screen lock go to
Settings > Security & location
> Screen lock and tap
Password.

Password
Complexity

Specify the type of
characters required in
a password

No required value setPasswordQuality()

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#PERMISSION_GRANT_STATE_DEFAULT
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#wipeData(int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordMinimumLength(android.content.ComponentName%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordQuality(android.content.ComponentName%2C%20int)

Zebra Android 13 Administrator Guidance

14

Password
Expiration

Maximum length of
time before a
password must
change

No required value setPasswordExpirationTi
meout()

Authentication
Failures

Maximum number of
authentication failures

50 or less setMaximumFailedPass
wordsForWipe()

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout(android.content.ComponentName%2C%2520long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setPasswordExpirationTimeout(android.content.ComponentName%2C%2520long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumFailedPasswordsForWipe(android.content.ComponentName%2C%20int)

Zebra Android 13 Administrator Guidance

15

Table 2 Common Criteria Settings (Continued)

Security Feature Setting Description Required Value API User Interface

Lockscreen Inactivity to
lockout

Time before
lockscreen is
engaged

No required value setMaximumTimeToLock
()

To set an inactivity lockout go to
Settings > Security & location
and tap on the gear icon next to
Screen lock then tap on
Automatically lock and select the
appropriate value. To set a banner
go to Settings > Security &
location > Lock screen
preferences > Lock screen
message. Set a message and tap
Save.

Tap the power button to turn off the
screen which locks the device.

Banner Banner message
displayed on the
lockscreen

Administrator or
user defined text

setDeviceOwnerLockScr
eenInfo

Remote Lock Looks the device
remotely

Function must be
available

lockNow()

Show Password Disallows the
displaying of the
password on the
screen of lock-screen
password

Disable This is disabled by
default

Notifications Controls whether
notifications are
displayed on the
lockscreen

Enable/Disable
are available
options

KEYGUARD_DISABLE_
SECURE_NOTIFICATIO
NS()
KEYGUARD_DISABLE_
UNREDACTED_NOTIFI
CATIONS

Control
Biometric Face
Unlock

Control the use of
Biometric Face unlock

Enable/Diable
are available
options

KEYGUARD_DISABLE
D_FEATURES_SET

Certificate
Management

Import CA
Certificates

Import CA Certificates
into the Trust Anchor
Database or the
credential storage

No required value installCaCert() Tap on Settings > Security &
location > Advanced > Encryption
& credentials and select Install
from storage

Remove
Certificates

Remove certificates
from the Trust
Anchor Database or
the credential storage

No required value uninstallCACert() To clear all user installed
certificates tap on Settings >
Security & location > Advanced
> Encryption & credentials and
select Clear credentials.

To remove a specific user installed
certificate tap on Settings >
Security & location > Advanced
> Encryption & credentials >
Trusted credentials. Switch to
the User tab, select the certificate
you want to delete and tap on
Remove.

Import Client
Certificates

Import client
certificates in to
Keychain

No required value installKeyPair() Tap on Settings > Security &
location > Advanced > Encryption
& credentials and select Install
from storage.

Remove Client
Certificates

Remove client
certificates from
Keychain

No required value removeKeyPair() To remove a specific user installed
client certificate tap on Settings >
Security & location > Advanced >
Encryption & credentials > User
credentials.
Switch to the User tab, select the
certificate you want to delete and
tap on Remove.

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumTimeToLock(android.content.ComponentName%2C%20long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setMaximumTimeToLock(android.content.ComponentName%2C%20long)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setDeviceOwnerLockScreenInfo(android.content.ComponentName%2C%2520java.lang.CharSequence)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setDeviceOwnerLockScreenInfo(android.content.ComponentName%2C%2520java.lang.CharSequence)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#lockNow()
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_SECURE_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#KEYGUARD_DISABLE_UNREDACTED_NOTIFICATIONS
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installCaCert(android.content.ComponentName%2C%20byte%5B%5D)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#uninstallCaCert(android.content.ComponentName%2C%2520byte%5B%5D)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#installKeyPair(android.content.ComponentName%2C%20java.security.PrivateKey%2C%20java.security.cert.Certificate%2C%20java.lang.String)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#removeKeyPair(android.content.ComponentName%2C%20java.lang.String)

Zebra Android 13 Administrator Guidance

16

Table 2 Common Criteria Settings (Continued)

Security Feature Setting Description Required Value API User Interface

Radio Control Control Wi-Fi Control access to
Wi-Fi

Enable/Disable
are available
options

DISALLOW_CONFIG_
WIFI()

To disable Wi-Fi tap on
Settings > Network & internet
and toggle Airplane mode to
On.

Control GPS Control access to
GPS

Enable/Disable
are available
options

DISALLOW_SHARE_LO
CATION()
DISALLOW_CONFIG_L
OCATION()

Control Cellular Control access to
Cellular

Enable/Disable
are available
options

DISALLOW_CONFIG_M
OBILE_NETWORKS()

To disable Cellular tap on Settings
> Network & internet > Mobile
network and tap on your carrier
and toggle to Off.

Control NFC Control access to
NFC

Enable/Disable
are available
options

DISALLOW_OUTGOIN
G_BEAM()

To disable NFC tap on Settings >
Connected devices >
Connection preferences and
toggle NFC to Off.

Control
Bluetooth

Control access to
Bluetooth

Enable/Disable
are available
options

DISALLOW_BLUETOOT
H ()
DISALLOW_BLUETOOT
H_SHARING()
DISALLOW_CONFIG_B
LUETOOTH()

Control
Location
Service

Control access to
Location Service

Enable/Disable
are available
options

DISALLOW_SHARE_LO
CATION()
DISALLOW_CONFIG_L
OCATION()

Wi-Fi Settings Specify Wi-Fi
SSIDs

Specify SSID values
for connecting to
Wi-Fi. Can also
create white and
black lists for SSIDs.

No required value WifiEnterpriseConfig()

Set WLAN CA

Certificate

Select the CA
Certificate for the
Wi-FI connection

No required value WifiEnterpriseConfig()

Specify security
type

Specify the
connection security
(WPA2, WPA3 etc)

No required value WifiEnterpriseConfig()

Select
authentication
protocol

Specify the EAP-TLS
connection values

No required value WifiEnterpriseConfig()

Select client
credentials

Specify the client
credentials to access
a specified WLAN

No required value WifiEnterpriseConfig()

Control

Always-on VPN

Control access to
Always-on VPN

Enable/Disable
are available
options

setAlwaysOnVPNPacka
ge()

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_WIFI
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_MOBILE_NETWORKS
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_OUTGOING_BEAM
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_BLUETOOTH
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_SHARE_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_LOCATION
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#WifiEnterpriseConfig()
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName%2C%20java.lang.String%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAlwaysOnVpnPackage(android.content.ComponentName%2C%20java.lang.String%2C%20boolean)

Zebra Android 13 Administrator Guidance

17

Table 2 Common Criteria Settings (Continued)

Security Feature Setting Description Required Value API User Interface

Hardware Control Control
Microphone
(across device)

Control access to
microphone across
the device

Enable/Disable
are available
options

DISALLOW_UNMUTE_
MICROPHONE()

Control
Microphone
(per-app basis)

Control access to
microphone per
application

Enable/Disable
are available
options

 Tap on Settings > Apps &
notifications > App permissions
> Microphone and then de-select
the apps to remove permissions.

Control Camera
(per-app basis)

Control access to
camera per
application

Enable/Disable
are available
options

 Tap on Settings > Apps &
notifications > App
permissions > Camera and
then de-select the apps to
remove permissions.

Control USB
Mass Storage

Control access to
mounting the device
for storage over USB.

Enable/Disable
are available
options

DISALLOW_MOUNT_P
HYSICAL_MEDIA()

Control USB
Debugging

Control access to
USB debugging.

Enable/Disable
are available
options

DISALLOW_DEBUGGIN
G_FEATURES()

Control USB
Tethered
Connections

Control access to
USB tethered
connections.

Enable/Disable
are available
options

DISALLOW_CONFIG_T
ETHERING()

Control
Bluetooth
Tethered
Connections

Control access to
Bluetooth tethered
connections.

Enable/Disable
are available
options

DISALLOW_CONFIG_T
ETHERING()

Control Hotspot
Connections

Control access to
Wi-Fi hotspot
connections

Enable/Disable
are available
options

DISALLOW_CONFIG_T
ETHERING()

Automatic Time Allows the device to
get time from the
Wi-Fi connection

Enable/Disable
are available
options

setAutoTimeRequired() Tap on Settings > System >
Date & time and toggle
Automatic date & time to On.

Application Control Install
Application

Installs specified
application

No required value PackageInstaller.Sessio
n()

Uninstall
Application

Uninstalls specified
application

App to uninstall uninstall() To uninstall an application tap on
Settings > Applications &
notifications > See all. Select the
application and tap on Uninstall.

Application
Whitelist

Specifies a list of
applications that may
be installed

No required value This is done by the
EMM/MDM when they
setup an application
catalog which leverages
PackageInstaller.Sessio
n()

Application
Blacklist

Specifies a list of
applications that may
not be installed

No required value PackageInstaller.Sessio
nInfo()

Application
Repository

Specifies the location
from which
applications may be
installed

No required value DISALLOW_INSTALL_U
NKNOWN_SOURCES()

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_UNMUTE_MICROPHONE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_MOUNT_PHYSICAL_MEDIA
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CONFIG_TETHERING
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setAutoTimeRequired(android.content.ComponentName%2C%20boolean)
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session
https://developer.android.com/reference/android/content/pm/PackageInstaller.html#uninstall(android.content.pm.VersionedPackage%2C%2520android.content.IntentSender)
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.Session.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.SessionInfo.html
https://developer.android.com/reference/android/content/pm/PackageInstaller.SessionInfo.html
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_INSTALL_UNKNOWN_SOURCES

Zebra Android 13 Administrator Guidance

18

Table 2 Common Criteria Settings (Continued)

Security Feature Setting Description Required Value API User Interface

TOE Management Enrollment Enroll TOE in
management

No required value During device setup scan
EMM/MDM provided QR code or
enter EMM/MDM DPC identifier

Refer to section 2.5.2 for more
details

 Disallow
Unenrollment

Prevent the user from
removing the
managed profile

Enable/Disable DISALLOW_REMOVE_
MANAGED_PROFILE()

 DISALLOW_FACTORY_
RESET()

 Unenrollment Unenroll TOE from
management

App to uninstall uninstall() – this API can
be used to uninstall the
MDM Agent from the
device. Uninstalling the
MDM agent from an
enterprise profile will
delete the entire profile
and all its applications.

This API can be used to uninstall
enterprise apps. If an admin
uninstalls the MDM agent installed
on an enterprise profile, the entire
profile and all enterprise
applications are deleted.

 Allow Developer
Mode

Controls Developer
Mode access

Enable/Disable
are available
options

DISALLOW_DEBUGGIN
G_FEATURES()

 Sharing Data
Between
Enterprise and
Personal Apps

Controls data sharing
between enterprise
and work apps

Enable/Disable DISALLOW_CROSS_P
ROFILE_COPY_PASTE(
)

addCrossProfileIntentFilt
er()

3.7 Password Recommendations

When setting a password, you should select a password that:

• Does not use known information about yourself (e.g. pets names, your name, kids names or any
information available in the public domain);

• Is significantly different from previous passwords (adding a ‘1’ or “!” to the end of the password is not
sufficient); or

• Does not contain a complete word (such as Password!).

• Does not contain repeating or sequential numbers and/or letters.

3.8 Bug Reporting Process

Zebra supports a bug filing system for the Android OS. For more information, see
zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html.

4.0 Bluetooth Configuration
Follow the below steps to pair and connect your device using Bluetooth.

4.1 Pair

NOTE: If your device is connected to another device via Bluetooth, you will see a Bluetooth icon at the
top of the screen.

https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_REMOVE_MANAGED_PROFILE
https://developer.android.com/reference/android/content/pm/PackageInstaller.html#uninstall(android.content.pm.VersionedPackage%2C%2520android.content.IntentSender)
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_DEBUGGING_FEATURES
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/os/UserManager.html#DISALLOW_CROSS_PROFILE_COPY_PASTE
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName%2C%20android.content.IntentFilter%2C%20int)
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#addCrossProfileIntentFilter(android.content.ComponentName%2C%20android.content.IntentFilter%2C%20int)
https://www.zebra.com/us/en/about-zebra/contact-zebra/contact-tech-support.html

Zebra Android 13 Administrator Guidance

19

1 Open your phone or tablet's Settings application .

2 Tap Connected devices > Connection preferences > Bluetooth. Make sure Bluetooth is turned on.

3 Tap Pair new device.

4 Tap the name of the Bluetooth device you want to pair with your phone or tablet.

5 Follow the on-screen steps.

4.2 Connect

NOTE: If your device is connected to another device via Bluetooth, you will see a Bluetooth icon at the
top of the screen.

1. Open your phone or tablet's Settings application .

2. Tap Connected devices > Connection preferences > Bluetooth.

3. Make sure Bluetooth is turned on.

4. In the list of paired devices, tap a paired but unconnected device.

5. When your phone or tablet and the Bluetooth device are connected, the device
shows as "Connected" in the list.

Zebra Android 13 Administrator Guidance

20

4.3 Remove Previously Paired Device

NOTE: If your device is connected to another device via Bluetooth, you will see a Bluetooth icon at the
top of the screen.

6. Open your phone or tablet's Settings application .

7. Tap Connected devices > Previously connected devices.

8. Tap the gear icon to the right of the device you want to unpair.

9. Tap Forget and confirm in the popup window by tapping Forget device.

NOTES:

• For additional support information around Bluetooth, see
developer.android.com/reference/android/bluetooth/package-summary.html.

• For Zebra Bluetooth-specific configuration, see the BluetoothTechDoc.

IMPORTANT: On Update from A10 to A13 in CC mode, BT encrypted keys of A10 will not be accessible in

A13 and paired device list in Setting UI will not be persisted.

5.0 Wi-Fi Configuration

Android supports the WPA2-Enterprise and WPA3-Enterprise protocol, which is specifically designed for
enterprise networks and can be integrated into a broad range of Remote Authentication Dial-In User
Service (RADIUS) authentication servers. Zebra devices also support WPA3-Enterprise 192-bit mode
which is aligned with the CNSA (Commercial National Security Algorithm) security recommendations for
high-security Wi-Fi networks.

IT admins have several abilities to control the environment for your devices. They can:

• Silently provision enterprise WiFi configurations on managed devices via the EMM’s DPC, including:

• SSID

• Password

• Identity

• Certificate for clients authorization

• CA certificate(s)

• Lock down Wi-Fi configurations on managed devices to prevent users from creating new

https://developer.android.com/reference/android/bluetooth/package-summary.html
https://developer.android.com/reference/android/bluetooth/package-summary.html
http://zebra-stage.github.io/mx/bluetoothmgr/#mainfunctionality
https://developer.android.com/reference/android/net/wifi/WifiConfiguration.html#SSID
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setPassword(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setIdentity(java.lang.String)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setClientKeyEntry(java.security.PrivateKey%2C%20java.security.cert.X509Certificate)
https://developer.android.com/reference/android/net/wifi/WifiEnterpriseConfig.html#setCaCertificate(java.security.cert.X509Certificate)

Zebra Android 13 Administrator Guidance

21

configurations or modifying corporate configurations.

• Lock down corporate Wi-Fi configurations in either of the following configurations:

• Users cannot modify any WiFi configurations provisioned by the EMM, but may add and modify their
own user-configurable networks (for instance personal networks).

• Users cannot add or modify any WiFi network on the device, limiting Wi-Fi connectivity to just
those networks provisioned by the EMM.

When the device tries to connect to a WiFi network it performs a standard captive portal check which
bypasses the full tunnel VPN configuration. If the administrator wants to turn the captive portal check off,
they need to do this physically on the device before enrolling it in to the MDM by:

• Enable Developer Options by tapping on Settings > About phone and tapping on Build number
five times until they see that Developer options has been enabled.

• Enable Android Debug Bridge (ADB) over USB by tapping on

Settings > System > Advanced > Developer options and scroll down to USB debugging and enable
the toggle to On.

• Connect to the device to a workstation that has ADB installed and type in “adb shell settings put global
captive_portal_mode 0” followed by pressing Enter.

• You can verify the change by typing “adb shell settings get global captive_portal_mode” and

confirming that the return value is “0”.

• Turn off Developer options by tapping on Settings > System > Advanced>Developer options
and toggling the On option to Off at the top.

If a WiFi connection unintentionally terminates, the end user will need to reconnect to re-establish the
session.

6.0 VPN Configuration
Android supports securely connecting to an enterprise network using VPN:

• Always-on VPN—The VPN can be configured so that apps don’t have access to the network until a
VPN connection is established, which prevents apps from sending data across other networks.

Always-on VPN supports VPN clients that implement VpnService. The system automatically starts that
VPN after the device boots. Device owners and profile owners can direct work apps to always connect
through a specified VPN. Additionally, users can manually set Always-on VPN clients that implement
VpnService methods using Settings > More > VPN. Always-on VPN can also be enabled manually
from the Settings menu.

7.0 Secure Update Process

Over the Air (OTA) updates (which includes baseband processor updates) using a public key chaining will
be verified against a zip file of certificates present on the device. Verification succeeds if the OTA package
is signed by the private key corresponding to any public key in this file. Should this verification fail, the
software update will fail and the update will not be installed. On A13, the bootloader will fall back to the old
OS. Zebra devices do not support Google OTA update. Zebra recommends using OEMConfig as the
method for administrator to upgrade/downgrade the device.

Downgrade

Default zebra devices supports Downgrade, but once you have created a StageNow Profile, and used it to
apply the CC Readiness package on the device as detailed in step 2 in 3.1 Entering into Common Criteria
State, then it will be possible to update but it will no longer be possible to downgrade.

To enable downgrade, you must follow the steps from 3.3 Exiting from Common Criteria State.

To upgrade a Zebra device with a new Over the Air (OTA) update, you must Acquire and Transfer/Apply
the suitable update file(s).

In A13, incremental patches are created as true delta packages and are applied sequentially.

https://developer.android.com/reference/android/provider/Settings.Global#WIFI_DEVICE_OWNER_CONFIGS_LOCKDOWN
https://developer.android.com/reference/android/os/UserManager#DISALLOW_CONFIG_WIFI

Zebra Android 13 Administrator Guidance

22

7.1 Acquire

Find the build you want on the Zebra support central:

https://www.zebra.com/us/en/support-downloads.html. Depending on the build you choose, you may need
a patch file, a base line file, or both in order to get the file(s) from the current build to desired build.
Download the necessary file(s) and then perform the appropriate steps based on whether you have to
install one file or two files.

7.2 Transfer/Apply

7.2.1 One File – New Patch or New Base Line
1. Place the downloaded file on the https server that is reachable from the device.

2. Acquire the URL of the file location on the server. (If server requires authentication provide
the credentials).

3. Use OEMConfig - File Management-Download File Source URL.

See https://techdocs.zebra.com/oemconfig/13-3/mc2/ and Download Destination Path and File Name
to copy the file from the server to the device.

4. Use OEMConfig-Firmware Over The Air Configuration-Mode Manual Action=OS Update and OS
Update/Upgrade/Downgrade File to apply the update from downloaded file.

IMPORTANT: In a situation where any future Zebra OS security patch installs successfully but fails to
boot into a new installed image, On A13, the bootloader will fall back to the old OS.

• If the baseline OS is CC compliant:

a. The device will be Factory Reset.

b. User data will be erased.

• If the baseline OS is non-CC compliant:

a. The device will be Factory Reset.

b. User data will be erased.

c. The device will be in a non-CC compatible OS image.

To recover from a non-CC compliant baseline OS image, the user must follow the steps in 3.1 Entering into
Common Criteria State.

7.2.2 Two Files – New Base Line and Patch
To create a UPL file on A13, please refer - https://www.zebra.com/content/dam/support-
dam/en/documentation/unrestricted/release-notes/4490-A13-os-update-instructions.pdf
Please note the difference in UPL file usage on A11 and above for OS update.
User may use Full OTA package of a patch on A11 and above instead of using multiple (Two Files) files.

Place the downloaded files and the created UPL file on to the https server that is reachable from the
device.

Acquire the URI of the UPL file location on the server. (If server requires authentication provide the
credentials).

Use OEMConfig - File Management-Download File Source URI

[Refer- https://techdocs.zebra.com/oemconfig/13-3/mc2/] and Download Destination Path and File Name
to copy the downloaded files and UPL file from the server to the device

Use OEMConfig-Firmware Over The Air Configuration-Mode Manual Action=OS Update and OS
Update/Upgrade/Downgrade File to apply the update using the UPL file and the downloaded files.

8.0 Audit Logging

8.1 Security Logs

A MDM agent acting as Device Owner can control the logging

with DevicePolicyManager#setSecurityLoggingEnabled. When security logs are enabled, Device Owner
apps receive periodic callbacks from DeviceAdminReceiver#onSecurityLogsAvailable, at which time new

https://www.zebra.com/us/en/support-downloads.html
https://www.zebra.com/us/en/support-downloads.html
http://www.zebra.com/us/en/support-downloads.html
https://techdocs.zebra.com/oemconfig/13-3/mc2/
https://www.zebra.com/content/dam/support-dam/en/documentation/unrestricted/release-notes/4490-A13-os-update-instructions.pdf
https://www.zebra.com/content/dam/support-dam/en/documentation/unrestricted/release-notes/4490-A13-os-update-instructions.pdf
https://techdocs.zebra.com/oemconfig/13-3/mc2/
https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#setSecurityLoggingEnabled(android.content.ComponentName%2C%20boolean)
https://developer.android.com/reference/android/app/admin/DeviceAdminReceiver.html#onSecurityLogsAvailable(android.content.Context%2C%20android.content.Intent)

Zebra Android 13 Administrator Guidance

23

batch of logs can be collected viaDevicePolicyManager#retrieveSecurityLogs. SecurityEvent describes the
type and format of security logs being collected.

Audit events from the Security Log are those where the "Keyword" field appears first in the format. For
example: <Keyword> (<Date><Timestamp>): <message>

8.2 Logcat Logs

Logcat logs can be read by a command issued via an ADB shell running on the phone. Information about
reading Logcat logs can be found at developer.android.com/studio/command-line/logcat. The command to
issue a dump of the logcat logs is:

> adb logcat

Logcat logs cannot be exported from the device outside of using the above ADB command to dump to a
file, then retrieving the file from the device (which requires developer settings enabled and administrative
permissions).

Logcat logs can also be read by an application (for example an MDM agent) granted permission from an
ADB shell:

> adb shell pm grant <application_package_name> android.permission.READ_LOGS

Audit events from the Logcat log are those where the "Keyword" field appears after the timestamp field in
the format. For example: <Date> <Time> <ID> | <Keyword> <Message>

https://developer.android.com/reference/android/app/admin/DevicePolicyManager.html#retrieveSecurityLogs(android.content.ComponentName)
https://developer.android.com/studio/command-line/logcat

Zebra Android 13 Administrator Guidance

24

Table 3 shows examples of audit events:

Table 3 Audit Events

Requirement Auditable Events Additional Audit Record
Contents

Log Events & Examples

FAU_GEN.1 Start-up and shutdown of the audit
functions

 Start-up:
LOGGING_STARTED (<Date> <Timestamp>):

Shutdown:

All logs are stored in memory. When audit
functions are disabled, all memory being used
by the audit functions is released by the OS,
and so this log cannot be seen.

All administrative actions See Management Function
Table

Start-up and shutdown of the Rich
OS

 Start-up:
OS_STARTUP (<Date> <Timestamp>): <verified
boot status color> <dm-verity status>

Shutdown:
All logs are stored in memory. This log is not
capturable or persistent through boot, and thus
isn't available to an MDM Administrator

FCS_CKM_EXT.1 [None]. No additional information.

FCS_CKM_EXT.5 [None]. No additional information.

FCS_CKM.1 [None]. No additional information.

FCS_STG_EXT.1 Import or destruction of key. Identity of key. Role and identity
of requestor.

KEY_IMPORT (<Date> <Timestamp>):
<success-boolean> <key name> <requesting
process / role / identify>

[No other events] KEY_DESTRUCTION (<Date> <Timestamp>):
<success-boolean> <key name> <requesting
process / role / identify>

FCS_STG_EXT.3 Failure to verify integrity of stored
key.

Identity of key being verified. KEY_INTEGRITY_VIOLATION (<Date>
<Timestamp>):
<key name> <requesting process / role /
identify>

FDP_DAR_EXT.1 [None]. No additional information. N/A

FDP_DAR_EXT.2 [None]. No additional information. N/A

FDP_STG_EXT.1 Addition or removal of certificate
from Trust Anchor Database.

Subject name of certificate. CERT_AUTHORITY_INSTALLED (<Date>
<Timestamp>): <success-boolean> <cert
authority> <user id>

CERT_AUTHORITY_REMOVED (<Date>
<Timestamp>): <success-boolean> <cert
authority> <user id>

FIA_X509_EXT.1 Failure to validate X.509v3
certificate.

Reason for failure of validation. <Date> <Time> <ID> System.err:
java.security.cert.CertPathValidatorException
[<error message>]

<Date> <Time> <ID> ValidatableSSLSocket:
Failed to establish a TLS connection to <IP
address> ... [<error message>]

Zebra Android 13 Administrator Guidance

25

Table 3 Audit Events (Continued)

Requirement Auditable Events Additional Audit Record
Contents

Log Events & Examples

FMT_SMF_EXT.2 [none]. [none].

FPT_NOT_EXT.1 [None]. [No additional information].

FPT_TST_EXT.1 Initiation of self-test. [none] CRYPTO_SELF_TEST_COMPLETED
(<Date><Timestamp>): 1

Failure of self-test. CRYPTO_SELF_TEST_COMPLETED
(<Date><Timestamp>): 0

FPT_TST_EXT.2(1)

(Selection is optional)

Start-up of TOE. No additional information. See audits for FAU_GEN.1 - Start-up and
shutdown of the Rich OS

[none] No additional information.

WLAN EP Audit Logs:

FCS_TLSC_EXT.1/WL
AN

Failure to establish an EAP-TLS
session.

Reason for failure Errors:

<Date> <Time> <ID> wpa_supplicant: wlan0:

CTRL-EVENT-EAP-TLS-CERT-ERROR <Error

Details>

<Date> <Time> <ID> wpa_supplicant: wlan0:

CTRL-EVENT-EAP-FAILURE EAP

authentication failed

<Date> <Time> <ID> wpa_supplicant: TLS -

SSL error: <error message>

Termination (follows after above error log):

<Date> <Time> <ID> wpa_supplicant: wlan0:

CTRL-EVENT-DISCONNECTED

bssid=<BSSID> reason=<reason code>

Establishment/termination of an
EAP-TLS session.

Non-TOE endpoint of
connection

Establishment:

<Date> <Time> <ID> wpa_supplicant: wlan0:

CTRL-EVENT-CONNECTED - Connection to

<BSSID> completed.

Termination

<Date> <Time> <ID> wpa_supplicant: wlan0:
CTRL-EVENT-DISCONNECTED
bssid=<BSSID> reason=<reason code>

Zebra Android 13 Administrator Guidance

26

Table 3 Audit Events (Continued)

Requirement Auditable Events Additional Audit Record
Contents

Log Events & Examples

FIA_X509_EXT.1/WLAN Failure to validate X.509v3
certificate

Reason for failure of
validation

CERT_VALIDATION_FAILURE

(<Date><Timestamp>): [<error>]

FIA_X509_EXT.6 Attempts to load/revoke
certificates

no additional information]. See audits for FCS_STG_EXT.1 – Import and

Destruction of keys

FPT_TST_EXT.1/WLAN

(note: can be performed
by
TOE or TOE platform)

Execution of this set of TSF
self-tests.
[none].

[no additional information]. See the audits for MDFPP FPT_TST_EXT.1,
these self-tests are included in the same audit
message.

FTA_WSE_EXT.1 All attempts to connect to access
points.

Identity of access point being
connected to as well as success
and failures (including reason for
failure).

<Date> <Time> <ID> wpa_supplicant: wlan0:
Trying to associate with SSID <SSID>

<Date> <Time> <ID> wpa_supplicant: wlan0:
Trying to associate with SSID 'fscaesdot1x

<Date> <Time> <ID> wpa_supplicant: wlan0:
Associated with <MAC>

<Date> <Time> <ID> wpa_supplicant: wlan0:
Associated with 94:64:24:89:b2:d2

See audits for FIA_X509_EXT.1/WLAN and
FCS_TLSC_EXT.1/WLAN for failures to connect

FTP_ITC_EXT.1/WLAN All attempts to establish a trusted
channel.

Identification of the non-TOE
endpoint of the channel.

Same as above

FIA_BLT_EXT.1 Failed Authorization of Bluetooth
device

User authorization decision See audits for FIA_BLT_EXT.2 – Failure of
Bluetooth Connection

Status:

9 – BT_STATUS_AUTH_FAILURE

11 – BT_STATUS_AUTH_REJECTED

HCI Reason:

5 = Authentication Failure

19 = Remote Request Disconnect

26 = Remote Error

FIA_BLT_EXT.1 Failed user authorization for local
Bluetooth Service

Complete BD_ADDR and no
other information

Bluetooth profile

Identity of local service with
profile name

<Date> <Time> <ID> V BluetoothDatabase:
getProfileConnectionPolicy: <BD_ADDR>,
profile=<PROFILE_ID>, connectionPolicy =
<CONNECTION_POLICY>

<Date> <Time> <ID> D AdapterProperties:

PROFILE_CONNECTION_STATE_CHANGE:

profile=<PROFILE_ID>, device=<BD_ADDR>, 1

-> 0

<Date> <Time> <ID> D CachedBluetoothDevice:
onProfileStateChanged: profile
<PROFILE_NAME>, device <BD_ADDR>,
newProfileState 0

FIA_BLT_EXT.2 Initiation of Bluetooth connection

Complete BD_ADDR and no
other information

<Date> <Time> <ID> I
BluetoothBondStateMachine:
bondStateChangeCallback: Status: 0 Address:
<MAC address> newState: 2 hciReason: 0

<Date> <Time> <ID>
BluetoothBondStateMachine: Bond State
Change Intent:<MAC Address>
BOND_BONDING => BOND_BONDED

Table 3 Audit Events (Continued)

Zebra Android 13 Administrator Guidance

27

Requirement Auditable Events Additional Audit Record
Contents

Log Events & Examples

FIA_BLT_EXT.2 Failure of Bluetooth connection

Reason for failure <Date> <Time> <ID> I

BluetoothBondStateMachine:
bondStateChangeCallback: Status: <Status>
Address: <MAC address> newState: 0
hciReason: <hci reason>

<Date> <Time> <ID> I
BluetoothBondStateMachine: Bond State
Change Intent:<MAC address>
BOND_BONDING => BOND_NONE

FIA_BLT_EXT.3 Duplicate connection attempt BD_ADDR of connection attempt This is performed at the HCI layer and is not
able to be logged.

Zebra Android 13 Administrator Guidance

28

 Table 4 shows examples of sample management function audits.

Table 4 Sample Management Function Audits

REQUIREMENT FUNCTION Required Value AUDIT LOG

FMT_SMF_EXT.1.1

Function 1

Configure password policy

FMT_SMF_EXT.1.1

Function 1a

a. minimum password length Greater than or equal to 8 PASSWORD_COMPLEXITY_SET
(<Date><Timestamp>):
<package> 0 0 0 65536 1 0 1 0 0

1

FMT_SMF_EXT.1.1

Function 1b

b. minimum password
complexity

No required value PASSWORD_COMPLEXITY_SET
(<Date><Timestamp>):
<package> 0 0 0 131072 1 0 1 0 0

1

FMT_SMF_EXT.1.1

Function 1c

c. maximum password lifetime PASSWORD_EXPIRATION_SET
(<Date><Timestamp>): <package>

0 0 500000

FMT_SMF_EXT.1.1

Function 2

Configure session locking policy 10 minutes or less

FMT_SMF_EXT.1.1

Function 2a

a. screen-lock enabled/disabled Enabled PASSWORD_COMPLEXITY_SET
(<Date><Timestamp>):
<package> 0 0 5 0 1 0 1 0 0 1

FMT_SMF_EXT.1.1

Function 2a

a. screen-lock enabled/disabled
(after requiring a password above,
admin can
request the user set a password)

No required value <Date> <Time> <ID> ActivityTaskManager:
START u0
{act=android.app.action.SET_NEW_PASSWO
RD
cmp=com.android.settings/.password.SetNewP
asswordActivity} from uid <UID>

FMT_SMF_EXT.1.1

Function 2a

a. screen-lock enabled/disabled
(after requiring a password above,
admin can
forcibly set a password)

 <Date> <Time> <ID> PolicyManagement:
starting
android.app.action.SET_NEW_PASSWORD

<Date> <Time> <ID> ActivityTaskManager:
START u0
{act=android.app.action.SET_NEW_PASSWO
RD
cmp=com.android.settings/.password.SetNewP
asswordActivity} from uid 10247

FMT_SMF_EXT.1.1

Function 2b

b. screen lock timeout 10 minutes or less MAX_SCREEN_LOCK_TIMEOUT_SET
(<Date><Timestamp>):
<package> 0 0 100000

Zebra Android 13 Administrator Guidance

29

Table 4 Sample Management Function Audits (Continued)

REQUIREMENT FUNCTION Required Value AUDIT LOG

FMT_SMF_EXT.1.1

Function 2b

b. screen lock timeout

(after setting a max time, the admin
can prevent
any user changes with this)

 USER_RESTRICTION_ADDED
(<Date><Timestamp>): <package>

0 no_config_screen_timeout

FMT_SMF_EXT.1.1

Function 2c

c. number of authentication
failures

10 or less MAX_PASSWORD_ATTEMPTS_SET
(<Date><Timestamp>):
<package> 0 0 10

FMT_SMF_EXT.1.1

Function 8a

Configure application installation
policy
a. restricting the sources of
applications

Disable USER_RESTRICTION_REMOVED
(<Date><Timestamp>):
<package> 0
no_install_unknown_sources

FMT_SMF_EXT.1.1

Function 8a

Configure application installation
policy
a. restricting the sources of
applications

Enable USER_RESTRICTION_ADDED
(<Date><Timestamp>): <package>

0 no_install_unknown_sources

FMT_SMF_EXT.1.1

Function 8c

Configure application installation
policy
c. denying installation of
applications

Enable USER_RESTRICTION_ADDED
(<Date><Timestamp>): <package>

0 no_install_apps

FMT_SMF_EXT.1.1

Function 8c

Configure application installation
policy

c. denying installation of
applications

Disable USER_RESTRICTION_REMOVED
(<Date><Timestamp>): <package> 0
no_install_apps

Zebra Android 13 Administrator Guidance

30

9.0 FDP_DAR_EXT.2 & FCS_CKM.2(2) – Sensitive Data
Protection Overview

Using the NIAPSEC library, sensitive data protection including Biometric protections are enabled by
default by using the Strong configuration.

To request access to the NIAPSEC library, please reach out to: niapsec@google.com.

The library provides APIs via SecureContextCompat to write files when the device is either locked or
unlocked. Reading an encrypted file is only possible when the device is unlocked and authenticated
biometrictrically.

Saving sensitive data files requires a key to be generated in advance. See 10.2.2 SecureKeyGenerator.
Supported Algorithms via SecureConfig.getStrongConfig():
• File Encryption Key: AES256 - AES/GCM/NoPadding

• Key Encryption Key: RSA3072 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding
Writing Encrypted (Sensitive) Files:

• SecureContextCompat opens a FileOutputStream for writing and uses SecureCipher (below) to encrypt
the data.

• The Key Encryption Key, which is stored in the AndroidKeystore encrypts the File Encryption Key which
is encoded with the file data.

Reading Encrypted (Sensitive) Files:

• SecureContextCompat opens a FileInputStream for reading and uses SecureCipher (below) to decrypt
the data.

• The Key Encryption Key, which is stored in the AndroidKeystore decrypts the File Encryption Key which
is encoded with the file data.

The File encryption key material is automatically destroyed and removed from memory after each
operation. See EphemeralSecretKey for more information.

9.1 SecureContextCompat

NOTE: SecureContextCompat is included in the NIAPSEC library.

SecureContextCompat is used to encrypt and decrypt files that require sensitive data protection.
Supported Algorithms

• AES256 - AES/GCM/NoPadding

• RSA3072 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Table 5 SecureContextCompat Public Constructors

Constructor Descriptio
n

SecureContextCompat new SecureContextCompat(Context, BiometricSupport)
See BiometricSupport
Constructor to create an instance of the SecureContextCompat with Biometric support.

Table 6 SecureContextCompat Public Methods

Method Descriptio
n

FileOutputStream openEncryptedFileOutput

(String name, int mode, String keyPairAlias)

Gets an encrypted file output stream using the asymmetric/ephemeral algorithms specified by the
default configuration, using NIAP standards.

-name - The file name

-mode - The file mode, usually Context.MODE_PRIVATE

-keyPairAlias - Encrypt data with the AndroidKeyStore key referenced - Key Encryption Key

mailto:niapsec@google.com

Zebra Android 13 Administrator Guidance

31

void openEncryptedFileInput

(String name, Executor executor, EncryptedFileInputStreamListener listener)

Gets an encrypted file input stream using the asymmetric/ephemeral algorithms specified by the
default configuration, using NIAP standards.

-name - The file name

-Executor - to handle the threading for BiometricPrompt. Usually
Executors.newSingleThreadExecutor()

-Listener for the resulting FileInputStream.

Code Examples

SecureContextCompat secureContext = new SecureContextCompat(getApplicationContext(),
SecureConfig.getStrongConfig(biometricSupport));

// Open a sensitive file for writing

FileOutputStream outputStream = secureContext.openEncryptedFileOutput(FILE_NAME,
Context.MODE_PRIVATE, KEY_PAIR_ALIAS);

// Write data to the file, where DATA is a String of sensitive information.
outputStream.write(DATA.getBytes(StandardCharsets.UTF_8));
outputStream.flush();
outputStream.close();

// Read a sensitive data file

secureContext.openEncryptedFileInput(FILE_NAME, Executors.newSingleThreadExecutor(),
inputStream -> {

byte[] clearText = new byte[inputStream.available()];
inputStream.read(encodedData);
inputStream.close();

// do something with the decrypted data

});

NOTE: Built using the JCE libraries. For more information see the following resources:

• AndroidKeyStore – developer.android.com/training/articles/keystore.

• BiometricPrompt – developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

10.0 API Specification

This section provides a list of the evaluated cryptographic APIs that developers can use when writing their
mobile applications.

• 10.1 Cryptographic APIs - this section lists the APIs for the algorithms and random number generation.

• 10.2 Key Management - this section lists the APIs for importing, using, and destroying keys.

• 10.3 FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS - this section lists the following:

• APIs used by applications for configuring the reference identifier.

• APIs for validation checks (should match the test program provided).

• TLS, HTTPS, Bluetooth BR/EDR, BLE (any other protocol available to applications).

10.1 Cryptographic APIs

This section includes code samples for encryption and decryption, including random number generation.

10.1.1 Code Examples

// Data to encrypt

byte[] clearText = "Secret Data".getBytes(StandardCharsets.UTF_8);

// Create a Biometric Support object to handle key authentication
BiometricSupport biometricSupport = new BiometricSupportImpl(activity,
getApplicationContext()) {

…

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Zebra Android 13 Administrator Guidance

32

};

SecureCipher secureCipher = SecureCipher.getDefault(biometricSupport);
secureCipher.encryptSensitiveData("niapKey", clearText, new
SecureCipher.SecureSymmetricEncryptionCallback() {

@Override

public void encryptionComplete(byte[] cipherText, byte[] iv) {

// Do something with the encrypted data

}

});

// to decrypt

secureCipher.decryptSensitiveData("niapKey", cipherText, iv, new
SecureCipher.SecureDecryptionCallback() {

@Override

public void decryptionComplete(byte[] clearText) {

// do something with the encrypted data

}

});

// Generate ephemeral key (random number generation)
int keySize = 256;
SecureRandom secureRandom = SecureRandom.getInstanceStrong();
byte[] key = new byte[keySize / 8];
secureRandom.nextBytes(key);

// Encrypt / decrypt data with the ephemeral key
EphemeralSecretKey ephemeralSecretKey = new EphemeralSecretKey(key,
SecureConfig.getStrongConfig());

Pair<byte[], byte[]> ephemeralCipherText =
secureCipher.encryptEphemeralData(ephemeralSecretKey, clearText);

byte[] ephemeralClearText = secureCipher.decryptEphemeralData(ephemeralSecretKey,
ephemeralCipherText.first, ephemeralCipherText.second);

10.1.2 SecureCipher

NOTE: SecureCipher is included in the NIAPSEC library.

SecureCipher handles low-level cryptographic operations including encryption and decryption. For
sensitive data protection, this library is not used directly by developers.

Supported Algorithms

• AES256 - AES/GCM/NoPadding

• RSA3072 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Table 7 SecureCipher Public Static Accessors

Accessor Description

SecureCipher SecureCipher.getDefault(BiometricSupport)
See BiometricSupport
API to get an instance of the SecureCipher with Biometric support.

Zebra Android 13 Administrator Guidance

33

Table 8 SecureCipher Public Methods

Method Description

void encryptSensitiveData (String keyAlias, byte[] clearData, SecureSymmetricEncryptionCallback callback)

Encrypt sensitive data using the symmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-clearData - the data to be encrypted

-callback, the callback to return the cipherText after encryption is complete.

void encryptSensitiveDataAsymmetric (String keyAlias, byte[] clearData, SecureAsymmetricEncryptionCallback callback)
Encrypt sensitive data using the asymmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is RSA3072 with OAEP.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-clearData - the data to be encrypted

-callback, the callback to return the cipherText after encryption is complete.

Pair<byte[], byte[]> encryptEphemeralData
(EphemeralSecretKey ephemeralSecretKey,
byte[] clearData)
Encrypt data with an Ephemeral AES 256 GCM key, used for encrypting file data for SDP.

-The Ephemeral key to use

-clearData, the data to be encrypted

Returns a Pair of the cipherText, and IV byte arrays respectively.

void decryptSensitiveData (String keyAlias,

byte[] encryptedData,

byte[] initializationVector,

SecureDecryptionCallback callback)

Decrypt sensitive data using the symmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-encryptedData - the data to be decrypted

-initializationVector - the IV used for encryption

-callback, the callback to return the clearText after decryption is complete.

void decryptSensitiveData (String keyAlias,

byte[] encryptedData, SecureDecryptionCallback callback)

Decrypt sensitive data using the asymmetric algorithm specified by the default configuration, using NIAP standards.
See SecureConfig.getStrongConfig() - Default is RSA3072 with OAEP.
-keyAlias - Encrypt data with the AndroidKeyStore key referenced

-encryptedData - the data to be decrypted

-callback, the callback to return the clearText after decryption is complete.

byte[] decryptEphemeralData
(EphemeralSecretKey ephemeralSecretKey,
byte[] encryptedData, byte[] initializationVector)

Decrypt data with an Ephemeral AES 256 GCM key, used for encrypting file data for SDP.

-The Ephemeral key to use

-encryptedData - the data to be decrypted

-initializationVector - the IV used for encryption
Returns a byte array of the clear text.

NOTE: Built using the JCE libraries. For more information see the following resources:

• AndroidKeyStore – developer.android.com/training/articles/keystore

• Cipher – developer.android.com/reference/javax/crypto/Cipher

• SecretKey – developer.android.com/reference/javax/crypto/SecretKey

• SecureRandom – developer.android.com/reference/java/security/SecureRandom

• BiometricPrompt – developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/javax/crypto/Cipher
https://developer.android.com/reference/javax/crypto/SecretKey
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/android/hardware/biometrics/BiometricPrompt

Zebra Android 13 Administrator Guidance

34

10.1.3 FCS_CKM.2(1) – Key Establishment (RSA)

Assume that Alice knows a private key and Bob knows Alice’s public key. Bob sent a key encrypted by the
public key. This example shows how Alice gets a plain key sent by Bob. Alice needs her own private key to
decrypt an encrypted key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA", "AndroidOpenSSL");
keyGen.initialize(keySize);
KeyPair keyPair = keyGen.generateKeyPair();
RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();
RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

// Encrypt

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
cipher.init(Cipher.ENCRYPT_MODE, publicKey, new OAEPParameterSpec("SHA-256",

"MGF1", new MGF1ParameterSpec("SHA-1"), PSource.PSpecified.DEFAULT));
byte[] cipherText = cipher.doFinal(data.getBytes(StandardCharsets.UTF_8));

// Decrypt

Cipher cipher = Cipher.getInstance("RSA/ECB/OAEPWithSHA-256AndMGF1Padding");
cipher.init(Cipher.DECRYPT_MODE, privateKey, new OAEPParameterSpec("SHA-256",

"MGF1", new MGF1ParameterSpec("SHA-1"), PSource.PSpecified.DEFAULT));
Byte[] plainText = cipher.doFinal(cipherText);

Algorithms

RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Reference

Cipher – developer.android.com/reference/javax/crypto/Cipher

10.1.4 FCS_CKM.2(1) – Key Establishment (ECDSA) & FCS_COP.1(3) – Signature
Algorithms (ECDSA)

Assume that Alice knows a private key and Bob's public key. Bob knows his private key and Alice's public
key. Alice and Bob can then sign and verify the contents of a message.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC", "AndroidOpenSSL");
ECGenParameterSpec ecParams = new ECGenParameterSpec(spec);
keyGen.initialize(ecParams);
KeyPair keyPair = keyGen.generateKeyPair();

ECPublicKey pubKey = (ECPublicKey) keyPair.getPublic();
ECPrivateKey privKey = (ECPrivateKey) keyPair.getPrivate();

// Sign

Signature signature = Signature.getInstance(algorithm);
signature.initSign(privateKey);
signature.update(data.getBytes(StandardCharsets.UTF_8));
byte[] signature = signature.sign();

// Verify

Signature signature = Signature.getInstance(algorithm);
signature.initVerify(publicKey);

https://developer.android.com/reference/javax/crypto/Cipher

Zebra Android 13 Administrator Guidance

35

signature.update(data.getBytes(StandardCharsets.UTF_8));
boolean verified = signature.verify(sig);

Algorithms

• "SHA256withECDSA", "secp256r1"

• "SHA384withECDSA", "secp384r1"

Reference

Signature – developer.android.com/reference/java/security/Signature

10.1.5 FCS_CKM.1 – Key Generation (ECDSA)

Assume that Alice knows a private key and Bob's public key. Bob knows his private key and Alice's public
key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("EC", "AndroidOpenSSL");
ECGenParameterSpec ecParams = new ECGenParameterSpec(spec);
keyGen.initialize(ecParams);
KeyPair keyPair = keyGen.generateKeyPair();

ECPublicKey pubKey = (ECPublicKey) keyPair.getPublic();
ECPrivateKey privKey = (ECPrivateKey) keyPair.getPrivate();

Algorithms

• "SHA256withECDSA", "secp256r1"

• "SHA384withECDSA", "secp384r1"

Reference

Signature – developer.android.com/reference/java/security/Signature

10.1.6 FCS_COP.1(1) – Encryption/Decryption (AES)
Cipher class encrypts or decrypts a plain text.

KeyGenerator keyGenerator = KeyGenerator.getInstance("AES", "AndroidOpenSSL");
keyGenerator.init(keySize);
SecretKey key = keyGenerator.generateKey();

// Encrypt

Cipher cipher = Cipher.getInstance(transformation);
cipher.init(Cipher.ENCRYPT_MODE, secretKey);
byte[] iv = cipher.getIV();
byte[] clearData = data.getBytes(UTF_8);
byte[] cipherText = cipher.doFinal(clearData);
Pair<byte[], byte[]> result = Pair<>(cipherText, iv);

// Decrypt

Cipher cipher = Cipher.getInstance(transformation);
cipher.init(Cipher.DECRYPT_MODE, secretKey, spec);
String plainText = new String(cipher.doFinal(cipherText), UTF_8);

https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/java/security/Signature

Zebra Android 13 Administrator Guidance

36

Algorithms

• AES/CBC/NoPadding

• AES/GCM/NoPadding

Reference

Cipher – developer.android.com/reference/javax/crypto/Cipher

https://developer.android.com/reference/javax/crypto/Cipher

Zebra Android 13 Administrator Guidance

37

10.1.7 FCS_COP.1(2) – Hashing (SHA)
You can use MessageDigest class to calculate the hash of plaintext.
MessageDigest messageDigest = MessageDigest.getInstance(algorithm);
messageDigest.update(data.getBytes(StandardCharsets.UTF_8));
byte[] digest = messageDigest.digest();

Algorithms

• SHA-1

• SHA-256

• SHA-384

• SHA-512

Reference

MessageDigest – developer.android.com/reference/java/security/MessageDigest

10.1.8 FCS_COP.1(3) – RSA (Signature Algorithms)

KeyFactory class generates RSA private key and public key. Signature class signs a plaintext with private
key generated above and verifies it with public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA", "AndroidOpenSSL");
keyGen.initialize(keySize);
KeyPair keyPair = keyGen.generateKeyPair();
RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();
RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

// Sign

Signature signature = Signature.getInstance(algorithm);
signature.initSign(privateKey);
signature.update(data.getBytes(StandardCharsets.UTF_8));
byte[] sig = signature.sign();

// Verify

Signature signature = Signature.getInstance(algorithm);
signature.initVerify(publicKey);
signature.update(data.getBytes(StandardCharsets.UTF_8));
boolean verified = signature.verify(sig);

Algorithms

• SHA256withRSA

• SHA384withRSA

Reference

Signature – developer.android.com/reference/java/security/Signature

https://developer.android.com/reference/java/security/MessageDigest
https://developer.android.com/reference/java/security/Signature

Zebra Android 13 Administrator Guidance

38

10.1.9 FCS_CKM.1 – Key Generation (RSA)
KeyFactory class generates RSA private key and public key.

KeyPairGenerator keyGen = KeyPairGenerator.getInstance("RSA", "AndroidOpenSSL");
keyGen.initialize(keySize);
KeyPair keyPair = keyGen.generateKeyPair();
RSAPublicKey pub = (RSAPublicKey) keyPair.getPublic();
RSAPrivateCrtKey priv = (RSAPrivateCrtKey) keyPair.getPrivate();

Algorithms

• SHA256withRSA

• SHA384withRSA

Reference

Signature – developer.android.com/reference/java/security/Signature

10.1.10 FCS_COP.1(4) - HMAC
Mac class calculates the hash of plaintext with key.

KeyGenerator keyGenerator = KeyGenerator.getInstance(
algorithm, "AndroidOpenSSL");

keyGenerator.init(keySize);

SecretKey key = keyGenerator.generateKey();

// Mac

Mac mac = Mac.getInstance(algorithm);
mac.init(secretKey);
byte[] mac = mac.doFinal(data.getBytes(StandardCharsets.UTF_8));

Algorithms

• HmacSHA1

• HmacSHA256

• HmacSHA384

• HmacSHA512

Reference

Mac – developer.android.com/reference/javax/crypto/Mac

10.2 Key Management

This section provides code samples for key management.

10.2.1 Code examples:

SecureKeyGenerator keyGenerator = SecureKeyGenerator.getInstance();

// Generate Keypair
keyGenerator.generateAsymmetricKeyPair(KEY_PAIR_ALIAS);
// Generate Symmetric Key

keyGenerator.generateKey(KEY_ALIAS);

// Generate ephemeral key (random number generation)
keyGenerator.generateEphemeralDataKey();

// To delete a key stored in the Android Keystore

KeyStore keyStore = KeyStore.getInstance("AndroidKeyStore");
keyStore.load(null);
keyStore.deleteEntry("KEY_TO_REMOVE");

10.2.2 SecureKeyGenerator

NOTE: SecureKeyGenerator is included in the NIAPSEC library.

https://developer.android.com/reference/java/security/Signature
https://developer.android.com/reference/javax/crypto/Mac

Zebra Android 13 Administrator Guidance

39

SecureKeyGenerator handles low-level key generation operations using the AndroidKeyStore. For
sensitive data protection, this library is not used directly by developers.

Supported Algorithms

• AES256 - AES/GCM/NoPadding

• RSA3072 - RSA/ECB/OAEPWithSHA-256AndMGF1Padding

Table 9 SecureKeyGenerator Public Static Accessories

Accessors Description

SecureKeyGenerator SecureCipher.getDefault()

API to get an instance of the SecureCipher with NIAP settings.

Table 10 SecureKeyGenerator Public Methods

Methods Description

boolean generateKey(String keyAlias)

Generate an AES key with NIAP settings that is stored and protected in the AndroidKeyStore.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.
-keyAlias - name for the key

boolean generateKeyAsymmetricKeyPair(String keyAlias)

Generate an RSA key pair with NIAP settings that is stored and protected in the AndroidKeyStore.
See SecureConfig.getStrongConfig() - Default is RSA3072 OAEP.
-keyAlias - name for the key pair

EphemeralSecretKey generateEphemeralDataKey()

Generate an AES key with NIAP settings. This key is not stored in the AndroidKeyStore
Uses SecureRandom.getInstanceStrong() to generate a random key.
See SecureConfig.getStrongConfig() - Default is AES256 GCM.

NOTE: Built using the JCE libraries. For more information see the following resources:

• AndroidKeyStore – developer.android.com/training/articles/keystore

• KeyPairGenerator – developer.android.com/reference/java/security/KeyPairGenerator

• SecretKey – developer.android.com/reference/javax/crypto/SecretKey

• SecureRandom – developer.android.com/reference/java/security/SecureRandom

• KeyGenParameterSpec –
developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

https://developer.android.com/training/articles/keystore
https://developer.android.com/reference/java/security/KeyPairGenerator
https://developer.android.com/reference/javax/crypto/SecretKey
https://developer.android.com/reference/java/security/SecureRandom
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec
https://developer.android.com/reference/android/security/keystore/KeyGenParameterSpec

Zebra Android 13 Administrator Guidance

40

10.3 FCS_TLSC_EXT.1 - Certificate Validation, TLS, HTTPS

NOTE: SecureURL is included in the NIAPSEC library.

SecureURL automatically configures TLS and can perform certificate and host validation checking. At
construction, SecureURL requires a reference identifier.

Code examples:

SecureURL url = new SecureURL(referenceIdentifier, "google_cert");
HttpsURLConnection conn = (HttpsURLConnection) url.openConnection();
conn.setRequestMethod("GET");
conn.setDoInput(true);
conn.connect();

// Manual check

SecureURL url = new SecureURL(referenceIdentifier, "google_cert");
boolean valid = url.isValid(urlConnection);

Table 11 SecureURL Public Constructors

Constructors Descriptio
n

SecureURL new SecureURL(String referenceIdentifier, String clientCert)

API to create an instance of the SecureURL with NIAP settings. clientCert is optional.

Table 12 SecureURL Public Methods

Method
s

Descriptio
n

HttpsURLConnection openConnection

Opens an HttpsUrlConnection using TLS by default and handles OCSP validation checks and does a
hostname verification check on initiation of the connection.

boolean isValid(String hostname, SSLSocket socket)

A manual OCSP certificate and hostname check.
Based on a hostname and underlying SSLSocket.

boolean isValid(HttpsURLConnection conn)

A manual OCSP certificate and hostname check.
Based on an existing HttpsUrlConnection.

boolean isValid(Certificate cert)

A manual OCSP certificate check.

boolean isValid(List<Certificate> certs)

A manual OCSP certificates check.

NOTE: Built using the networking libraries. For more information see the following resources:

• PKIXRevocationChecker –
developer.android.com/reference/java/security/cert/PKIXRevocationChecker

• SSLSocket – developer.android.com/reference/javax/net/ssl/SSLSocket

https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker
https://developer.android.com/reference/java/security/cert/PKIXRevocationChecker
https://developer.android.com/reference/javax/net/ssl/SSLSocket

Zebra Android 13 Administrator Guidance

41

10.3.1 Cipher Suites

By default, the device is restricted to only support TLS Ciphersuites that are RFC compliant and can be
claimed under MDFPP. As such, no configuration is needed to restrict or allow ciphersuites to be
compliant. A list of the ciphersuites supported by Android 13 can be found below:

Table 13 TLS 1.2 Cipher Suites

Approved Cipher
Suites

TLS Version

TLS_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5288, TLS v1.2

TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

The device supports TLS versions 1.0, 1.1, and 1.2 for use with EAP-TLS as part of WPA2 and WPA3.
The TOE supports the following cipher suites for this:

• TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 5246,

• TLS_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5288,

• TLS_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5288,

• TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

• TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289,

• TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 as defined in RFC 5289,

• TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 as defined in RFC 5289

10.3.2 Guidance for Bluetooth Low Energy APIs

Provides classes that manage Bluetooth functionality, such as scanning for devices, connecting with
devices, and managing data transfer between devices. The Bluetooth API supports both Classic Bluetooth
and Bluetooth Low Energy (BLE).

For more information about Classic Bluetooth, see the Android Bluetooth guide. For more information
about Bluetooth Low Energy, see the Android Bluetooth Low Energy (BLE) guide.

The Bluetooth APIs allow applications to do the following:

• Scan for other Bluetooth devices (including BLE devices).

• Query the local Bluetooth adapter for paired Bluetooth devices.

• Establish RFCOMM channels/sockets.

• Connect to specified sockets on other devices.

• Transfer data to and from other devices.

• Communicate with BLE devices, such as proximity sensors, heart rate monitors, and fitness devices.

• Act as a GATT client or a GATT server (BLE).

To perform Bluetooth communication using these APIs, an application must declare the BLUETOOTH
permission. Some additional functionality, such as requesting device discovery, also requires the
BLUETOOTH_ADMIN permission.

https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth-le.html
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH
https://developer.android.com/reference/android/Manifest.permission.html#BLUETOOTH_ADMIN

Zebra Android 13 Administrator Guidance

42

Table 14 Bluetooth Interfaces

Interfac
e

Description

BluetoothAdapter.LeScanCallback Callback interface used to deliver LE scan results.

BluetoothProfile Public APIs for the Bluetooth Profiles.

BluetoothProfile.ServiceListener An interface for notifying BluetoothProfile IPC clients when they have been

connected or disconnected to the service.

Table 15 Bluetooth Classes

Class Description

BluetoothA2dp This class provides the public APIs to control the Bluetooth A2DP profile.

BluetoothAdapter Represents the local device Bluetooth adapter.

BluetoothAssignedNumbers Bluetooth Assigned Numbers.

BluetoothClass Represents a Bluetooth class, which describes general characteristics and capabilities

of a device.

BluetoothClass.Device Defines all device class constants.

BluetoothClass.Device.Major Defines all major device class constants.

BluetoothClass.Service Defines all service class constants.

BluetoothDevice Represents a remote Bluetooth device.

BluetoothGatt Public API for the Bluetooth GATT Profile.

BluetoothGattCallback This abstract class is used to implement BluetoothGatt callbacks.

BluetoothGattCharacteristic Represents a Bluetooth GATT Characteristic

A GATT characteristic is a basic data element used to construct a GATT
service,BluetoothGattService.

BluetoothGattDescriptor Represents a Bluetooth GATT Descriptor

GATT Descriptors contain additional information and attributes of a GATT
characteristic, BluetoothGattCharacteristic.

BluetoothGattServer Public API for the Bluetooth GATT Profile server role.

BluetoothGattServerCallback This abstract class is used to implement BluetoothGattServer callbacks.

BluetoothGattService Represents a Bluetooth GATT Service

Gatt Service contains a collection of BluetoothGattCharacteristic, as well as referenced

services.

BluetoothHeadset Public API for controlling the Bluetooth Headset Service.

https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.LeScanCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.html
https://developer.android.com/reference/android/bluetooth/BluetoothProfile.ServiceListener.html
https://developer.android.com/reference/android/bluetooth/BluetoothA2dp.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothAssignedNumbers.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Device.Major.html
https://developer.android.com/reference/android/bluetooth/BluetoothClass.Service.html
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattDescriptor.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServerCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattServer.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattService.html
https://developer.android.com/reference/android/bluetooth/BluetoothGattCharacteristic.html
https://developer.android.com/reference/android/bluetooth/BluetoothHeadset.html

Zebra Android 13 Administrator Guidance

43

Table 16 Bluetooth Classes (Continued)

Class Description

BluetoothHealth This class was deprecated in API level 29. Health Device Profile (HDP) and MCAP
protocol are no longer used. New apps should use Bluetooth Low Energy based
solutions such as BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),
orBluetoothDevice#createL2capChannel(int)

BluetoothHealthAppConfiguration This class was deprecated in API level 29. Health Device Profile (HDP) and MCAP
protocol are no longer used. New apps should use Bluetooth Low Energy based
solutions such as BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),
orBluetoothDevice#createL2capChannel(int)

BluetoothHealthCallback This class was deprecated in API level 29. Health Device Profile (HDP) and MCAP
protocol are no longer used. New apps should use Bluetooth Low Energy based
solutions such as BluetoothGatt,BluetoothAdapter#listenUsingL2capChannel(),
orBluetoothDevice#createL2capChannel(int)

BluetoothHearingAid This class provides the public APIs to control the Hearing Aid profile.

BluetoothHidDevice Provides the public APIs to control the Bluetooth HID Device profile.

BluetoothHidDevice.Callback The template class that applications use to call callback functions on events from the

HID host.

BluetoothHidDeviceAppQosSettings Represents the Quality of Service (QoS) settings for a Bluetooth HID Device

application.

BluetoothHidDeviceAppSdpSettings Represents the Service Discovery Protocol (SDP) settings for a Bluetooth HID Device

application.

BluetoothManager

High level manager used to obtain an instance of an BluetoothAdapter and to conduct
overall Bluetooth Management.

BluetoothServerSocket A listening Bluetooth socket.

BluetoothSocket A connected or connecting Bluetooth socket.

For more information, see developer.android.com/reference/android/bluetooth/package-summary.html.
How to connect and pair with a bluetooth device:

// get bluetooth adapter

BluetoothAdapter bluetoothAdapter = BluetoothAdapter.getDefaultAdapter();
if (bluetoothAdapter == null) {

// Device doesn't support Bluetooth

}

// make sure bluetooth is enabled
if (!bluetoothAdapter.isEnabled()) {

Intent enableBtIntent = new Intent(BluetoothAdapter.ACTION_REQUEST_ENABLE);

https://developer.android.com/reference/android/bluetooth/BluetoothHealth.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothHealthAppConfiguration.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothHealthCallback.html
https://developer.android.com/reference/android/bluetooth/BluetoothGatt.html
https://developer.android.com/reference/android/bluetooth/BluetoothHearingAid.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDevice.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDevice.Callback.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDeviceAppQosSettings.html
https://developer.android.com/reference/android/bluetooth/BluetoothHidDeviceAppSdpSettings.html
https://developer.android.com/reference/android/bluetooth/BluetoothManager.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothServerSocket.html
https://developer.android.com/reference/android/bluetooth/BluetoothSocket.html
https://developer.android.com/reference/android/bluetooth/package-summary.html

Zebra Android 13 Administrator Guidance

44

startActivityForResult(enableBtIntent, REQUEST_ENABLE_BT);

}

// query for devices

Set<BluetoothDevice> pairedDevices = bluetoothAdapter.getBondedDevices();
if (pairedDevices.size() > 0) {

// There are paired devices. Get the name and address of each paired device.
for (BluetoothDevice device : pairedDevices) {

String deviceName = device.getName();

String deviceHardwareAddress = device.getAddress(); // MAC address

}

}

// Connect to devices.

private class AcceptThread extends Thread {

private final BluetoothServerSocket mmServerSocket;
public AcceptThread() {

// Use a temporary object that is later assigned to mmServerSocket

// because mmServerSocket is final.
BluetoothServerSocket tmp = null;
try {

// MY_UUID is the app's UUID string, also used by the client code.

tmp = bluetoothAdapter.listenUsingRfcommWithServiceRecord(NAME, MY_UUID);

} catch (IOException e) {

Log.e(TAG, "Socket's listen() method failed", e);

}

mmServerSocket = tmp;

}

public void run() {
BluetoothSocket socket = null;
// Keep listening until exception occurs or a socket is returned.
while (true) {

try {

socket = mmServerSocket.accept();

} catch (IOException e) {

Log.e(TAG, "Socket's accept() method failed", e);
break;

}

if (socket != null) {

// A connection was accepted. Perform work associated with

// the connection in a separate thread.
manageMyConnectedSocket(socket);
mmServerSocket.close();
break;

}

}

}

// Closes the connect socket and causes the thread to finish.
public void cancel() {

try {
mmServerSocket.close();

Zebra Android 13 Administrator Guidance

45

} catch (IOException e) {

Log.e(TAG, "Could not close the connect socket", e);

}

}

}

For more information, see developer.android.com/guide/topics/connectivity/bluetooth.html#SettingUp.

Sample service to interact with a bluetooth APIs:

// A service that interacts with the BLE device via the Android BLE API.
public class BLEService extends Service {

private final static String TAG = "BLEService";
private BluetoothManager mBluetoothManager;
private BluetoothAdapter mBluetoothAdapter;
private String mBluetoothDeviceAddress;
private BluetoothGatt mBluetoothGatt;
private int mConnectionState = STATE_DISCONNECTED;
private static final int STATE_DISCONNECTED = 0;
private static final int STATE_CONNECTING = 1;
private static final int STATE_CONNECTED = 2;
public final static String ACTION_GATT_CONNECTED =

"com.niap.ble.ACTION_GATT_CONNECTED";

public final static String ACTION_GATT_DISCONNECTED =
"com.niap.ble.ACTION_GATT_DISCONNECTED";

public final static String ACTION_GATT_SERVICES_DISCOVERED =
"com.niap.ble.ACTION_GATT_SERVICES_DISCOVERED";

public final static String ACTION_DATA_AVAILABLE =
"com.niap.ble.ACTION_DATA_AVAILABLE";

public final static String EXTRA_DATA =
"com.niap.ble.EXTRA_DATA";

// Various callback methods defined by the BLE API.
private final BluetoothGattCallback mGattCallback =

new BluetoothGattCallback() {
@Override
public void onConnectionStateChange(BluetoothGatt gatt, int status,

int newState) {

String intentAction;

if (newState == BluetoothProfile.STATE_CONNECTED) {
intentAction = ACTION_GATT_CONNECTED;
mConnectionState = STATE_CONNECTED;
broadcastUpdate(intentAction);
Log.i(TAG, "Connected to GATT server.");

Log.i(TAG, "Attempting to start service discovery:" +
mBluetoothGatt.discoverServices());

} else if (newState == BluetoothProfile.STATE_DISCONNECTED) {
intentAction = ACTION_GATT_DISCONNECTED;
mConnectionState = STATE_DISCONNECTED;
Log.i(TAG, "Disconnected from GATT server.");
broadcastUpdate(intentAction);

}

https://developer.android.com/guide/topics/connectivity/bluetooth.html#SettingUp

Zebra Android 13 Administrator Guidance

46

}

@Override

// New services discovered

public void onServicesDiscovered(BluetoothGatt gatt, int status) {
if (status == BluetoothGatt.GATT_SUCCESS) {

broadcastUpdate(ACTION_GATT_SERVICES_DISCOVERED);

} else {

Log.w(TAG, "onServicesDiscovered received: " + status);

}

}

characteristic,

@Override

// Result of a characteristic read operation

public void onCharacteristicRead(BluetoothGatt gatt,

BluetoothGattCharacteristic

int status) {

if (status == BluetoothGatt.GATT_SUCCESS) {
broadcastUpdate(ACTION_DATA_AVAILABLE, characteristic);

Zebra Android 13 Administrator Guidance

47

}

}

};

}

11.0 Annexure

11.1 Creating and Applying the StageNow Profile

11.1.1 Install StageNow

Installing StageNow is dependent on the version you are using. The instructions for each version are found
on the StageNow support page. Follow the instructions for the version you are installing.

1. Install StageNow on your workstation tool from Zebra support portal at
zebra.com/us/en/support-downloads/software/utilities/stagenow.html.

2. Select the version you are installing; typically you will install the newest version.

3. Click the version number to expand the options and access the Installation Guide, Release Notes, and
install file. Follow the instructions in the Installation Guide to install StageNow.

4. Follow the instructions to create the StageNow Profiles. This example uses the instructions from
version 5.12. https://techdocs.zebra.com/stagenow/5-12/stagingprofiles/

5. Download CCReadinesspackage_A13_4490.zip from HERE.

6. Refer the steps to create Xpert Mode profiles at
techdocs.zebra.com/stagenow/4-2/Profiles/xpertmode/.

7. Refer to the settings type at techdocs.zebra.com/stagenow/4-2/settingtypes/.

8. Once you are familiar with StageNow usage, continue with 11.1.2 Create the StageNow Profiles to
connect the device to your network. Download CC Readiness package from StageNow workstation
and update the device.

NOTE: You can use the profiles attached at the end of this document and import to StageNow and update
the network and Package details.

9. Navigate to the All Profiles page.

10. Click on Import Profiles to import the zip file as detailed in the following section.

11.1.2 Create the StageNow Profiles
1. Launch StageNow tool on your Workstation.

2. Login with Admin credentials.

3. From the home page, click on Create New Profile.

4. On the Select a Wizard pop up page, choose the Please select MX version on your device drop
down, and set the value same as device MX version - example MX 13.2.Select the Xpert Mode
wizard and then click on Create.

5. Enter the Profile name and then click on Start.

6. In the CONFIG section, add two Wi-Fi network settings; one for configuring the network settings and a
second one to connect the device to that network.

https://www.zebra.com/us/en/support-downloads/software/utilities/stagenow.html
https://www.zebra.com/us/en/support-downloads/software/utilities/stagenow.html
https://techdocs.zebra.com/stagenow/5-12/stagingprofiles/
https://www.zebra.com/us/en/support-downloads/security-certification.html
https://techdocs.zebra.com/stagenow/4-2/Profiles/xpertmode/
https://techdocs.zebra.com/stagenow/4-2/Profiles/xpertmode/
https://techdocs.zebra.com/stagenow/4-2/settingtypes/

Zebra Android 13 Administrator Guidance

48

7. In the DEPLOY section, add FileMgr to allow settings that transfer the FBE file to the device, and
PowerMgr settings to update the device OS using the FBE package.

8. Click Update and then enter the settings data.

Zebra Android 13 Administrator Guidance

49

9. Enter your network details and click Continue.

Zebra Android 13 Administrator Guidance

50

10. Enter file path details and then select the CCReadinesspackage_A13_4490.zip to be downloaded to the
device.

Note:In case of Exit from CC use the file CCExitPackage_A13_4490.zip or relevant package from HERE

11. Click on Continue.

https://www.zebra.com/us/en/support-downloads/security-certification.html

Zebra Android 13 Administrator Guidance

51

Zebra Android 13 Administrator Guidance

52

12. Enter the FBE package name in the PowerMgr setting to apply the patch on the device.

• Note1: On A10 devices, sample path for ZIP or UPL file is /storage/sdcard0/
CCReadinesspackage_A13_4490.zip

• Note 2: On A11 and above devices, sample path for ZIP or UPL file is /sdcard/
CCReadinesspackage_A13_4490.zip

13. While upgrading device from A10 CC state to A13 with all the critical setting already applied via StageNow,
then follow step 15 else move to step16

14. On Review screen, Select Barcode as Trusted and opt the certificate which was imported while following
11.1.2 Create the StageNow Profiles

Zebra Android 13 Administrator Guidance

53

15. Click on “Continue” and complete the profile

16. On the Publish page, select JS PDF417 type, and then click on Test to generate barcodes.

17. Do one of the following:

• For a factory-fresh (or factory-reset) device at the Welcome screen, select FIPS-enabled device and
scan the barcode(s) from the device, or

• Launch the StageNow application from the page and then scan the barcode(s).

18. Once the device connects to the network, download the patch and then apply the patch.

Zebra Android 13 Administrator Guidance

54

11.2 Configuring Critical Settings Using Stage Now

NOTES:

• For settings type details for SDCardMgr, PersistMgr, USBMgr and AccessMgr settings, see
techdocs.zebra.com/stagenow/4-2/settingtypes/.

• For information on Trusted Staging, see techdocs.zebra.com/stagenow/4-2/trustedstaging/.

1. Refer to 11.1.2 Create the StageNow Profiles. Follow steps to create new StageNow Profile # 2 with the
settings shown in the figure below. Add two Wi-Fi settings to the CONFIG section to create a network
and then connect to it.

2. Add the following settings in DEPLOY Section and then click on update.

• SDCardMgr – Disable SD card access (Unmount)

• AccessMgr – Protect USB Manager CSP

• AccessMgr - Protect Persist Manager CSP

• AccessMgr – Protect SDCard Manager CSP

• AccessMgr - Protect Access Manager CSP

• BatchMgr – Enable Trusted Staging

• FileMgr – Download MDM agent to the device

• AppMgr – Install MDM agent

• IntentMgr – Set/enroll MDM agent as a Device Owner

https://techdocs.zebra.com/stagenow/4-2/settingtypes/
https://techdocs.zebra.com/stagenow/4-2/settingtypes/
https://techdocs.zebra.com/stagenow/4-2/trustedstaging/

Zebra Android 13 Administrator Guidance

55

Zebra Android 13 Administrator Guidance

56

3. Enter valid data for network creation and connecting to the same network

Zebra Android 13 Administrator Guidance

57

4. Follow the steps below to configure the deployment settings, first to disable SD card.

 Note: Step 4 is not applicable on devices that doesn’t support sdcard

5. Protect USBMgr.

Zebra Android 13 Administrator Guidance

58

6. Protect PersistMgr.

7. Protect SDCardMgr (Note: This step is not applicable on devices that does not support sdcard)
.

Zebra Android 13 Administrator Guidance

59

8. Protect AccessMgr

Zebra Android 13 Administrator Guidance

60

9. Set StageNow to Trusted Mode.

IMPORTANT: This step requires the use of Trusted certificates. See
techdocs.zebra.com/stagenow/4-2/trustedstaging/ for more information.

10. Download the MDM agent package to the device.

https://techdocs.zebra.com/stagenow/4-2/trustedstaging/

Zebra Android 13 Administrator Guidance

11. Install MDM agent package on the device.

12. Enroll MDM agent as Device Owner.

13. 14.On the Publish page, select JS PDF417 type, and then click on Test to generate barcodes.

IMPORTANT: Zebra devices in CC mode will not support the following:

• Work Profile Separation

• MultiUser

• SDCard

Zebra Android 13 Administrator Guidance

www.zebra.com

http://www.zebra.com/

