Pure Storage FlashArray//CR3, //CR4, //XL, //XR3, and //XR4 Appliances Running Purity 6.5 Security Target

Document Version: 1.4

Version	Date	Changes			
Version 1.1	21-May-2024	Initial Draft			
Version 1.2	28-Feb-2025	Second Draft			
Version 1.3	23-Mar-2025	Third Draft			
Version 1.4	26-Mar-2025	Fourth Draft			

Revision History:

Contents

1	Intro	duction	5
	1.1	Security Target and TOE Reference	5
	1.2	TOE Overview	5
	1.3	TOE Description	5
	1.3.1	Physical Boundaries	6
	1.3.2	Security Functions Provided by the TOE	8
	1.3.3	TOE Documentation	10
	1.3.4	References	10
	1.4	TOE Environment	11
	1.5	Product Functionality not Included in the Scope of the Evaluation	12
2	Confe	ormance Claims	13
	2.1	CC Conformance Claims	13
	2.2	Protection Profile Conformance	13
	2.3	Conformance Rationale	13
	2.3.1	Technical Decisions	13
3	Secu	rity Problem Definition	16
	3.1	Threats	16
	3.2	Assumptions	18
	3.3	Organizational Security Policies	19
4	Secu	rity Objectives	20
	4.1	Security Objectives for the Operational Environment	
5	Secu	rity Requirements	21
	5.1	Conventions	
	5.2	Security Functional Requirements	
	5.2.1		
	5.2.2	Cryptographic Support (FCS)	25
	5.2.3	Identification and Authentication (FIA)	29
	5.2.4	Security Management (FMT)	31
	5.2.5	Protection of the TSF (FPT)	32
	5.2.6	TOE Access (FTA)	33
	5.2.7	Trusted Path/Channels (FTP)	33
	5.3	TOE SFR Dependencies Rationale for SFRs	35
	5.4	Security Assurance Requirements	35

6	TOE	Summary Specifications	. 36
	6.1	CAVP Algorithm Certificate Details	51
	6.2	Cryptographic Key Destruction	52
7	Acro	nym Table	. 53

1 Introduction

The Security Target (ST) serves as the basis for the Common Criteria (CC) evaluation and identifies the Target of Evaluation (TOE), the scope of the evaluation, and the assumptions made throughout. This document will also describe the intended operational environment of the TOE, and the functional and assurance requirements that the TOE meets.

1.1 Security Target and TOE Reference

This section provides the information needed to identify and control the TOE and the ST.

Category	Identifier
ST Title	Pure Storage FlashArray//CR3, //CR4, //XL, //XR3, and //XR4 Appliances Running
	Purity 6.5 Security Target
ST Version	1.4
ST Date	March 26, 2025
ST Author	Pure Storage, Inc.
TOE Reference	Pure Storage FlashArray Appliances
TOE Hardware	see Section 1.3.1
TOE Software Version	Purity 6.5.0.post6
TOE Developer	Pure Storage, Inc
Key Words	Network Device, SSH, TLS

Fable	1 •	TOE	/ST	Identification

1.2 TOE Overview

The TOE is the Pure Storage Inc (Pure Storage) FlashArray//CR3, //CR4, //XL, //XR3, and //XR4 model families running Purity v6.5.

The usage and major security features of the TOE are described in Section 1.3 "TOE Description" below. The TOE Environment is described in Section 1.4 "TOE Environment"

The TOE is classified as a Network Device.

1.3 TOE Description

Pure Storage Inc's (Pure Storage) FlashArray (TOE) is an enterprise Network Attached Storage solution that includes a Linux-based operating system, SAN (Storage Area Network) protocols and interfaces (iSCSI, Fiber Channel, SAS), and custom software to provide network storage with high performance, reliability, usability, and efficiency. The TOE comes with the following unevaluated SAN features:

- 5-10x Data Reduction (Purity Reduce)
- Non-Disruptive Expansion and High Availability (Purity Assure)
- Snapshots, Backup & Disaster Recovery (Purity Protect)
- Real-world Optimized Performance (100K 200K 32K IOPS @ <1ms average latency)
- Data at rest encryption with AES-256 (Purity Secure)

The Pure Storage FlashArray is designed to act as a data storage endpoint for a SAN (the data stored as part of SAN operations is not considered to be TSF data). The TOE supports remote administration over SSH with cryptographic encryption and authentication using FIPS 140-2 approved algorithms. The TOE also supports use of external audit servers, protected by TLS.

The TOE is not a distributed TOE.

1.3.1 Physical Boundaries

The physical boundaries of the TOE consist of the physical appliance including all the hardware and the software. The TOE appliance model numbers and corresponding processor are shown in the table below.

Table 2 - TOE Hardware Models				
Model #	Processor	CPU Microarchitecture		
Flash Array X10 R3	Intel Xeon Silver 4208	Cascade Lake		
Flash Array X20 R3	Intel Xeon Silver 4210R	Cascade Lake		
Flash Array X50 R3	Intel Xeon Silver 4214R	Cascade Lake		
Flash Array X70 R3	Intel Xeon Gold 6230	Cascade Lake		
Flash Array X90 R3	Intel Xeon Silver 6252	Cascade Lake		
FlashArray X20 R4	Intel Xeon Silver 4410Y	Sapphire Rapids		
FlashArray X50 R4	Intel Xeon Silver 4410Y	Sapphire Rapids		
FlashArray X70 R4	Intel Xeon Gold 5416S	Sapphire Rapids		
FlashArray X90 R4	Intel Xeon Gold 5418N	Sapphire Rapids		
FlashArray C60 R3	Intel Xeon Gold 6230	Cascade Lake		
FlashArray C40 R3	Intel Xeon Silver 4210R	Cascade Lake		
FlashArray C20 R4	Intel Xeon Silver 4410Y	Sapphire Rapids		
FlashArray C50 R4	Intel Xeon Silver 4410Y	Sapphire Rapids		
FlashArray C70 R4	Intel Xeon Gold 5416S	Sapphire Rapids		
FlashArray C90 R4	Intel Xeon Gold 5418N	Sapphire Rapids		
FlashArray XL130	Intel Xeon Gold 6338	Ice Lake		
FlashArray XL170	Intel Xeon Platinum 8368	Ice Lake		

The physical boundaries of the TOEs are illustrated in the figure below with red dotted lines.

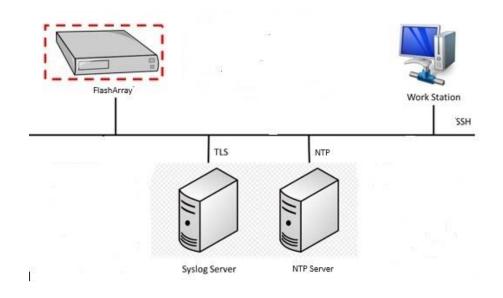


Figure 1 – TOE Boundaries

Summary specifications for the TOE appliance models is provided in the following tables.

Table 5 - HashAllay//X K+ & HashAllay//C K+ Failing inducts and specifications					
Model	X20 R4 / C20 R4	X50 R4 / C50 R4	X70 R4 / C70 R4	X90 R4 / C90 R4	
CPU	Intel [®] Xeon [®]				
	Silver 4410Y	Silver 4410Y	Gold 5416S	Gold 5418N	
	Processor	Processor	Processor	Processor	
Total Volatile Memory	256 GB	384 GB	512 GB	1024 GB	
Management Ports	2 x 1Gb	2 x 1Gb	2 x 1Gb	2 x 1Gb	
Local Console Ports	1x	1x	1x	1x	

Table 3 - FlashArray//X R4 & F	lashArray//C R4 Fami	ily models and s	pecifications

Table 4 - FlashArray//X R3 Family models and specifications

	X10 R3	X20 R3	X50 R3	X70 R3	X90 R3
СРU	Intel® Xeon® Silver 4208 Processor	Intel [®] Xeon [®] Silver 4210R Processor	Intel [®] Xeon [®] Silver 4214R Processor	Intel [®] Xeon [®] Silver 6230 Processor	Intel [®] Xeon [®] Silver 6252 Processor
Total Volatile Memory	96 GB	192 GB	288 GB	384 GB	768 GB
Management Ports	2 x 1Gb	2 x 1Gb	2 x 1Gb	2 x 1Gb	2 x 1Gb
Local Console Ports	1x	1x	1x	1x	1x

Table 5 - FlashArray//C R3 & FlashArray//XL Family models and specifications

	C60 R3	C40 R3	XL130	XL170
CPU	Intel Xeon Gold	Intel Xeon Silver	Intel [®] Xeon [®]	Intel [®] Xeon [®]
	6230 Processor	4210R	Gold 6338	Platinum 8368
		Processor	Processor	Processor
Total Volatile Memory	768 TB	384 TB	768 GB	1 TB
Management Ports	2 x 1Gb	2 x 1Gb	2 x 1Gb	2 x 1Gb
Local Console Ports	1x	1x	1x	1x

1.3.2 Security Functions Provided by the TOE

The TOE provides the security functions required by NDcPP v2.2e, aka NDcPP herein after.

1.3.2.1 Security Audit

- The TOE generates and stores audit events locally and forwards the logs remotely to syslog server securely via TLS.
- The TOE will audit all events and information defined in Table 12: Auditable Events.
- The TOE will also include the identity of the user that caused the event (if applicable), date and time of the event, type of event, and the outcome of the event.
- The TOE protects storage of audit information from unauthorized deletion.
- The TOE prevents unauthorized modifications to the stored audit records.

1.3.2.2 Cryptographic Support

The TSF performs the following cryptographic operations:

- SSH for remote CLI administrative management of the TOE:
 - Protocol versions:
 - SSHv2 (Conforming to RFCs 4251-4254, 4344, 5656, 6668, 8308 section3.1, 8332)
 - Public-Key Algorithms:
 - ssh-rsa2-256 2K-bit RSA key
 - ssh-rsa2-512 2K-bit RSA key
 - Data Encryption Algorithms:
 - aes128-cbc
 aes256-cbc
 aes128-ctr
 aes256-ctr
 256-bit AES symmetric key
 aes256-ctr
 256-bit AES symmetric key
 aes256-ctr
 - acszou-uli ZOD-UIL AES SYMME
 - aes128-gcm@openssh.com
 aes256-gcm@openssh.com
 256-bit AES symmetric key
 - Data Encryption MACs:
 - hmac-sha2-256, hmac-sha2-512
 - Key Exchange:
 - ecdh-sha2-nistp256, ecdh-sha2-nistp384, ecdh-sha2-nistp521
- Syslog Server:
 - Conforming to the following RFCs:
 - RFC 3164 The BSD syslog Protocol, RFC 5425 TLS Transport Mapping
 - Supporting the following for TLS:
 - TLSv1.2 (Conforming to RFC 5246)
 - Supporting at least one of the following TLS Ciphersuites:
 - TLS_RSA_WITH_AES_128_CBC_SHA
 - TLS_RSA_WITH_AES_256_CBC_SHA
 - TLS_RSA_WITH_AES_128_CBC_SHA256
 - TLS_RSA_WITH_AES_256_CBC_SHA256

- NTP Server:
 - Conforming to one of the following RFCs:
 - RFC 5905 Network Time Protocol Version 4
 - Supporting one of the following NTP versions:

NTP v4

o Supporting authentication using messages digests with the SHA-256 algorithm

The TSF zeroizes all plaintext secret and private cryptographic keys and CSPs once they are no longer required.

1.3.2.3 Identification and Authentication

The TSF supports passwords consisting of alphanumeric and special characters.

- The TSF allows the security administrator to configure the minimum password length from 1 character to 100 characters.
- The TSF prevents offending Administrator accounts (FIA_AFL.1.1) from successfully establishing remote session using any authentication method that involves a password until an Administrator defined time period has elapsed
- The TSF allows local administrators to re-enable user accounts locked by the FIA_AFL.1 functionality
- The TSF requires all administrative-users to authenticate before allowing the user to perform any actions other than:
 - Display the warning banner in accordance with FTA_TAB.1;
 - Respond to ICMP Echo Request
 - Respond to ARP requests with ARP replies
 - Make DNS Requests

1.3.2.4 Security Management

- TSF data includes the following:
 - \circ $\;$ All audit records generated to meet the auditing requirements of the PP $\;$
 - All user credentials (symmetric keys, private keys, keying material, username/password)
 - TSF Configuration data
 - The TSF includes four administrative roles within the Authorized Administrator role:
 - Internal Administrator
 - Array Administrator
 - Storage Administrator
 - Read-Only Administrator
- All roles are considered authorized administrators for the remainder of this document.
- The device ships with three hard-coded users but allows for additional users to be created.
- The TOE provides management over SSH (remote) and a local console.
- The TOE authenticates administrative users using a username/password combination or a username/SSH_RSA key combination.
- The TSF does not allow access to any administrative functions prior to successful authentication.
- The TOE also has the capability of being updated and verifying updates via published hash verification.

1.3.2.5 Protection of the TSF

• The TSF protects TSF data from disclosure when the data is transmitted between administrators and the TOE, and between the TOE and trusted IT entities.

- The TSF prevents the reading of secret and private keys.
- The TOE provides reliable time stamps for itself.
- The TOE runs a suite of self-tests during the initial start-up (upon power on) to demonstrate the correction operation of the TSF.

1.3.2.6 TOE Access

- The TOE, for local interactive sessions, terminates the user's session after an Authorized Administrator-specified period of session inactivity (applies to the local console).
- The TOE terminates a remote interactive session after an Authorized Administrator-configurable period of session inactivity (applies to SSH remote console)
- The TOE allows Administrator-initiated termination of the Administrator's own interactive session.
- Before establishing an administrative user session, the TOE is capable of displaying an Authorized Administrator-specified advisory notice and consent warning message regarding unauthorized use of the TOE.

1.3.2.7 Trusted Path/Channels

The TOE supports TLSv1.2 to secure remote communications. TLS protocol may be used for communications with remote IT entities. Remote administration is only supported using SSH.

- The TOE uses TLS to provide a trusted communication channel between itself and all authorized IT entities that are logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from disclosure and detection of modification of the channel data.
- The TOE permits the TSF, or the authorized IT entities, to initiate communication via the trusted channel.
- The TOE permits remote administrators to initiate communication via the trusted path. The TOE provides an SSH protected trusted path to administer the TOE.
- The TOE requires the use of the trusted path for initial administrator authentication and all remote administration actions.

1.3.3 TOE Documentation

The following documents are essential to understanding and controlling the TOE in the evaluated configuration:

- Pure Storage FlashArray//CR3, //CR4, //XL, //XR3, and //XR4 Appliances Running Purity 6.5 Security Target [ST]
- Pure Storage FlashArray//CR3, //CR4, //XL, //XR3, and //XR4 Appliances Running Purity 6.5 Guidance Document [ADG]

1.3.4 References

In additional to TOE documentation, the following reference may also be valuable when understanding and controlling the TOE:

• collaborative Protection Profile for Network Devices, Version 2.2e, 27 March 2020 [PP-ND]

1.4 TOE Environment

The following environmental components are required to operate the TOE in the evaluated configuration:

Syslog Server:

- Conforming to the following RFCs:
 - RFC 3164 The BSD syslog Protocol
 - RFC 5425 TLS Transport Mapping
- Supporting the following for TLS:
 - TLSv1.2 (Conforming to RFC 5246)
- Supporting at least one of the following TLS Ciphersuites:
 - TLS_RSA_WITH_AES_128_CBC_SHA
 - TLS_RSA_WITH_AES_256_CBC_SHA
 - TLS_RSA_WITH_AES_128_CBC_SHA256
 - TLS_RSA_WITH_AES_256_CBC_SHA256

NTP Server:

- Conforming to one of the following RFCs:
 - RFC 1305 Network Time Protocol (Version 3)
 - RFC 5905 Network Time Protocol Version 4
- Supporting one of the following NTP versions:
 - o NTP v4
- Supporting authentication using messages digests with the SHA-256 algorithm

Remote Administrative User Access:

- For remote administrative user access, the TOE requires an SSH client supporting:
 - Protocol versions:
 - SSHv2 (Conforming to RFCs 4251-4254, 5656, and 6668)
 - Public-Key Algorithms (at least one of the following):
 - rsa-sha2-256
 - rsa-sha2-512
 - Data Encryption (at least one of the following):
 - aes128-cbc
 - aes256-cbc
 - aes128-ctr
 - aes256-ctr
 - aes128-gcm@openssh.com
 - aes256-gcm@openssh.com
 - Data Integrity (at least one of the following):
 - hmac-sha2-256,
 - hmac-sha2-512
 - Key Exchange (at least one of the following):
 - ecdh-sha2-nistp256
 - ecdh-sha2-nistp384
 - ecdh-sha2-nistp521

Hardware requirements:

- Local Console:
 - o Serial I/O (SIO) Cable
 - Terminal/Monitor and Keyboard (via Terminal Emulation over SIO)
- SAS-connected SSD Storage Array from Pure Storage

1.5 Product Functionality not Included in the Scope of the Evaluation

The hardware and software of the TOE environment, identified above in Section 1.4, are not included in the CC evaluation scope.

Only the security functions specified in Section 5.2 (Security Functional Requirements) and Section 6 (TOE Summary Specifications) are included in the CC evaluation scope. Other product features and functions not included in the scope of this ST are deemed unevaluated and non-interfering. These features and functions include the following:

- Data reduction technology
- Non-Disruptive Expansion and High Availability
- Snapshots, Backup & Disaster Recovery including asynchronous replication, ActiveDR, ActiveCluster, and SafeMode
- Data at rest encryption
- Graphical User Interface
- REST API
- Remote Assist

2 Conformance Claims

This section identifies the TOE conformance claims, conformance rationale, and relevant Technical Decisions (TDs).

2.1 CC Conformance Claims

The TOE is conformant to the following:

- Common Criteria for Information Technology Security Evaluations Part 1, Version 3.1, Revision 5, April 2017
- Common Criteria for Information Technology Security Evaluations Part 2, Version 3.1, Revision 5, April 2017 (Extended)
- Common Criteria for Information Technology Security Evaluations Part 3, Version 3.1, Revision5, April 2017 (Conformant)

2.2 Protection Profile Conformance

This ST claims exact conformance to the Collaborated Protection Profiles for Network Devices, Version 2.2e, March 27, 2020 [PP-ND].

2.3 Conformance Rationale

This ST provides exact conformance to the items listed in the previous section. The security problem definition, security objectives, and security requirements in this ST are all taken from the Protection Profile (PP), performing only the operations defined there.

2.3.1 Technical Decisions

All NIAP Technical Decisions (TDs) issued to date and applicable to NDcPP v2.2e have been considered. Table 6 identifies all applicable TDs.

Technical Decision	Applicable (Y/N)	Exclusion Rationale (if applicable)
TD0527: Updated to Certificate Revocation Testing (FIA_X509_EXT.1)	Yes	
TD0528: NIT Technical Decision for Missing EAs for FCS_NTP_EXT.1.4	Yes	
TD0536: NIT Technical Decision for Update Verification Inconsistency	Yes	
TD0537: NIT Technical Decision for Incorrect reference to FCS_TLSC_EXT.2.3	Yes	
TD0546: NIT Technical Decision for DTLS – clarification of Application Note 63	No	DTLSS is not claimed by the TOE.
TD0547: NIT Technical Decision for Clarification on developer disclosure of AVA_VAN	Yes	
TD0555: NIT Technical Decision for RFC Reference incorrect in TLSS Test	No	TLSS is not claimed by the TOE.
TD0556: NIT Technical Decisions for RFC 5077 question	No	TLSS is not claimed by the TOE.

Table 6 - Relevant Technical Decisions

Technical Decision	Applicable (Y/N)	Exclusion Rationale (if applicable)
TD0563: NIT Technical Decision for	Yes	
Clarification of audit date information		
TD0564: NIT Technical Decision for	Yes	
Vulnerability Analysis Search Criteria		
TD0569: NIT Technical Decision for	No	DTLSS is not claimed by the TOE.
Session ID Usage Conflict in		,
FCS_DTLSS_EXT.1.7		
TD0570: NIT Technical Decision for	Yes	
Clarification about FIA_AFL.1		
TD0571: NIT Technical Decision for	No	The TOE can distinguish between local and
Guidance on how to handle FIA_AFL.1		remote connections.
TD0572: NIT Technical Decision for	Yes	
Restricting FTP_ITC.1 to only IP address		
identifiers		
TD0580: NIT Technical Decision for	No	The TOE does not claim use of DH14.
clarification about use of DH14 in		
NDcPPv2.2e		
TD0581: NIT Technical Decision for	Yes	
Elliptic curve-based key establishment		
and NIST SP 800-56Arev3		
TD0591: NIT Technical Decision for	No	The TOE is not a virtual TOE.
Virtual TOEs and hypervisors		
TD0592: NIT Technical Decision for Local	Yes	
Storage of Audit Records		
0631 – NIT Technical Decision for	Yes	
Clarification of public key authentication		
for SSH Server		
0632 – NIT Technical Decision for	No	The TOE is not a virtual TOE.
Consistency with Time Data for vNDs	Vaa	
0635 – NIT Technical Decision for TLS	Yes	
Server and Key Agreement Parameters	No	SSHC is not claimed by the TOE.
0636 – NIT Technical Decision for Clarification of Public Key User	NO	SSHC IS NOT Claimed by the TOE.
Authentication for SSH		
0638 – NIT Technical Decision for Key	Yes	
Pair Generation for Authentication	103	
0639 – NIT Technical Decision for	Yes	
Clarification for NTP MAC Keys		
0670 – NIT Technical Decision for	No	FCS TLSC EXT.2 (e.g. TLSC for Mutual Auth)
Mutual and Non-Mutual Auth TLSC		Is not claimed by the TOE.
Testing		
0738 – NIT Technical Decision for Link to	Yes	
Allowed-With List		
0790 – NIT Technical Decision:	No	IPv6 is not claimed by the TOE
Clarification Required for testing IPv6		, , , , , , , , , , , , , , , , , , ,
0792 – NIT Technical Decision:	Yes	
FIA_PMG_EXT.1 - TSS EA not in line with		
SFR		

Technical Decision	Applicable (Y/N)	Exclusion Rationale (if applicable)
0800 – Updated NIT Technical Decision for IPsec IKE/SA Lifetimes Tolerance	No	FCS_IPSEC_EXT.1 is not claimed by the TOE

3 Security Problem Definition

The security problem definition has been taken directly from the claimed PP and is reproduced here for the convenience of the reader. The security problem is described in terms of the threats that the TOE is expected to address, assumptions about the operational environment, and any Organizational Security Policies (OSPs) that the TOE is expected to enforce.

3.1 Threats

The threats included in Table 7 are drawn directly from the PP specified in Section 2.2.

Table 7 - Threats		
ID	Threat	
T.UNAUTHORIZED_ADMINISTRATOR_ACCESS	Threat agents may attempt to gain Administrator access to the Network Device by nefarious means such as masquerading as an Administrator to the device, masquerading as the device to an Administrator, replaying an administrative session (in its entirety, or selected portions), or performing man-in-the-middle attacks, which would provide access to the administrative session, or sessions between Network Devices. Successfully gaining Administrator access allows malicious actions that compromise the security functionality of the device and the network on which it resides.	
T.WEAK_CRYPTOGRAPHY	Threat agents may exploit weak cryptographic algorithms or perform a cryptographic exhaust against the key space. Poorly chosen encryption algorithms, modes, and key sizes will allow attackers to compromise the algorithms, or brute force exhaust the key space and give them unauthorized access allowing them to read, manipulate and/or control the traffic with minimal effort.	
T.UNTRUSTED_COMMUNICATION_CHANNELS	Threat agents may attempt to target Network Devices that do not use standardized secure tunnelling protocols to protect the critical network traffic. Attackers may take advantage of poorly designed protocols or poor key management to successfully perform man-in-the-middle attacks, replay attacks, etc. Successful attacks will result in loss of confidentiality and integrity of the critical network traffic, and potentially could lead to a compromise of the Network Device itself.	
T.WEAK_AUTHENTICATION_ENDPOINTS	Threat agents may take advantage of secure protocols that use weak methods to authenticate the endpoints, e.g. a shared password that is guessable or transported as plaintext. The consequences are the same as a poorly designed protocol, the attacker could masquerade as the Administrator or another device, and the attacker could insert themselves into the network stream and perform a man-in-the-middle attack. The result is the critical network traffic is exposed and there could be a loss of confidentiality and integrity, and potentially the Network Device itself could be compromised.	

ID	Threat
T.UPDATE_COMPROMISE	Threat agents may attempt to provide a compromised update of the software or firmware which undermines the security functionality of the device. Non-validated updates or updates validated using non-secure or weak cryptography leave the update firmware vulnerable to surreptitious alteration.
T.UNDETECTED_ACTIVITY	Threat agents may attempt to access, change, and/or modify the security functionality of the Network Device without Administrator awareness. This could result in the attacker finding an avenue (e.g., misconfiguration, flaw in the product) to compromise the device and the Administrator would have no knowledge that the device has been compromised.
T.SECURITY_FUNCTIONALITY_COMPROMISE	Threat agents may compromise credentials and device data enabling continued access to the Network Device and its critical data. The compromise of credentials includes replacing existing credentials with an attacker's credentials, modifying existing credentials, or obtaining the Administrator or device credentials for use by the attacker.
T.PASSWORD_CRACKING	Threat agents may be able to take advantage of weak administrative passwords to gain privileged access to the device. Having privileged access to the device provides the attacker unfettered access to the network traffic and may allow them to take advantage of any trust relationships with other Network Devices.
T.SECURITY_FUNCTIONALITY_FAILURE	An external, unauthorized entity could make use of failed or compromised security functionality and might therefore subsequently use or abuse security functions without prior authentication to access, change or modify device data, critical network traffic or security functionality of the device.

3.2 Assumptions

The assumptions included in Table 8 are drawn directly from PP.

Tal	ole 8 - Assumptions
ID	Assumption
A.PHYSICAL_PROTECTION	The Network Device is assumed to be physically protected in its operational environment and not subject to physical attacks that compromise the security or interfere with the device's physical interconnections and correct operation. This protection is assumed to be sufficient to protect the device and the data it contains. As a result, the cPP does not include any requirements on physical tamper protection or other physical attack mitigations. The cPP does not expect the product to defend against physical access to the device that allows unauthorized entities to extract data, bypass other controls, or otherwise manipulate the device. For vNDs, this assumption applies to the physical platform on which the VM runs.
A.LIMITED_FUNCTIONALITY	The device is assumed to provide networking functionality as its core function and not provide functionality/services that could be deemed as general purpose computing. For example, the device should not provide a computing platform for general purpose applications (unrelated to networking functionality).
A.NO_THRU_TRAFFIC_PROTECTION	A standard/generic Network Device does not provide any assurance regarding the protection of traffic that traverses it. The intent is for the Network Device to protect data that originates on or is destined to the device itself, to include administrative data and audit data. Traffic that is traversing the Network Device, destined for another network entity, is not covered by the ND cPP. It is assumed that this protection will be covered by cPPs and PP-Modules for particular types of Network Devices (e.g., firewall).
A.TRUSTED_ADMINISTRATOR	The Security Administrator(s) for the Network Device are assumed to be trusted and to act in the best interest of security for the organization. This includes appropriately trained, following policy, and adhering to guidance documentation. Administrators are trusted to ensure passwords/credentials have sufficient strength and entropy and to lack malicious intent when administering the device. The Network Device is not expected to be capable of defending against a malicious Administrator that actively works to bypass or compromise the security of the device.
	For TOEs supporting X.509v3 certificate-based authentication, the Security Administrator(s) are expected to fully validate (e.g. offline verification) any CA certificate (root CA certificate or intermediate CA certificate) loaded into the TOE's trust store (aka 'root store', ' trusted CA Key Store', or similar) as a trust anchor prior to use (e.g. offline verification).

ID	Assumption
A.REGULAR_UPDATES	The Network Device firmware and software is assumed to be updated by an Administrator on a regular basis in response to the release of product updates due to known vulnerabilities.
A.ADMIN_CREDENTIALS_SECURE	The Administrator's credentials (private key) used to access the Network Device are protected by the platform on which they reside.
A.RESIDUAL_INFORMATION	The Administrator must ensure that there is no unauthorized access possible for sensitive residual information (e.g. cryptographic keys, keying material, PINs, passwords etc.) on networking equipment when the equipment is discarded or removed from its operational environment.

3.3 Organizational Security Policies The OSPs included in Table 9 are drawn directly from the PP.

Table 9 - OSPs		
ID	OSP	
P.ACCESS_BANNER	The TOE shall display an initial banner describing restrictions of use, legal agreements, or any other appropriate information to which users consent by accessing the TOE.	

4 Security Objectives

The security objectives have been taken directly from the claimed PP and are reproduced here for the convenience of the reader.

4.1 Security Objectives for the Operational Environment

Security objectives for the operational environment assist the TOE in correctly providing its security functionality. These objectives, which are found in the table below, track with the assumptions about the TOE operational environment.

Table 10 - Security Objectives for the Operational Environment		
ID	Objectives for the Operational Environment	
OE.PHYSICAL	Physical security, commensurate with the value of the TOE and the data it contains, is provided by the environment.	
OE.NO_GENERAL_PURPOSE	There are no general-purpose computing capabilities (e.g., compilers or user applications) available on the TOE, other than those services necessary for the operation, administration and support of the TOE.	
OE.NO_THRU_TRAFFIC_PROTECTION	The TOE does not provide any protection of traffic that traverses it. It is assumed that protection of this traffic will be covered by other security and assurance measures in the operational environment.	
OE.TRUSTED_ADMN	Security Administrators are trusted to follow and apply all guidance documentation in a trusted manner	
	For TOEs supporting X.509v3 certificate-based authentication, the Security Administrator(s) are assumed to monitor the revocation status of all certificates in the TOE's trust store and to remove any certificate from the TOE's trust store in case such certificate can no longer be trusted.	
OE.UPDATES	The TOE firmware and software is updated by an Administrator on a regular basis in response to the release of product updates due to known vulnerabilities.	
OE.ADMIN_CREDENTIALS_SECURE	The Administrator's credentials (private key) used to access the TOE must be protected on any other platform on which they reside.	
OE.RESIDUAL_INFORMATION	The Security Administrator ensures that there is no unauthorized access possible for sensitive residual information (e.g. cryptographic keys, keying material, PINs, passwords etc.) on networking equipment when the equipment is discarded or removed from its operational environment.	

Table 10 - Security Objectives for the Operational Environment

5 Security Requirements

This section identifies the Security Functional Requirements (SFRs) for the TOE. The SFRs included in this section are derived from Part 2 of the Common Criteria for Information Technology Security Evaluation, Version 3.1, Revision 5, September 2017, and all international interpretations.

Requirement	Description	
AU_GEN.1	Audit Data Generation	
AU_GEN.2	User Identity Association	
AU_STG.1	Protected Audit Trail Storage	
AU_STG_EXT.1	Protected Audit Event Storage	
CS_CKM.1	Cryptographic Key Generation	
CS_CKM.2	Cryptographic Key Establishment	
CS_CKM.4	Cryptographic Key Destruction	
CS_COP.1/DataEncryption	Cryptographic Operation (AES Data Encryption/Decryption)	
CS_COP.1/SigGen	Cryptographic Operation (Signature Generation and Verification)	
CS COP.1/Hash	Cryptographic Operation (Hash Algorithm)	
CS_COP.1/KeyedHash	Cryptographic Operation (Keyed Hash Algorithm)	
CS RBG EXT.1	Random Bit Generation	
CS NTP EXT.1	NTP Protocol	
CS_SSHS_EXT.1	SSH Server	
CS TLSC EXT.1	TLS Client Protocol without Mutual Authentication	
	Authentication Failure Management	
IA PMG EXT.1	Password Management	
IA UIA EXT.1	User Identification and Authentication	
IA UAU EXT.2	Password-based Authentication Mechanism	
TA_UAU.7	Protected Authentication Feedback	
	X.509 Certificate Validation	
TIA_X509_EXT.2	X.509 Certificate Authentication	
	X.509 Certificate Requests	
MT_MOF.1/ManualUpdate	Management of Security Functions Behaviour	
MT MTD.1/CoreData	Management of TSF Data	
MT_MTD.1/CryptoKeys	Management of TSF Data	
MT SMF.1	Specification of Management Functions	
 MT_SMR.2	Restrictions on security roles	
 PT_SKP_EXT.1	Protection of TSF Data (for reading of all pre-shared, symmetric and	
	private keys)	
PT_APW_EXT.1	Protection of Administrator Passwords	
	TSF Testing	
PT STM EXT.1	Reliable Time Stamps	
 PT_TUD_EXT.1	Trusted Update	
TA SSL.3	TSF-initiated Termination	
TA_SSL.4	User-initiated Termination	
TA_SSL_EXT.1	TSF-initiated Session Locking	
TA TAB.1	Default TOE Access Banner	
TP ITC.1	Inter-TSF Trusted Channel	
TP_TRP.1/Admin	Trusted Path	

21

5.1 Conventions

The CC allows the following types of operations to be performed on the functional requirements: assignments, selections, refinements, and iterations. The following font conventions are used within this document to identify operations defined by CC:

- Assignment: Indicated with *italicized* text;
- Refinement: Indicated with **bold** text;
- Selection: Indicated with <u>underlined</u> text;
- Iteration: Indicated by appending the iteration identifier after a slash, e.g., /SigGen.
- Where operations were completed in the PP, the formatting used in the PP has been retained.
- Extended SFRs are identified by the addition of "EXT" after the requirement name.

5.2 Security Functional Requirements

This section includes the security functional requirements for this ST.

5.2.1 Security Audit (FAU)

5.2.1.1 FAU_GEN.1 Audit Data Generation

FAU_GEN.1.1

The TSF shall be able to generate an audit record of the following auditable events:

- a) Start-up and shut-down of the audit functions;
- b) All auditable events for the <u>not specified</u> level of audit; and
- c) All administrative actions comprising:
 - Administrative login and logout (name of user account shall be logged if individual user accounts are required for Administrators).
 - Changes to TSF data related to configuration changes (in addition to the information that a change occurred it shall be logged what has been changed).
 - Generating/import of, changing, or deleting of cryptographic keys (in addition to the action itself a unique key name or key reference shall be logged).
 - Resetting passwords (name of related user account shall be logged).
 - [no other actions];
- d) Specifically defined auditable events listed in **Table 12**.

FAU_GEN.1.2

The TSF shall record within each audit record at least the following information:

- a) Date and time of the event, type of event, subject identity, and the outcome (success or failure) of the event; and
- b) For each audit event type, based on the auditable event definitions of the functional components included in the cPP/ST, *information specified in column three of* **Table 12**.

Requirement	Auditable Events	Additional Audit Record Contents
FAU_GEN.1	None	None
FAU_GEN.2	None	None
FAU_STG.1 (OP)	None	None
FAU_STG_EXT.1	None	None
FCS_CKM.1	None	None

 Table 12 - Security Functional Requirements and Auditable Events

Requirement	Auditable Events	Additional Audit Record Contents
FCS_CKM.2	None	None
FCS_CKM.4	None	None
FCS_COP.1/DataEncryption	None	None
FCS_COP.1/SigGen	None	None
FCS_COP.1/Hash	None	None
FCS_COP.1/KeyedHash	None	None
FCS_RBG_EXT.1	None	None
FCS_NTP_EXT.1 (SB)	 Configuration of a new time server Removal of configured time server 	Identity if new/removed time server
FCS_SSHS_EXT.1 (SB)	Failure to establish an SSH session	Reason for failure
FCS_TLSC_EXT.1 (SB)	Failure to establish a TLS Session	Reason for failure
FIA_AFL.1	Unsuccessful login attempts limit is met or exceeded	Origin of the attempt (e.g., IP address)
FIA_PMG_EXT.1	None	None
FIA_UIA_EXT.1	All use of identification and authentication mechanism	Origin of the attempt (e.g., IP address)
FIA_UAU_EXT.2	All use of identification and authentication mechanism	Origin of the attempt (e.g., IP address)
FIA_UAU.7	None	None
FIA_X509_EXT.1/Rev (SB)	 Unsuccessful attempt to validate a certificate Any addition, replacement or removal of trust anchors in the TOE's trust store 	 Reason for failure of certificate validation Identification of certificates added, replaced or removed as trust anchor in the TOE's trust store
FIA_X509_EXT.2 (SB)	None	None
FIA_X509_EXT.3 (SB)	None	None
FMT_MOF.1/ManualUpdate	Any attempt to initiate a manual update	None
FMT_MTD.1/CoreData	None	None
FMT_MTD.1/CryptoKeys (SB)	None	None
FMT_SMF.1	All management activities of TSF data	None
FMT_SMR.2	None	None
FPT_SKP_EXT.1	None	None
FPT_APW_EXT.1	None	None
FPT_TST_EXT.1	None.	None.

Requirement	Auditable Events	Additional Audit Record Contents
FPT_STM_EXT.1	Discontinuous changes to time - either Administrator actuated or changed via an automated process	For discontinuous changes to time: The old and new values for the time. Origin of the attempt to change time for success and failure (e.g., IP address).
	(Note that no continuous changes to time need to be logged. See also application note on FPT_STM_EXT.1)	
FPT_TUD_EXT.1	Initiation of update; result of the update attempt (success or failure)	None
FTA_SSL.3	The termination of a remote session by the session locking mechanism	None
FTA_SSL.4	The termination of an interactive session	None
FTA_SSL_EXT.1 (if "terminate the session" is selected)	The termination of a local session by the session locking mechanism	None
FTA_TAB.1	None	None
FTP_ITC.1	 Initiation of the trusted channel Termination of the trusted channel Failure of the trusted channel functions 	Identification of the initiator and target of failed trusted channels establishment attempt
FTP_TRP.1/Admin	 Initiation of the trusted path Termination of the trusted path. Failure of the trusted path functions. 	None

Application Note: "(SB)" and "(OP)" indications in Table 12 have the following meanings:

- (SB) Selection Based SFR, from Section B of the PP-ND
- (OP) Optional SFR, from Section A of the PP-ND.

5.2.1.2 FAU_GEN.2 User Identity Association

FAU_GEN.2.1

For audit events resulting from actions of identified users, the TSF shall be able to associate each auditable event with the identity of the user that caused the event.

5.2.1.3 FAU_STG.1 Protected Audit Trail Storage

FAU_STG.1.1

The TSF shall protect the stored audit records in the audit trail from unauthorized deletion.

FAU_STG.1.2

The TSF shall be able to prevent unauthorised modifications to the stored audit records in the audit trail.

5.2.1.4 FAU_STG_EXT.1 Protected Audit Event Storage

FAU_STG_EXT.1.1

The TSF shall be able to transmit the generated audit data to an external IT entity using a trusted channel according to FTP_ITC.1.

FAU_STG_EXT.1.2

The TSF Shall be able to store generated audit data on the TOE itself. In addition [

• The TOE shall consist of a single standalone component that stores audit data locally,

].

FAU_STG_EXT.1.3

The TSF shall [overwrite previous audit records according to the following rule: [overwrite oldest audit record ('eat tail')]] when the local storage space for audit data is full.

5.2.2 Cryptographic Support (FCS)

5.2.2.1 FCS_CKM.1 Cryptographic Key Generation

FCS_CKM.1.1

The TSF shall generate **asymmetric** cryptographic key in accordance with a specified cryptographic key generation algorithm: [

- <u>RSA schemes using cryptographic key sizes of 2048-bit or greater that meet the following: FIPS</u> <u>PUB 186-4, "Digital Signature Standard (DSS)", Appendix B.3;</u>
- <u>ECC schemes using "NIST curves" [P-256, P-384, P-521] that meet the following: FIPS PUB 186-4,</u> <u>"Digital Signature Standard (DSS)", Appendix B.4;</u>

] and specified cryptographic key sizes [assignment: cryptographic key sizes] that meet the following: [assignment: list of standards].

5.2.2.1.1 FCS_CKM.2 Cryptographic Key Establishment

FCS_CKM.2.1

The TSF shall **perform** cryptographic **key establishment** in accordance with a specified cryptographic key **establishment** method: [

 <u>RSA-based key establishment schemes that meet the following: RSAES-PKCS1-v1 5 as specified in</u> <u>Section 7.2 of RFC 3447, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography</u> <u>Specifications Version 2.1";</u> • <u>Elliptic curve-based key establishment schemes that meet the following: NIST Special Publication</u> 800-56A Revision 3, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography";

] that meets the following: [assignment: list of standards].

Application Note: This SFR has been updated as per TD0580 and TD0581.

5.2.2.2 FCS_CKM.4 Cryptographic Key Destruction

FCS_CKM.4.1

The TSF shall destroy cryptographic keys in accordance with a specified cryptographic key destruction method

- For plaintext keys in volatile storage, the destruction shall be executed by a [single overwrite consisting of [zeroes]];
- For plaintext keys in non-volatile storage, the destruction shall be executed by the invocation of an interface provided by a part of the TSF that [
 - *logically addresses the storage location of the key and performs a [[3]-pass] overwrite consisting of [a pseudorandom pattern]*;

that meets the following: No Standard.

5.2.2.3 FCS_COP.1/DataEncryption Cryptographic Operations (AES Data Encryption/Decryption)

FCS_COP.1.1/DataEncryption

The TSF shall perform *encryption/decryption* in accordance with a specified cryptographic algorithm *AES* used in [<u>CBC, CTR, GCM</u>] mode and cryptographic key sizes [<u>128 bits, 256 bits</u>] that meet the following: AES as specified in ISO 18033-3, [<u>CBC as specified in ISO 10116, CTR as specified in ISO 10116, GCM as</u> <u>specified in ISO 19772</u>].

5.2.2.4 FCS_COP.1/SigGen Cryptographic Operation (Signature Generation and Verification)

FCS_COP.1.1/SigGen

The TSF shall perform *cryptographic signature services (generation and verification)* in accordance with a specified cryptographic algorithm [

• RSA Digital Signature Algorithm and cryptographic key sizes (modulus) [2048 bits]

]

that meet the following: [

• For RSA schemes: FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 5.5, using PKCS #1 v2.1 Signature Schemes RSASSA-PSS and/or RSASSA-PKCS1v1_5; ISO/IEC 9796-2, Digital signature scheme 2 or Digital Signature scheme 3,

].

5.2.2.5 FCS_COP.1/Hash Cryptographic Operations (Hash Algorithm)

FCS_COP.1.1/Hash

The TSF shall perform *cryptographic hashing services* in accordance with a specified cryptographic algorithm [*SHA-1, SHA-256, SHA-384, SHA-512*] and **message digest sizes** [*160, 256, 384, 512*] bits that meet the following: *ISO/IEC 10118-3:2004*.

5.2.2.6 FCS_COP.1/KeyedHash Cryptographic Operation (Keyed Hash Algorithm)

FCS_COP.1.1/KeyedHash

The TSF shall perform *keyed-hash message authentication* in accordance with a specified cryptographic algorithm [*HMAC-SHA-1, <u>HMAC-SHA-256, HMAC-SHA-512, implicit</u>] and cryptographic key sizes [160, 256, 512 bits] and message digest sizes [160, <u>256, 512</u>] bits that meet the following: <i>ISO/IEC 9797-2:2011, Section 7 "MAC Algorithm 2"*.

5.2.2.7 FCS_RBG_EXT.1 Random Bit Generation

FCS_RBG_EXT.1.1

The TSF shall perform all deterministic random bit generation services in accordance with ISO/IEC 18031:2011 using [*CTR_DRBG (AES)*].

FCS_RBG_EXT.1.2

The deterministic RBG shall be seeded by at least one entropy source that accumulates entropy from [<u>1</u>] <u>platform-based noise source</u>] with a minimum of [<u>256 bits</u>] of entropy at least equal to the greatest security strength, according to ISO/IEC 18031:2011 Table C.1 "Security Strength Table for Hash Functions", of the keys and hashes that it will generate.

5.2.2.8 FCS_NTP_EXT.1 NTP Protocol

FCS_NTP_EXT.1.1

The TSF shall use only the following NTP version(s) [NTP v4 (RFC 5905)].

FCS_NTP_EXT.1.2

The TSF shall update its system time using [

• Authentication using [SHA256] as the message digest algorithm(s);

].

FCS_NTP_EXT.1.3

The TSF shall not update NTP timestamp from broadcast and/or multicast addresses.

FCS_NTP_EXT.1.4

The TSF shall support configuration of at least three (3) NTP time sources in the Operational Environment.

5.2.2.9 FCS_SSHS_EXT.1 SSH Server Protocol

FCS_SSHS_EXT.1.1

The TSF shall implement the SSH protocol in accordance with: RFCs 4251, 4252, 4253, 4254, [4344, 5656, 6668].

FCS_SSHS_EXT.1.2

The TSF shall ensure that the SSH protocol implementation supports the following user authentication methods as described in RFC 4252: public key-based, [password-based].

Application Note: This SFR has been updated as per TD0631.

FCS_SSHS_EXT.1.3

The TSF shall ensure that, as described in RFC 4253, packets greater than [262,130] bytes in an SSH transport connection are dropped.

FCS_SSHS_EXT.1.4

The TSF shall ensure that the SSH transport implementation uses the following encryption algorithms and rejects all other encryption algorithms: [*aes128-cbc, aes256-cbc, aes128-ctr, aes256-ctr, aes128-gcm@openssh.com*].

FCS_SSHS_EXT.1.5

The TSF shall ensure that the SSH public-key based authentication implementation uses [*rsa-sha2-256, rsa-sha2-512*] as its public key algorithm(s) and rejects all other public key algorithms.

Application Note: This SFR has been updated as per TD0631.

FCS_SSHS_EXT.1.6

The TSF shall ensure that the SSH transport implementation uses [<u>hmac-sha2-256, hmac-sha2-512,</u> <u>implicit</u>] as its MAC algorithm(s) and rejects all other MAC algorithm(s).

FCS_SSHS_EXT.1.7

The TSF shall ensure that [*ecdh-sha2-nistp256*] and [*ecdh-sha2-nistp384, ecdh-sha2-nistp521*] are the only allowed key exchange method used for the SSH protocol.

FCS_SSHS_EXT.1.8

The TSF shall ensure that within SSH connections, the same session keys are used for a threshold of no longer than one hour, and each encryption key is used to protect no more than one gigabyte of data. After any of the thresholds are reached, a rekey needs to be performed.

5.2.2.10 FCS_TLSC_EXT.1 TLS Client Protocol without Mutual Authentication

FCS_TLSC_EXT.1.1

The TSF shall implement [*TLS 1.2 (RFC 5246)*] and reject all other TLS and SSL versions. The TLS implementation will support the following ciphersuites:

[

- TLS_RSA_WITH_AES_128_CBC_SHA as defined in RFC 3268
- TLS RSA WITH AES 256 CBC SHA as defined in RFC 3268
- TLS RSA WITH AES 128 CBC SHA256 as defined in RFC 5246
- TLS RSA WITH AES 256 CBC SHA256 as defined in RFC 5246

] and no other ciphersuites.

FCS_TLSC_EXT.1.2

The TSF shall verify that the presented identifier matches [<u>the reference identifier per RFC 6125 section 6</u>, <u>IPv4 address in SAN, and no other attribute types</u>].

FCS_TLSC_EXT.1.3

When establishing a trusted channel, by default the TSF shall not establish a trusted channel if the server certificate is invalid. The TSF shall also [

• Not implement any administrator override mechanism].

FCS_TLSC_EXT.1.4

The TSF shall [not present the Supported Elliptic Curves/Supported Groups Extension] in the Client Hello.

5.2.3 Identification and Authentication (FIA)

5.2.3.1 FIA_AFL.1 Authentication Failure Management

FIA_AFL.1.1

The TSF shall detect when an Administrator configurable positive integer within [1 to 100] unsuccessful authentication attempts occur related to Administrators attempting to authenticate remotely using a password.

FIA_AFL.1.2

When the defined number of unsuccessful authentication attempts has been <u>met</u>, the TSF shall [<u>prevent</u> <u>the offending Administrator from successfully establishing a remote session using any authentication</u> <u>method that involves a password until [unlock action] is taken by an Administrator; prevent the offending Administrator from successfully establishing a remote session using any authentication method that involves a password until an Administrator defined time period has elapsed].</u>

5.2.3.2 FIA_PMG_EXT.1 Password Management

FIA_PMG_EXT.1.1

The TSF shall provide the following password management capabilities for administrative passwords:

- a) Passwords shall be able to be composed of any combination of upper and lower case letters, numbers, and the following special characters: [<u>"!", "@", "#", "\$", "%", "^", "&", "&", "(", ")",</u> [ASCII hexadecimal codes 0x20-0x2F, 0x3A-0x40, 0x5B-0x60, 0x7B-0x7E]]
- b) Minimum password length shall be configurable to between [1] and [100] characters.

5.2.3.3 FIA_UIA_EXT.1 User Identification and Authentication

FIA_UIA_EXT.1.1

The TSF shall allow the following actions prior to requiring the non-TOE entity to initiate the identification and authentication process:

- Display the warning banner in accordance with FTA_TAB.1;
- [[Respond to ICMP Echo Request, Respond to ARP requests with ARP replies, Make DNS <u>Requests]</u>].

FIA_UIA_EXT.1.2

The TSF shall require each administrative user to be successfully identified and authenticated before allowing any other TSF-mediated actions on behalf of that administrative user.

5.2.3.4 FIA_UAU_EXT.2 Password-based Authentication Mechanism

FIA_UAU_EXT.2.1

The TSF shall provide a local [*password-based*] authentication mechanism to perform local administrative user authentication.

5.2.3.5 FIA_UAU.7 Protected Authentication Feedback

FIA_UAU.7.1

The TSF shall provide only *obscured feedback* to the administrative user while the authentication is in progress **at the local console.**

5.2.3.6 FIA_X509_EXT.1/Rev X.509 Certificate Validation

FIA_X509_EXT.1.1/Rev

The TSF shall validate certificates in accordance with the following rules:

- RFC 5280 certificate validation and certification path validation **supporting a minimum path** length of three certificates.
- The certification path must terminate with a trusted CA certificate designated as a trust anchor.
- The TSF shall validate a certification path by ensuring that all CA certificates in the certification path contain the basicConstraints extension with the CA flag set to TRUE.
- The TSF shall validate the revocation status of the certificate using [*the Online Certificate Status Protocol (OCSP) as specified in RFC 6960*].
- The TSF shall validate the extendedKeyUsage field according to the following rules:
 - Certificates used for trusted updates and executable code integrity verification shall have the Code Signing purpose (id-kp 3 with OID 1.3.6.1.5.5.7.3.3) in the extendedKeyUsage field.
 - Server certificates presented for TLS shall have the Server Authentication purpose (id-kp 1 with OID 1.3.6.1.5.5.7.3.1) in the extendedKeyUsage field.
 - Client certificates presented for TLS shall have the Client Authentication purpose (id-kp 2 with OID 1.3.6.1.5.5.7.3.2) in the extendedKeyUsage field.
 - OCSP certificates presented for OCSP responses shall have the OCSP Signing purpose (id-kp 9 with OID 1.3.6.1.5.5.7.3.9) in the extendedKeyUsage field.

FIA_X509_EXT.1.2/Rev

The TSF shall only treat a certificate as a CA certificate if the basicConstraints extension is present and the CA flag is set to TRUE.

5.2.3.7 FIA_X509_EXT.2 X.509 Certificate Authentication

FIA_X509_EXT.2.1

The TSF shall use X.509v3 certificates as defined by RFC 5280 to support authentication for [<u>*TLS*</u>] and [<u>*no*</u> <u>additional uses</u>].

FIA_X509_EXT.2.2

When the TSF cannot establish a connection to determine the validity of a certificate, the TSF shall [*not accept the certificate*].

Application Note: This SFR has been updated as per TD0537.

5.2.3.8 FIA_X509_EXT.3 X.509 Certificate Requests

FIA_X509_EXT.3.1

The TSF shall generate a Certificate Request as specified by RFC 2986 and be able to provide the following information in the request: public key and [*Common Name, Organization, Organizational Unit, Country*].

FIA_X509_EXT.3.2

The TSF shall validate the chain of certificates from the Root CA upon receiving the CA Certificate Response.

5.2.4 Security Management (FMT)

5.2.4.1 FMT_MOF.1/ManualUpdate Management of Security Functions Behavior

FMT_MOF.1.1/ManualUpdate

The TSF shall restrict the ability to <u>enable</u> the function <u>to perform manual updates to Security</u> <u>Administrators</u>.

5.2.4.2 FMT_MTD.1/CoreData Management of TSF Data

FMT_MTD.1.1/CoreData

The TSF shall restrict the ability to manage the TSF data to Security Administrators.

5.2.4.3 FMT_MTD.1/CryptoKeys Management of TSF Data

FMT_MTD.1.1/CryptoKeys

The TSF shall restrict the ability to *manage* the *cryptographic keys to Security Administrators*.

5.2.4.4 FMT_SMF.1 Specification of Management Functions

FMT_SMF.1.1

The TSF shall be capable of performing the following management functions:

- Ability to administer the TOE locally and remotely;
- Ability to configure the access banner;
- Ability to configure the session inactivity time before session termination or locking;
- Ability to update the TOE, and to verify the updates using [hash comparison] capability prior to installing those updates;
- Ability to configure the authentication failure parameters for FIA_AFL.1;
- [
- Ability to modify the behaviour of the transmission of audit data to an external IT entity;
- Ability to manage the cryptographic keys;
- *Ability to configure the cryptographic functionality;*
- Ability to re-enable an Administrator account;
- <u>Ability to configure NTP;</u>
- Ability to configure the reference identifier for the peer;
- <u>Ability to manage the TOE's trust store and designate X509.v3 certificates as trust</u> <u>anchors;</u>
- Ability to import X.509v3 certificates to the TOE's trust store;
- Ability to manage the trusted public keys database;

].

Application Note: This SFR has been updated as per TD0631.

5.2.4.5 FMT_SMR.2 Restrictions on Security Roles

FMT_SMR.2.1

The TSF shall maintain the roles:

• Security Administrator

FMT_SMR.2.2

The TSF shall be able to associate users with roles.

FMT_SMR.2.3

The TSF shall ensure that the conditions

- The Security Administrator role shall be able to administer the TOE locally;
- The Security Administrator role shall be able to administer the TOE remotely

are satisfied.

5.2.5 Protection of the TSF (FPT)

5.2.5.1.1 FPT_SKP_EXT.1 Protection of TSF Data (for reading of all pre-shared, symmetric, and private keys)

FPT_SKP_EXT.1.1

The TSF shall prevent reading of all pre-shared keys symmetric keys, and private keys.

5.2.5.2 FTP_APW_EXT.1 Protection of Administrator Passwords

FPT_APW_EXT.1.1

The TSF shall store administrative passwords in non-plaintext form.

FPT_APW_EXT.1.2

The TSF shall prevent the reading of plaintext administrative passwords.

5.2.5.3 FPT_TST_EXT.1 TSF Testing

FPT_TST_EXT.1.1

The TSF shall run a suite of the following self-tests [*during initial start-up (on power on)*] to demonstrate the correct operation of the TSF: [*cryptographic self-tests (including RSA Sign/Verify, ECDSA Sign/Verify, CTR_DRBG AES, SHA-1/SHA2-512, HMAC-SHA-256, AES Encrypt/Decrypt, KAS-ECC-SCC), firmware integrity self-tests*].

5.2.5.4 FPT_TUD_EXT.1 Trusted Update

FPT_TUD_EXT.1.1

The TSF shall provide *Security Administrators* the ability to query the currently executing version of the TOE firmware/software and [*no other TOE firmware/software version*].

FPT_TUD_EXT.1.2

The TSF shall provide *Security Administrators* the ability to manually initiate updates to TOE firmware/software and [*no other update mechanism*].

FPT_TUD_EXT.1.3

The TSF shall provide means to authenticate firmware/software updates to the TOE using a [*published hash*] prior to installing those updates.

5.2.5.5 FPT_STM_EXT.1 Reliable Time Stamps

FPT_STM_EXT.1.1

The TSF shall be able to provide reliable time stamps for its own use.

FPT_STM_EXT.1.2

The TSF shall [synchronise time with an NTP server].

Application Note: This SFR has been updated as per TD0632.

5.2.6 TOE Access (FTA)

5.2.6.1 FTA_SSL_EXT.1 TSF-initiated Session Locking

FTA_SSL_EXT.1.1

The TSF Shall, for local interactive sessions, [

• <u>terminate the session</u>

]

after a Security Administrator-specified time period of inactivity

5.2.6.2 FTA_SSL.3 TSF-initiated Termination

FTA_SSL.3.1

The TSF shall terminate **a remote** interactive session after a *Security Administrator-configurable time interval of session inactivity.*

5.2.6.3 FTA_SSL.4 User-initiated Termination

FTA_SSL.4.1

The TSF shall allow Administrator-initiated termination of the Administrator's own interactive session.

5.2.6.4 FTA_TAB.1 Default TOE Access Banners

FTA_TAB.1.1

Before establishing an administrative user session the TSF shall display a Security Administratorspecified advisory notice and consent warning message regarding use of the TOE.

5.2.7 Trusted Path/Channels (FTP)

5.2.7.1 FTP_ITC.1 Inter-TSF Trusted Channel

FTP_ITC.1.1

The TSF shall **be capable of using** [<u>*TLS*</u>] **to** provide a trusted communication channel between itself and **authorized IT entities supporting the following capabilities: audit server,** [<u>*no other capabilities*</u>] that is logically distinct from other communication channels and provides assured identification of its end points and protection of the channel data from **disclosure and detection of modification of the channel data**.

FTP_ITC.1.2

The TSF shall permit **the TSF or the authorized IT entities** to initiate communication via the trusted channel.

FTP_ITC.1.3

The TSF shall initiate communication via the trusted channel for [audit transfer].

5.2.7.2 FTP_TRP.1/Admin Trusted Path

FTP_TRP.1.1/Admin

The TSF shall **be capable of using** [*SSH*] **to** provide a communication path between itself and **authorized** <u>remote</u> **Administrators** that is logically distinct from other communication paths and provides assured identification of its end points and protection of the communicated data from **disclosure and provides detection of modification of the channel data**.

FTP_TRP.1.2/Admin

The TSF shall permit <u>remote</u> **Administrators** to initiate communication via the trusted path.

FTP_TRP.1.3/Admin

The TSF shall require the use of the trusted path for *initial Administrator authentication and all remote administration actions*.

5.3 TOE SFR Dependencies Rationale for SFRs

The PP contain(s) all the requirements claimed in this ST. As such, the dependencies are not applicable since the PP has been approved.

5.4 Security Assurance Requirements

The TOE assurance requirements for this ST are taken directly from the PP which is derived from Common Criteria Version 3.1, Revision 5. The assurance requirements are summarized in the Table13.

Assurance Class	Assurance Components	Component Description
Security Target	ASE_CCL.1	Conformance claims
	ASE_ECD.1	Extended components definition
	ASE_INT.1	ST introduction
	ASE_OBJ.1	Security objectives for the operational environment
	ASE_REQ.1	Stated security requirements
	ASE_SPD.1	Security problem definition
	ASE_TSS.1	TOE Summary Specification
Development	ADV_FSP.1	Basic functional specification
Guidance Documents	AGD_OPE.1	Operational user guidance
	AGD_PRE.1	Preparative user guidance
Life Cycle Support	ALC_CMC.1	Labelling of the TOE
	ALC_CMS.1	TOE CM coverage
Tests	ATE_IND.1	Independent testing – conformance
Vulnerability Assessment	AVA_VAN.1	Vulnerability survey

6 **TOE Summary Specifications** This chapter identifies and describes how the Security Functional Requirements identified above are met by the TOE.

	Table 15 – TOE Summary Specification SFR Description
Requirement	TSS Description
FAU_GEN.1	The TOE utilizes the syslog system library built into the underlying Linux kernel of the TOE to generate local audit records. The TOE uses a custom database for audit log storage, described below in FAU_STG_EXT.1 TSS. It is the responsibility of each calling application (such as SSH or OpenSSL) to call the syslog function, which forwards the audit log messages to the appropriate destination (local database, remote syslog server). Within the TSF, a second, logically distinct call to syslog is made when generating audit logs destined for the external audit log server, ensuring only security-relevant logs reach the audit log server. The TSF includes functionality that uses the syslog system library to generate audit records specifically for the audit requirements specified in Table 12: Auditable Events, as well as start-up and shut-down of the audit functions.
	The syslog daemon will automatically record the date and time (accurate to the second) for each event.
	The TSF categorizes logs into three categories (or type of event), user session, configuration changes, and alert records, based on the function call made to the syslog daemon. The storage location and functionality of these audit records are described in FAU_STG_EXT.1 TSS below.
	To view the audit records in the protocol specific audit event records in the /var partition, the administrative user must login as root via the local console and navigate to those directories to view the logs.
	For all audit records, each audit record will contain the subject identity and outcome of the event within the audit log message. The format of audit log messages is described in operational guidance [AGD].
	The CLI allows restricted access only to custom Pure Storage binaries, each of which contain calls to syslog when necessary and capture the currently logged-in user identity.
	All audit log messages created by the TOE that are relevant to the functions described in this document are described in the guidance documentation [AGD].
	The TOE generates audit records for all of the events defined for FAU_GEN.1.1 listed in NDcPP Section 6.3.1.1 and SFR-specific auditable events listed in NDcPP Table 3 and Table 5 for claimed SFRs.
	The 'Start up and shutdown of the audit function' audit record is captured as start up and shutdown messages for the TOE itself, since logging may not be started or stopped independently of powering on and powering off the TOE.
	Only successfully identified and authenticated administrators can view/read logs on the TOE.

Requirement	TSS Description
	The TSF generates an audit record anytime a persistent cryptographic key is created, modified or destroyed. The audit records identify the name of the cryptographic key in question. The name of the cryptographic key is set by the administrator at the time of generation of the key.
FAU_GEN.2	For each audit event generated on the TOE, at minimum, the TSF associates the audit event with the identity of the user that caused the event, and contains date-and-time stamp, type, subject identity, and outcome (success or failure) of the event, and any SFR-specific additional audit record contents required as described in column three of Table 12.
FAU_STG.1	Audit records are protected from unauthorized access by restrictive CLI (local console, SSH console), which only allows authorized administrators to edit audit-related settings. The TSF protects the locally stored audit records in the audit trail from unauthorized deletion via the user authentication and access control mechanism of the TOE. Security Administrators must be successfully authenticated to the TOE to view locally stored audit records.
FAU_STG_EXT.1	The TSF secures the transmission of audit records to the remote audit server using syslog over TLS with syslog-ng and OpenSSL.
	As described in FAU_GEN.1 TSS above, the TSF contains a custom database that contains user-specific configurations and audit log entries. The local audit log server maintains a database table of up to 1000 entries for each of the three audit log categories: user session, configuration changes, and alert records. The database is stored on the locally connected SAS drives where capacity is managed by the operational environment but will typically have 100-1000x the capacity for the audit logs required (approximately 170 GB). When the local storage space for audit records is full, the TSF deletes the oldest audit log and then records the newest audit log entry (eat-tail method).
	All audit records generated on the TOE are sent to a remote audit server over the TLS protected Trusted Channel. The audit records that are stored locally on the standalone TOE and those sent to the remote audit server are identical in content and format. Locally generated audit records are sent to the remote audit server as soon as they are generated. If the Trusted Channel is not operational, then audit records will not be sent to the remote audit server; however, they will still be locally stored. The TSF does not queue up audit records that were not sent to the remote audit server for transmitting upon re-establishment of the Trusted Channel.
	Only authenticated administrators can access the TOE's internal audit log database through the pureaudit and puremessage CLI commands, which provide only viewing access. The TOE does not implement any CLI commands or interfaces to modify or delete records stored in the database. The underlying database querying functions do not accept commands to modify or delete audit records.
FCS_CKM.1	The TOE fulfills all of the NIST SP 800-56A requirements for supported algorithms without extensions. The TOE does not perform any operations marked as "shall not" or "should not" and performs all operations marked as "shall" or "should."

Requirement	TSS Description	
•	The TOE utilizes OpenSSL for the generation of asymmetric keys. Asymmetric key are generated for SSH authentication and key-exchange.	
	 The following asymmetric keys and key sizes are generated by the TOE: For SSH Server TSF: Authentication: RSA key pairs (2048 bits) 	
	 Key-Exchange: ECDH key-pairs ecdh-sha2-nistp256 (P-256) 	
	 ecdh-sha2-nistp384 (P-384) ecdh-sha2-nistp521 (P-521) 	
	For TLS Client TSF:	
	 Authentication: RSA key pairs (2048 bits) Key-Exchange: RSA key-pairs (2048 bits) 	
FCS_CKM.2	 The TOE utilizes cryptographic key-establishment schemes when negotiating an SSH Server Trusted Path and TLS Trusted Channels. The following list provides the key-establishment schemes utilized and the purpose of their use: RSA-based key establishment scheme that meets RSAES-PKCS1-v1_5 as specified in Section 7.2 of RFC 8017, "Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1. When RSA-key-transport-based ciphersuites are negotiated/used during TLS session negotiation to the TLS sessions to a remote audit server. TOE acts as a session initiator Elliptic curve-based key establishment schemes that meet the following: NIST Special Publication 800-56A Revision 3, "Recommendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm Cryptography" When ECDH-key-transport-based key exchange methods negotiated/used during SSH session negotiation to the TOE remote access SSH server. 	
	TOE acts as a session recipient.	
FCS_CKM.4	The table below describes each of the secret keys, private keys, and CSPs used to generate keys:	
	Table 16: Cryptographic CSPs	
	CSP Name & Description Storage Library	
	RSA SGK - RSA (2048 bits) Signature Generation Key Volatile OpenSSL memory (RAM)	
	AES EDK -AES (128/256) Encrypt/Decrypt KeyVolatileOpenSSL andmemory	
	OpenSSH (RAM) HMAC Key - Keyed hash key (160, 256, 512) Volatile	
	HMAC Key -Keyed hash key (160, 256, 512)VolatileOpenSSL andmemory	
	OpenSSH (RAM)	

Requirement		TSS Description	
	RSA Private – OpenSSH	RSA private key agreement key	Volatile memory (RAM)
	ECDH Private - OpenSSH	ECDH (Diffie-Hellman) private key agreement key	(RAM) Volatile memory
	RNG CSPs -	Entropy input (361 bits) SP800-90A	(RAM) Volatile
	OpenSSL Server	based RNG. Used to generate keys listed above and the SSH private key. Private RSA key for OpenSSH	memory (RAM) Volatile
	Private Keys - OpenSSH	authentication	memory (RAM), Local Filesystem
	Server Private Keys - TLS	Private RSA keys for TLS authentication, syslog-ng	(SSD) Volatile memory (RAM)
	The table below processes within	w describes the public keys used as par n the TSF:	t of the cryptographic
		Table 17: Cryptographic Public Keys	
	Public Key Na & Library	me Description	Storage
	RSA SVK – OpenSSL RSA KEK – OpenSSL Server Public Keys – OpenSS	RSA (2048 bits) Signature Verification Key RSA (2048 bits) Key Encryption (public key transport) Key Public RSA key for OpenSSH authentication	Volatile memory (RAM) Volatile memory (RAM) Volatile memory (RAM), Local Filesystem (SSD)
	power is remove	s volatile secret and private keys when pow ed from the volatile memory, the RAM lose r a short amount of time.	
	following scenar when a when g	ographic keys are instantiated by the admi rios: In SSH host-key is needed for the SSH Serve generating a CSR or importing an externally rust store.	er TSF,
	These persisten TOE (non-volatil	t cryptographic keys are stored in the unde le storage).	erlying filesystem of the
	Administrator p	in non-volatile storage can be securely eras erforming a secure erase procedure using ved by a reboot of the TOE.	

Requirement	TSS Description
	Temporary session keys for TLS and SSH, or persistent keys loaded into memory for use to perform cryptographic operations, are plaintext keys. The session keys are generated as SSH and TLS sessions are negotiated. Both the ephemerally generated session keys and the memory-loaded persistent keys are stored only in RAM (volatile memory) and are zeroized when the associated process that generated them is terminated or rekeying on a particular trusted channel/path session has occurred. Zeroization of these keys occurs by a single overwrite of the key-data, consisting of zeroes
FCS_COP.1/DataEncryption;	The TOE performs encryption/decryption using AES in CBC, CTR and GCM modes, using key sizes of 128 or 256 bits, depending on which TLS and/or SSH ciphers are negotiated. This is enforced by the OpenSSL cryptographic module and is not configurable by the security administrator. This functionality is performed as specified for AES in ISO 18033-3, for CBC as specified in ISO 10116, for CTR as specified in ISO 10116, and for GCM as specified in ISO 19772.
FCS_COP.1/SigGen;	The TOE provides RSA digital signatures (signature generation and signature verification) RSA-based cryptographic functions performed in TLS Client and SSH Server TSFs. The implementation of RSA key generation for these security functions conforms to FIPS Pub 186-4 Appendix B.3. RSA key size of 2048-bits is supported.The TOE's implementation of RSA for digital signature generation and verification meets FIPS PUB 186-4, "Digital Signature Standard (DSS)", Section 5.5, using RSASSA-PKCS1v1_5.
	This is enforced by the OpenSSL cryptographic module and is not configurable by the security administrator.
FCS_COP.1/Hash	The TOE performs SHA-1, SHA-256, SHA-384 and SHA-512 hashing for utilization in HMACs, Digital Signatures, Signature Generation/Verification, and password obfuscation. The TOE implements hashing for use in RSA digital signatures, HMACs in SSH Server TSF, NTP Server and HMACs and Key Derivation Functions in TLS Client TSF. The TOE generates hashes with 160, 256, 384, or 512-bit message digest size.
FCS_COP.1/KeyedHash	The TOE performs keyed-hash message authentication using, hmac-sha-1, hmac-sha2-256, hmac-sha2-512 or implicit and using cryptographic key sizes of 160, 256, 512-bits and message digest sizes of 160, 256, 512-bits, with block sizes of 512-bits SHA-1 and SHA-256, and 1024-bits for SHA-512, per RFC 2104 and RFC4868.
FCS_RBG_EXT.1	The TOE implements a DRBG in accordance with ISO/IEC 18031:2011 using a CTR DRBG with AES. The TSF seed the CTR_DRBG using 361-bits of data that contains at least 256 bits of entropy. The TSF gathers and pools entropy from 1 platform based noise source which is thermal noise. The CAVP details are given in Table 18.
	Additional information related to entropy functionality of the TOE can be reviewed in the Entropy Assessment Report (EAR) provided as an ancillary document.

Requirement	TSS Description
FCS_NTP_EXT.1	The TOE supports the use of NTP servers for time updates with the following NTP version: NTP v4 (RFC 5905). The TOE updates its system time with authentication using SHA256 as the message digest algorithm to verify the authenticity of the timestamp and the TOE does not update the timestamps from broadcast and/or multicast addresses. The TOE supports configuration of at least three (3) NTP time sources in the Operational Environment.
FCS_SSHS_EXT.1	The TOE implements SSHv2, compliant with RFCs 4251, 4252, 4253, 4254, 4344, 5656, 6668, 8308 section3.1, and 8332. There is no SSHv1 or telnet implementation on the TOE.
	The TSF supports public-key and password-based authentication. The TOE ensures and verifies that the SSH client's presented public key matches one that is stored within the TOE's SSH server's authorized keys file.
	SSH connections will be dropped if the TOE receives a packet larger than 262,130 bytes. Large packets are detected by the SSH implementation and dropped internal to the SSH process.
	The TSF supports the following public-key algorithms: rsa-sha2-256, rsa-sha2- 512.
	The TSF supports the following encryption algorithms: aes128-ctr, aes256-ctr, aes128-cbc, and aes256-cbc, aes128-gcm@openssh.com and aes256-gcm@openssh.com to ensure confidentiality of the session.
	The TSF supports the following data integrity algorithms: hmac-sha2-256, and hmac-sha2-512, and implicit MAC (with aes128-gcm@openssh.com and aes256-gcm@openssh.com).
	The TSF supports the following key exchange methods: ecdh-sha2-nistp256, ecdh-sha2-nistp384, and ecdh-sha2-nistp521.
	The TSF tracks the number of bytes encrypted with each key and the time since the last rekey. The TSF initiates a rekey if 512 MB of data is encrypted with an individual key or when 1 hour has elapsed since the last rekey.
FCS_TLSC_EXT.1	The TOE utilizes OpenSSL to provide a TLS client for protecting the communication channel to a remote syslog audit server. The TOE only supports TLSv1.2, rejecting all other SSL/TLS versions. The following non-configurable list of ciphersuites are supported: • TLS_RSA_WITH_AES_128_CBC_SHA • TLS_RSA_WITH_AES_256_CBC_SHA • TLS_RSA_WITH_AES_128_CBC_SHA256 • TLS_RSA_WITH_AES_256_CBC_SHA256
	As no Elliptic Curve-based ciphersuites are supported, the TOE does not include the Supported Elliptic Curves/Supported Groups Extension in generated TLS Client Hello messages.
	Reference identifiers are created by the TOE using the configuration data provided by the admin in administrative CLI . The admin configures the target

Requirement	TSS Description
	destination of the remote audit server using an IP address with subnet mask of the target system or an FQDN of the target system. Wildcards are not supported for IP addresses. Wildcards are supported for FQDNs only and are only accepted when the wildcard is in the left-most label/domain of the configured FQDN.
	When establishing a TLS connection to the remote audit server, the TSF uses the TLS Server certificate presented by the remote audit server to verify the server's identity.
	 The TSF supports the following reference identifiers: CN-ID DNS-ID
	IPv4 address in the SAN
	 The TSF establishes reference identifiers for the remote audit server as follows: When the remote audit server is specified using an IP address, the TSF verifies that the IP address exactly matches a SAN IP Address field in the server certificate using the rules specified in Section 3.1 of RFC 2818. The TSF does not support IP address in the CN field and will reject the connection attempt in the case where no SAN is present and only an IP address is present in the CN.
	• When the remote audit server is specified using an FQDN, the TSF verifies that the FQDN address exactly matches a DNS-ID in the server certificate using the rules specified in Section 3.1 of RFC 2818. If the server certificate does not contain the SAN, the TSF will make the comparison against the CN-ID following the rules specified in Section 3.1 of RFC 2818.
	When the reference identity is an IP address, the identity is converted to the "network byte order" octet string representation. This octet string is then compared against subjectAltName value of type iPAddress (if the SAN is present). A match occurs if the reference identity octet string and value octet strings are identical.
	If the reference identity is an internationalized domain name, the TSF converts the value to the ASCII Compatible Encoding (ACE) format as specified in Section 4 of RFC 3490 before comparison with subjectAltName (if present) or commonName value of type dNSName. The TSF performs the conversion
	 operation specified in Section 4 of RFC 3490 as follows: in step 1, the domain name is considered a "stored string"; in step 3, the flag called "UseSTD3ASCIIRules" is set;
	 in step 5, all label separators are changed to U+002E (full stop/period).
	Canonical format (RFC 3986 for IPv4) is not enforced by the TSF.
	Once the TSF has verified that the presented identifiers are valid for the remote audit server, the TSF verifies the validity of the certificate as described in FIA_X509_EXT.1/Rev TSS.

Requirement	TSS Description
	Certificate pinning is not supported. The TSF will only establish the session if the presented server certificate is valid. If the server certificate is deemed invalid, the TSF terminates the TLS handshake.
	This behavior is performed by default and is not configurable by the security administrator.
FIA_AFL.1	The TSF can be administered through two interfaces, the local console, and SSH.
	When a user connects to the local console interface, the TSF prompts the user for a username and password. The TSF does not echo characters back to the local console while the user is entering their password. The TSF checks the username/password credentials using the Linux PAM library described below. If the username/password match an authorized administrator's credentials, the user is granted access to the command line interface (CLI).
	When a user connects to the SSH interface, the TSF checks to see if the user proposed public key authentication. If the client proposed public key authentication, the TSF attempts to authenticate the user using the username and the proposed SSH public key protocol (RSA-SHA2). If the public key authentication fails or the client did not propose public key authentication, the TSF attempts to authenticate the client using a username/password. If either the RSA-SHA2 authentication or username/password match an authorized administrator's credentials, the user is granted access to the command line interface.
	For both authentication modes, the underlying Linux PAM library is used to authenticate the user in the operational environment. The TOE checks the local database for a match. For SSH public keys, the user must first authenticate using their username and password and then install their SSH public key onto the TOE. The next the time the user attempts to login, the Linux PAM library will check locally, if their public key matches.
	The TSF supports passwords that include any character that can be entered from a standard US keyboard: upper and lower case letters, numbers, special characters ["!", "@", "#", "\$", "%", "^", "&", "*", "(", ")"], and ASCII hexadecimal codes 0x20-0x2F, 0x3A-0x40, 0x5B-0x60, 0x7B-0x7E.
	For each login method, a customizable banner is displayed immediately before the username/password prompt or username/public key exchange.
	The password based authentication mechanism is managed by the underlying Linux operating system and the PAM library. The underlying service responsible for hashing and storing the password on the SSD will also do a pre-check (before hashing) to ensure the length of the password meets the configured minimum.
	If a user enters an incorrect password enough times to meet the configured threshold for this TSF, the offending user account will be prevented from successfully authenticating until an Administrator defined time period has elapsed (a configurable range of between 1 second and 90 days). The offending account will be locked out of both the local and remote management interfaces.

Requirement	TSS Description
	To ensure that administrative access is never completely locked out due to the FIA_AFL.1 functionality, the 'pureuser' account will, at all times, be accessible at the local console, regardless of the FIA_AFL.1 status of this account.
	Failed authentication attempts are tracked by the underlying OS module PAM (Pluggable Authentication Module) using a monotonically incrementing counter. This counter is reset upon successful authentication of the offending account or after the administrator-defined time period for account lockout has elapsed. Each valid account attempting to authenticate remotely gets its own counter. This TSF only applies to remote authentication attempts. To unlock a locked account, any administrator account that is not locked can issue a command at the local or remote SSH interface to unlock a locked account.
	To reiterate, the 'pureuser' account will always be accessible at the local console. This account can be used to unlock any locked account.
FIA_PMG_EXT.1	 Passwords created for user authentication to the TOE's local and remote administrative interfaces may be composed of the following: any combination of upper and lower case letters, numbers, and the following special characters: "!", "@", "#", "\$", "%", "^", "&", "&", "(", ")", ASCII hexadecimal codes 0x20-0x2F, 0x3A-0x40, 0x5B-0x60, 0x7B-0x7E
	Passwords sizes supported by the TOE range from 1 character (minimum) to 100 characters (maximum).
	The minimum password length is configurable from 1 to 100 characters. Such password policies are managed by the authenticated administrator and are enforced by the Linux PAM module. The guidance documentation requires that administrators configure the minimum password length to 15 or more characters in the evaluated configuration.
FIA_UIA_EXT.1	 The TSF shall allow the following actions prior to requiring the non-TOE entity to initiate the identification and authentication process: View the warning and consent banner in accordance with FTA_TAB.1 Respond to ICMP Echo Request Respond to ARP requests with ARP replies Make DNS Requests
	The TSF requires that each administrative user be successfully identified and authenticated before allowing any other TSF-mediated actions on behalf of that administrative user.
	FIA_AFL.1 TSS of this document describes the logon process for each logon method (local, remote SSH) supported for the product. A successfully authenticated administrative user will be presented with a management interface (SSH CLI).
FIA_UAU_EXT.2	The TOE provides a local password-based authentication mechanism to perform local administrative user authentication. This functionality is provided by the Linux PAM module. Users' passwords are stored as a SHA-512 hash (including a

Requirement	TSS Description
	salt) in the underlying filesystem. There are no other authentication mechanisms to perform local administrative user authentication.
FIA_UAU.7	At the local console, the TOE does not echo back the characters typed in for the password credential.
FIA_X509_EXT.1/Rev	The TOE validates x509v3 certificates according to the validation rules described in RFC 5280. Certificates presented for authentication are checked for revocation status via the Online Certificate Status Protocol (OCSP) as specified in RFC 6960, using HTTP requests to the OCSP responder. The TOE queries an OCSP responder via the schema defined in the Authority Information Access extension (specifically the accessMethod and accessLocation fields) that is provided in the certificate to be validated – only HTTP method is supported, and only URL locations are supported. The OpenSSL module performs this certification validation functionality.
	The TOE is the client in a TLS connection, the TOE will validate the peer certificate of the remote audit server during the TLS handshake, as soon as the certificate is received by the TOE. The handshake will fail if the certificate is deemed invalid by the TOE.
	 When a certificate is used (to identify the TSF or identify an external entity to the TOE), the TOE verifies certificates by verifying the following: The current date is between the "Valid from" and "Valid to" dates listed in the certificate The certificate is not revoked when a response from an OCSP responder is successfully provided to the TSF The certificate chain is valid: Each certificate in the certificate chain passes the checks described in #1 and #2 above. Each certificate (other than the first certificate) in the certificate chain has the basicConstraints extension 'Subject Type=CA'. Each certificate is signed by: a certificate (which has the 'certificate signing' key-usage extension) in the certificate chain installed on the TOE, or
	The TOE supports the following extendedKeyUsage fields (listed using Object Identifiers as found in RFC 7299 'Object Identifier Registry for the PKIX Working Group,' Section 'SMI Security for PKIX Extended Key Purpose' Registry): • id-kp-serverAuth OBJECT IDENTIFIER ::= { id-kp 1 } • id-kp-OCSPSigning OBJECT IDENTIFIER ::= { id-kp 9 } The TSF only recognizes the extended key usage purposes listed above. For the extended key usage purposes that the TOE recognizes, the TOE will reject a certificate if the certificate is attempted to be used for a purpose that does not
	match the extended key usage purpose listed in said certificate. The TOE will reject TLS connections with certificates for all other extended key usage purposes.

Requirement	TSS Description
	While the TOE recognizes the id-kp-clientAuth purpose, there is no TSF for which this purpose would be used.The TOE supports a minimum certificate path length of (3) three, thus at minimum a Root CA, an intermediate CAs, and an end-entity/leaf certificate are supported.
FIA_X509_EXT.2	The administrative CLI supports RSA certificates for authentication of the TSF to a peer. The administrator can generate CSRs using the RSA algorithm. Administrators also have the option to import an RSA certificate and associated private key into the TOE. Only one Server certificate may be installed on the system at any one time. The TOE, at minimum, supports installation of a trust certificate chain of one root CA, and an intermediate CA's.
	The configured/installed RSA certificate is sent to the peer when an RSA- authentication based ciphersuite is chosen by the TOE during a TLS handshake with a TLS client
	When the TOE is validating a peer certificate, such as when establishing the TLS session to the remote audit server, the TOE chooses the installed/trusted CA certificate that is associated to the incoming peer certificate. If the peer certificate is signed by an unknown CA, the TOE has no certificates to choose from, failing the validation attempt and, thus, the TLS handshake will be terminated.
	When an OCSP responder does not provide a response, or the OCSP responder is not available, the TOE will not accept the certificate.
FIA_X509_EXT.3	Administrators are able to generate a CSR through the local and remote CLI interfaces. In addition to the RSA public-key data that is automatically included in the CSR, the admin can specify the following additional information in the CSR: • Common Name • Organization • Organizational Unit • Country
FMT_MOF.1/ManualUpdate	The TOE restricts the ability to initiate manual updates of the TOE to identified and authenticated Security Administrators by virtue of restricted access to TOE's administrative interfaces. This functionality is only available via the TOE's administrative interfaces.
	The administrative interfaces are only accessible to administrators after successful authentication; consequently, this functionality is not available to non-administrators.
FMT_MTD.1/CoreData	The TOE restricts the ability to manage the TSF data to identified and authenticated Security Administrators by virtue of restricted access to TOE's administrative interfaces. This functionality is only available via the TOE's administrative interfaces. The administrative interfaces are only accessible to administrators after successful authentication; consequently, this functionality is not available to non-administrators.

Requirement	TSS Description
	There are no interfaces to the TOE that provide the ability for an unauthenticated user to view/modify/edit TSF data. The local console and remote management interfaces only provide the warning and consent banner prior to administrative authentication to the TOE. Non-security administrative users do not have interfaces to view/modify/edit the TSF data. As described for FMT_SMR.2 below the TOE supports four administrative roles. Of these roles, only "Array Administrators" can create, modify, or delete TOE configuration settings (parameters). This includes generating and exporting X.509 CSRs, importing X.509 keys and or certificates, and deleting of X.509 keys and
	certificates . The TOE does not support modifying configured X.509 certificates.
FMT_MTD.1/Cryptokeys	 The Security Administrator is authorized to manage: X509 certificates and Certificate Authorities (CAs) Generate, Import, Export, Delete SSH public keys Import, Delete Passwords Create, Reset NTP Symmetric Key (SHA256 message digest algorithm) Import, Delete These keys are managed via TOE's administrative interfaces, which provides granular control over key management (ability to import SSH keys, export cryptographic keys, and delete keys). Importantly, Cryptographic keys can only be managed by identified and authenticated security administrators to the TOE. The administrative interfaces are only accessible to administrators after successful authentication; consequently, this functionality is not available to non-administrators. They can also set up Network Time Protocol (NTP) connections utilizing a SHA256 message digest algorithm, ensuring synchronized timekeeping across devices.
FMT_SMF.1	 The TOE supports two administrative interfaces. One is the local administration interface which corresponds to the TOE local console. The other is the remote administration interface which corresponds to access to the TOE via SSH trusted path. Identified and authenticated security administrators have the ability to do the following: Ability to administer the TOE locally and remotely; Ability to configure the access banner; When a global banner is configured it is presented at the local and remote administrative interfaces (local console and SSH respectively). This is configured in either administrative interface. Ability to configure the session inactivity time before session termination or locking; Session inactivity time for the local and remote CLI (local console and SSH), is able to be configured via any of those interfaces.

Requirement	TSS Description
Requirement	 Ability to update the TOE and to verify the updates using hash comparison capability prior to installing those updates; The update package is verified using hash comparison. This is configured on the SSH remote remote interface. Ability to configure the authentication failure parameters for FIA_AFL.1; This is configured in either administrative user interface. Ability to modify the behaviour of the transmission of audit data to an external IT entity; This is configured in either administrative interface. Ability to manage the cryptographic keys; This is configured in either administrative interface. Ability to configure the cryptographic functionality; This is configured in either administrative interface. Ability to re-enable an Administrator account; This is configured in either administrative interface. Note: while the TSF for FIA_AFL.1 is a time-based lockout mechanism, administrators have the ability to unlock offending accounts prior to the lockout time elapsing. Unlocking can be achieved through all administrative interface. Ability to configure the reference identifier for the peer; This is configured in either administrative interface. Ability to configure the reference identifier for the peer; This is configured in either administrative interface. Ability to configure in either administrative interface. Ability to configure the reference identifier for the peer; This is configur
FMT_SMR.2	 The TOE maintains the role of 'Security Administrator.' The TOE maintains additional user roles that can be assigned to users of the TOE. The TSF includes four administrative roles within the Authorized Administrator role: Internal Administrator Array Administrator Storage Administrator Read-Only Administrator All roles listed above are considered authorized 'Security Administrators.' All administrator may administrator the TOE locally and remetaly.
	administrators may administer the TOE locally and remotely.
FPT_APW_EXT.1	Locally stored passwords are stored as SHA-512 hashes (including a salt). The administrative interfaces do not provide methods to view password hashes.
FPT_SKP_EXT.1	The CLI (both local and remote) uses a proprietary prompt that allows users access to pre-defined binaries created by Pure Storage. Users do not have file system access.
FPT_STM_EXT.1	The TOE implements a clock to be configured to update the time from an external NTP server. The time is maintained by the TOE connecting to three (3) or more

Requirement	TSS Description		
	external NTP servers. If an NTP server is configured, the TOE synchronizes the time with the external NTP server periodically.		
	The following TSF security functions that utilize the time include:Audit Record timestamps		
	SSH Console session timeoutLocal Console session timeout		
	 x509 Certificate expiration checking Input for the 'Random' field in the TLS Client_Hello Handshake message, as a 32-bit unsigned integer 		
FPT_TST_EXT.1	Upon power-up, the TSF performs a SHA-1 of the kernel, all executables, and all interpreted files, ensuring that the integrity of the operating systems and executables is maintained. The TSF also performs a known answer test on each cryptographic algorithm. If all the hash integrity check passes and the cryptographic algorithms are operating correctly, the TSF will begin normal operation. These tests demonstrate the correct operation of the device by ensuring that no modifications to the operating system and executables have been made, that only tested code is being run by the TSF, and that the underlying hardware is able to load the OS and handle each known answer test correctly.		
	Cryptographic algorithm self-tests include: RSA -Sign, Verify ECDSA - Sign, Verify DRBG - CTR_DRBG: AES SHS - SHA-1, SHA2-512 HMAC - HMAC-SHA-256 AES - Encrypt, Decrypt KAS-ECC-SSC - Shared Secret (Z) Computation		
FPT_TUD_EXT.1	A first step in establishing trust in the update process is to review the published hash of the candidate update package. The System Administrator can verify the candidate update prior to installing the update, by comparing the computed hash of the candidate update package to the published hash. This establishes that the update downloaded is the one associated with the published hash. The currently installed version of software can be queried on the TOE by running the 'purearray list' command from the CLI.		
	Updates are initiated and installed via the internal administrator role. The associated SHA-1 hashes are published in the update release notes. The administrator logs into the TOE as root, copies the update to the TOE, verifies the hash of the update file using a local OpenSSL command, then proceeds to install the update using procedures provided in the guidance documentation. If the hash verification is unsuccessful, the administrator is instructed to delete the update.		
	The TSF provides Security Administrators the ability to manually initiate updates to TOE firmware/software via the local console and remotely using SSH. There are no other update mechanisms.		
	There are no delays to the updating of the TOE software. Once TOE update is initiated, the TOE performs the installation of the software it is necessary to		

Requirement	TSS Description
	reboot in order to boot the TOE using the updated TOE firmware/ software. At no point during operation is it unclear as to which version of the TOE software is installed since there is no queuing or staging of software updates.
	The file names of the candidate update package follow the pattern of • purity_ <version>_<build>.ppkg.</build></version>
FTA_SSL_EXT.1, FTA_SSL.3, FTA_SSL.4	The TSF allows two methods of administrator access: local serial access and remote SSH. The administrator can terminate an administrative session by logging out using either the "exit" or "logout" CLI command. Inactivity timeouts for SSH and local console CLI sessions are configured by the "purearray setattridle-timeout" CLI command for an administrator specified number of minutes. After the configured period of inactivity on a given remote
FTA_TAB.1	SSH or local console CLI session, the TOE will terminate the session. The TSF allows two methods of administrator access: local serial access and remote SSH. The TSF displays a configurable advisory and consent message when an administrator accesses any administrative interface. The advisory message is configured and managed through an option in the administrative interface and
FTP_ITC.1	enforced through interface-specific TSF code. The TSF uses OpenSSL and syslog-ng to communicate with remote audit log servers via TLS.
	 Each protocol implementation is performed according to the descriptions and requirements provided in FCS_CKM.1 TSS and FCS_TLSC_EXT.1 TSS above. The TOE initiates the following Trusted Channel communications: TLS (as client) channel to remote audit server The TOE is assured the identity of the non-TSF endpoint via validation of the x509 peer certificate (audit server's server certificate) received in the TLS handshake to the remote audit
FTP_TRP.1/Admin	server. Certificate validation is described in FIA_X509_EXT.1/Rev TSS above. The TSF uses OpenSSH to provide a remote CLI interface for administrators, which is protected via SSH. Relevant ciphersuites and algorithms are enumerated in FCS_CKM.1 TSS and FCS_SSHS_EXT.1 TSS above.

6.1 CAVP Algorithm Certificate Details

Each of these cryptographic algorithms have been validated as identified in the table below.

Algorithm	CAVP	Standard	Operation	SFR
	Cert #			
RSA	A6623	FIPS 186-4	Key Generation	FCS_CKM.1
			Signature Generation/ Verification	FCS_COP.1/SigGen
			Mod lengths: 2048 (bits)	
ECDSA	A6623	FIPS 186-4	Key Generation / Validation	FCS_CKM.1
				FCS_CKM.2.1
			Curves: P-256, P-384, P-521	
SP 800-90 DRBG	A6623	SP 800-90A	Random Bit Generation	FCS_RBG_EXT.1
DIEG			CTR_DRBG (AES-256)	
SHS	A6623	ISO/IEC 10118-3:2004	Hashing	FCS_COP.1/Hash
			SHA-1, SHA-256, SHA-384, SHA-	
			512	
HMAC-	A6623	ISO/IEC 9797-2:2011	Keyed-Hashing	FCS_COP.1/
SHS				KeyedHash
			HMAC-SHA-1, HMAC-SHA-256,	
			HMAC-SHA-512	
AES	A6623	AES specified in ISO 18033-3	Encryption/ Decryption	FCS_COP.1/
		CBC specified in ISO 10116		DataEncryption
		CTR as specified in ISO 10116	CBC, CTR, GCM	
		GCM specified in ISO 19772	Key Lengths: 128, 256	
KAS-ECC-	A6623	SP 800-56A Revision 3	Key Establishment	FCS_CKM.2.1
SSC			Curves: P-256, P-384, P-521	

Table 18 - CAVP Algorithm Certificate References

6.2 Cryptographic Key Destruction

The table below describes the key zeroization provided by the TOE and as referenced in FCS_CKM.4.

Keys/CSPs	Purpose	Storage Location	Method of Zeroization
EC Diffie Hellman private	ECDH Key	RAM	One-pass overwrite with
parameters			zeroes.
EC Diffie Hellman public	ECDH Key	RAM	One-pass overwrite with
parameters			zeroes.
ECDH Shared Secret	ECDH Key	RAM	One-pass overwrite with
			zeroes.
SSH Private Keys	RSA Private Keys	Local filesystem	Three-pass overwrite
			with random pattern
SSH Public Keys	RSA Public Keys	n/a - public	Three-pass overwrite
			with random pattern
TLS Private Keys	RSA Private Keys	Local filesystem	Three-pass overwrite
			with random pattern
TLS Public Keys	RSA Public Keys	n/a - public	Three-pass overwrite
			with random pattern
SSH Session Encryption	AES Keys	RAM	One-pass overwrite with
Keys			zeroes.
SSH Session Integrity	HMAC Keys	RAM	One-pass overwrite with
Keys			zeroes.
TLS Session Encryption	AES Keys	RAM	One-pass overwrite with
Keys			zeroes.
TLS Session Integrity	HMAC Keys	RAM	One-pass overwrite with
Keys			zeroes.

Table 19 -	Kevs/CSP	s Destruction

7 Acronym Table Acronyms should be included as an Appendix in each document.

Acronym	Definition
AES	Advanced Encryption Standard
СС	Common Criteria
CRL	Certificate Revocation List
DTLS	Datagram Transport Layer Security
ECDSA	Elliptic Curve Digital Signature Algorithm
EP	Extended Package
IP	Internet Protocol
NDcPP	Network Device Collaborative Protection Profile
NIAP	Nation Information Assurance Partnership
NTP	Network Time Protocol
OCSP	Online Certificate Status Protocol
PP	Protection Profile
RSA	Rivest, Shamir, & Adleman
SFR	Security Functional Requirement
SSH	Secure Shell
ST	Security Target
TOE	Target of Evaluation
TLS	Transport Layer Security
TSS	TOE Summary Specification